aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath9k/mac.c
blob: 5f4ae6c9a93c69f4605bf7af447bc29e1c8cb583 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/*
 * Copyright (c) 2008-2011 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hw.h"
#include "hw-ops.h"
#include <linux/export.h>

static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
					struct ath9k_tx_queue_info *qi)
{
	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
		ah->txurn_interrupt_mask);

	ENABLE_REGWRITE_BUFFER(ah);

	REG_WRITE(ah, AR_IMR_S0,
		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
	REG_WRITE(ah, AR_IMR_S1,
		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));

	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);

	REGWRITE_BUFFER_FLUSH(ah);
}

u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
{
	return REG_READ(ah, AR_QTXDP(q));
}
EXPORT_SYMBOL(ath9k_hw_gettxbuf);

void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
{
	REG_WRITE(ah, AR_QTXDP(q), txdp);
}
EXPORT_SYMBOL(ath9k_hw_puttxbuf);

void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
{
	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
	REG_WRITE(ah, AR_Q_TXE, 1 << q);
}
EXPORT_SYMBOL(ath9k_hw_txstart);

u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
{
	u32 npend;

	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
	if (npend == 0) {

		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
			npend = 1;
	}

	return npend;
}
EXPORT_SYMBOL(ath9k_hw_numtxpending);

/**
 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
 *
 * @ah: atheros hardware struct
 * @bIncTrigLevel: whether or not the frame trigger level should be updated
 *
 * The frame trigger level specifies the minimum number of bytes,
 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
 * before the PCU will initiate sending the frame on the air. This can
 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
 * first)
 *
 * Caution must be taken to ensure to set the frame trigger level based
 * on the DMA request size. For example if the DMA request size is set to
 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
 * there need to be enough space in the tx FIFO for the requested transfer
 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
 * the threshold to a value beyond 6, then the transmit will hang.
 *
 * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
 * there is a hardware issue which forces us to use 2 KB instead so the
 * frame trigger level must not exceed 2 KB for these chipsets.
 */
bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
{
	u32 txcfg, curLevel, newLevel;

	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
		return false;

	ath9k_hw_disable_interrupts(ah);

	txcfg = REG_READ(ah, AR_TXCFG);
	curLevel = MS(txcfg, AR_FTRIG);
	newLevel = curLevel;
	if (bIncTrigLevel) {
		if (curLevel < ah->config.max_txtrig_level)
			newLevel++;
	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
		newLevel--;
	if (newLevel != curLevel)
		REG_WRITE(ah, AR_TXCFG,
			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));

	ath9k_hw_enable_interrupts(ah);

	ah->tx_trig_level = newLevel;

	return newLevel != curLevel;
}
EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);

void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
{
	int i, q;

	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);

	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);

	for (q = 0; q < AR_NUM_QCU; q++) {
		for (i = 0; i < 1000; i++) {
			if (i)
				udelay(5);

			if (!ath9k_hw_numtxpending(ah, q))
				break;
		}
	}

	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);

	REG_WRITE(ah, AR_Q_TXD, 0);
}
EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);

bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
{
#define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
#define ATH9K_TIME_QUANTUM		100     /* usec */
	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
	int wait;

	REG_WRITE(ah, AR_Q_TXD, 1 << q);

	for (wait = wait_time; wait != 0; wait--) {
		if (wait != wait_time)
			udelay(ATH9K_TIME_QUANTUM);

		if (ath9k_hw_numtxpending(ah, q) == 0)
			break;
	}

	REG_WRITE(ah, AR_Q_TXD, 0);

	return wait != 0;

#undef ATH9K_TX_STOP_DMA_TIMEOUT
#undef ATH9K_TIME_QUANTUM
}
EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);

void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
{
	*txqs &= ah->intr_txqs;
	ah->intr_txqs &= ~(*txqs);
}
EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);

bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
			    const struct ath9k_tx_queue_info *qinfo)
{
	u32 cw;
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_tx_queue_info *qi;

	qi = &ah->txq[q];
	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
		ath_dbg(common, QUEUE,
			"Set TXQ properties, inactive queue: %u\n", q);
		return false;
	}

	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);

	qi->tqi_ver = qinfo->tqi_ver;
	qi->tqi_subtype = qinfo->tqi_subtype;
	qi->tqi_qflags = qinfo->tqi_qflags;
	qi->tqi_priority = qinfo->tqi_priority;
	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
	else
		qi->tqi_aifs = INIT_AIFS;
	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
		cw = min(qinfo->tqi_cwmin, 1024U);
		qi->tqi_cwmin = 1;
		while (qi->tqi_cwmin < cw)
			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
	} else
		qi->tqi_cwmin = qinfo->tqi_cwmin;
	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
		cw = min(qinfo->tqi_cwmax, 1024U);
		qi->tqi_cwmax = 1;
		while (qi->tqi_cwmax < cw)
			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
	} else
		qi->tqi_cwmax = INIT_CWMAX;

	if (qinfo->tqi_shretry != 0)
		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
	else
		qi->tqi_shretry = INIT_SH_RETRY;
	if (qinfo->tqi_lgretry != 0)
		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
	else
		qi->tqi_lgretry = INIT_LG_RETRY;
	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
	qi->tqi_burstTime = qinfo->tqi_burstTime;
	qi->tqi_readyTime = qinfo->tqi_readyTime;

	switch (qinfo->tqi_subtype) {
	case ATH9K_WME_UPSD:
		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
		break;
	default:
		break;
	}

	return true;
}
EXPORT_SYMBOL(ath9k_hw_set_txq_props);

bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
			    struct ath9k_tx_queue_info *qinfo)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_tx_queue_info *qi;

	qi = &ah->txq[q];
	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
		ath_dbg(common, QUEUE,
			"Get TXQ properties, inactive queue: %u\n", q);
		return false;
	}

	qinfo->tqi_qflags = qi->tqi_qflags;
	qinfo->tqi_ver = qi->tqi_ver;
	qinfo->tqi_subtype = qi->tqi_subtype;
	qinfo->tqi_qflags = qi->tqi_qflags;
	qinfo->tqi_priority = qi->tqi_priority;
	qinfo->tqi_aifs = qi->tqi_aifs;
	qinfo->tqi_cwmin = qi->tqi_cwmin;
	qinfo->tqi_cwmax = qi->tqi_cwmax;
	qinfo->tqi_shretry = qi->tqi_shretry;
	qinfo->tqi_lgretry = qi->tqi_lgretry;
	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
	qinfo->tqi_burstTime = qi->tqi_burstTime;
	qinfo->tqi_readyTime = qi->tqi_readyTime;

	return true;
}
EXPORT_SYMBOL(ath9k_hw_get_txq_props);

int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
			  const struct ath9k_tx_queue_info *qinfo)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_tx_queue_info *qi;
	int q;

	switch (type) {
	case ATH9K_TX_QUEUE_BEACON:
		q = ATH9K_NUM_TX_QUEUES - 1;
		break;
	case ATH9K_TX_QUEUE_CAB:
		q = ATH9K_NUM_TX_QUEUES - 2;
		break;
	case ATH9K_TX_QUEUE_PSPOLL:
		q = 1;
		break;
	case ATH9K_TX_QUEUE_UAPSD:
		q = ATH9K_NUM_TX_QUEUES - 3;
		break;
	case ATH9K_TX_QUEUE_DATA:
		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
			if (ah->txq[q].tqi_type ==
			    ATH9K_TX_QUEUE_INACTIVE)
				break;
		if (q == ATH9K_NUM_TX_QUEUES) {
			ath_err(common, "No available TX queue\n");
			return -1;
		}
		break;
	default:
		ath_err(common, "Invalid TX queue type: %u\n", type);
		return -1;
	}

	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);

	qi = &ah->txq[q];
	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
		ath_err(common, "TX queue: %u already active\n", q);
		return -1;
	}
	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
	qi->tqi_type = type;
	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
	(void) ath9k_hw_set_txq_props(ah, q, qinfo);

	return q;
}
EXPORT_SYMBOL(ath9k_hw_setuptxqueue);

bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_tx_queue_info *qi;

	qi = &ah->txq[q];
	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
		return false;
	}

	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);

	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
	ah->txok_interrupt_mask &= ~(1 << q);
	ah->txerr_interrupt_mask &= ~(1 << q);
	ah->txdesc_interrupt_mask &= ~(1 << q);
	ah->txeol_interrupt_mask &= ~(1 << q);
	ah->txurn_interrupt_mask &= ~(1 << q);
	ath9k_hw_set_txq_interrupts(ah, qi);

	return true;
}
EXPORT_SYMBOL(ath9k_hw_releasetxqueue);

bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
{
	struct ath_common *common = ath9k_hw_common(ah);
	struct ath9k_channel *chan = ah->curchan;
	struct ath9k_tx_queue_info *qi;
	u32 cwMin, chanCwMin, value;

	qi = &ah->txq[q];
	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
		return true;
	}

	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);

	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
		if (chan && IS_CHAN_B(chan))
			chanCwMin = INIT_CWMIN_11B;
		else
			chanCwMin = INIT_CWMIN;

		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
	} else
		cwMin = qi->tqi_cwmin;

	ENABLE_REGWRITE_BUFFER(ah);

	REG_WRITE(ah, AR_DLCL_IFS(q),
		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));

	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));

	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);

	if (AR_SREV_9340(ah))
		REG_WRITE(ah, AR_DMISC(q),
			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
	else
		REG_WRITE(ah, AR_DMISC(q),
			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);

	if (qi->tqi_cbrPeriod) {
		REG_WRITE(ah, AR_QCBRCFG(q),
			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
			    (qi->tqi_cbrOverflowLimit ?
			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
	}
	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
		REG_WRITE(ah, AR_QRDYTIMECFG(q),
			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
			  AR_Q_RDYTIMECFG_EN);
	}

	REG_WRITE(ah, AR_DCHNTIME(q),
		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));

	if (qi->tqi_burstTime
	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);

	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);

	REGWRITE_BUFFER_FLUSH(ah);

	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);

	switch (qi->tqi_type) {
	case ATH9K_TX_QUEUE_BEACON:
		ENABLE_REGWRITE_BUFFER(ah);

		REG_SET_BIT(ah, AR_QMISC(q),
			    AR_Q_MISC_FSP_DBA_GATED
			    | AR_Q_MISC_BEACON_USE
			    | AR_Q_MISC_CBR_INCR_DIS1);

		REG_SET_BIT(ah, AR_DMISC(q),
			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
			    | AR_D_MISC_BEACON_USE
			    | AR_D_MISC_POST_FR_BKOFF_DIS);

		REGWRITE_BUFFER_FLUSH(ah);

		/*
		 * cwmin and cwmax should be 0 for beacon queue
		 * but not for IBSS as we would create an imbalance
		 * on beaconing fairness for participating nodes.
		 */
		if (AR_SREV_9300_20_OR_LATER(ah) &&
		    ah->opmode != NL80211_IFTYPE_ADHOC) {
			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
				  | SM(0, AR_D_LCL_IFS_CWMAX)
				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
		}
		break;
	case ATH9K_TX_QUEUE_CAB:
		ENABLE_REGWRITE_BUFFER(ah);

		REG_SET_BIT(ah, AR_QMISC(q),
			    AR_Q_MISC_FSP_DBA_GATED
			    | AR_Q_MISC_CBR_INCR_DIS1
			    | AR_Q_MISC_CBR_INCR_DIS0);
		value = (qi->tqi_readyTime -
			 (ah->config.sw_beacon_response_time -
			  ah->config.dma_beacon_response_time) -
			 ah->config.additional_swba_backoff) * 1024;
		REG_WRITE(ah, AR_QRDYTIMECFG(q),
			  value | AR_Q_RDYTIMECFG_EN);
		REG_SET_BIT(ah, AR_DMISC(q),
			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));

		REGWRITE_BUFFER_FLUSH(ah);

		break;
	case ATH9K_TX_QUEUE_PSPOLL:
		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
		break;
	case ATH9K_TX_QUEUE_UAPSD:
		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
		break;
	default:
		break;
	}

	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
		REG_SET_BIT(ah, AR_DMISC(q),
			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
			    AR_D_MISC_POST_FR_BKOFF_DIS);
	}

	if (AR_SREV_9300_20_OR_LATER(ah))
		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);

	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
		ah->txok_interrupt_mask |= 1 << q;
	else
		ah->txok_interrupt_mask &= ~(1 << q);
	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
		ah->txerr_interrupt_mask |= 1 << q;
	else
		ah->txerr_interrupt_mask &= ~(1 << q);
	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
		ah->txdesc_interrupt_mask |= 1 << q;
	else
		ah->txdesc_interrupt_mask &= ~(1 << q);
	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
		ah->txeol_interrupt_mask |= 1 << q;
	else
		ah->txeol_interrupt_mask &= ~(1 << q);
	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
		ah->txurn_interrupt_mask |= 1 << q;
	else
		ah->txurn_interrupt_mask &= ~(1 << q);
	ath9k_hw_set_txq_interrupts(ah, qi);

	return true;
}
EXPORT_SYMBOL(ath9k_hw_resettxqueue);

int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
			struct ath_rx_status *rs)
{
	struct ar5416_desc ads;
	struct ar5416_desc *adsp = AR5416DESC(ds);
	u32 phyerr;

	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
		return -EINPROGRESS;

	ads.u.rx = adsp->u.rx;

	rs->rs_status = 0;
	rs->rs_flags = 0;

	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
	rs->rs_tstamp = ads.AR_RcvTimestamp;

	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
		rs->rs_rssi = ATH9K_RSSI_BAD;
		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
	} else {
		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
						AR_RxRSSIAnt00);
		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
						AR_RxRSSIAnt01);
		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
						AR_RxRSSIAnt02);
		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
						AR_RxRSSIAnt10);
		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
						AR_RxRSSIAnt11);
		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
						AR_RxRSSIAnt12);
	}
	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
	else
		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;

	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;

	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
	rs->rs_moreaggr =
		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
	rs->rs_flags =
		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
	rs->rs_flags |=
		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;

	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;

	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
		/*
		 * Treat these errors as mutually exclusive to avoid spurious
		 * extra error reports from the hardware. If a CRC error is
		 * reported, then decryption and MIC errors are irrelevant,
		 * the frame is going to be dropped either way
		 */
		if (ads.ds_rxstatus8 & AR_CRCErr)
			rs->rs_status |= ATH9K_RXERR_CRC;
		else if (ads.ds_rxstatus8 & AR_PHYErr) {
			rs->rs_status |= ATH9K_RXERR_PHY;
			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
			rs->rs_phyerr = phyerr;
		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
			rs->rs_status |= ATH9K_RXERR_DECRYPT;
		else if (ads.ds_rxstatus8 & AR_MichaelErr)
			rs->rs_status |= ATH9K_RXERR_MIC;
	}

	if (ads.ds_rxstatus8 & AR_KeyMiss)
		rs->rs_status |= ATH9K_RXERR_KEYMISS;

	return 0;
}
EXPORT_SYMBOL(ath9k_hw_rxprocdesc);

/*
 * This can stop or re-enables RX.
 *
 * If bool is set this will kill any frame which is currently being
 * transferred between the MAC and baseband and also prevent any new
 * frames from getting started.
 */
bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
{
	u32 reg;

	if (set) {
		REG_SET_BIT(ah, AR_DIAG_SW,
			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));

		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
				   0, AH_WAIT_TIMEOUT)) {
			REG_CLR_BIT(ah, AR_DIAG_SW,
				    (AR_DIAG_RX_DIS |
				     AR_DIAG_RX_ABORT));

			reg = REG_READ(ah, AR_OBS_BUS_1);
			ath_err(ath9k_hw_common(ah),
				"RX failed to go idle in 10 ms RXSM=0x%x\n",
				reg);

			return false;
		}
	} else {
		REG_CLR_BIT(ah, AR_DIAG_SW,
			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
	}

	return true;
}
EXPORT_SYMBOL(ath9k_hw_setrxabort);

void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
{
	REG_WRITE(ah, AR_RXDP, rxdp);
}
EXPORT_SYMBOL(ath9k_hw_putrxbuf);

void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
{
	ath9k_enable_mib_counters(ah);

	ath9k_ani_reset(ah, is_scanning);

	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
}
EXPORT_SYMBOL(ath9k_hw_startpcureceive);

void ath9k_hw_abortpcurecv(struct ath_hw *ah)
{
	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);

	ath9k_hw_disable_mib_counters(ah);
}
EXPORT_SYMBOL(ath9k_hw_abortpcurecv);

bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
{
#define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
	struct ath_common *common = ath9k_hw_common(ah);
	u32 mac_status, last_mac_status = 0;
	int i;

	/* Enable access to the DMA observation bus */
	REG_WRITE(ah, AR_MACMISC,
		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
		   (AR_MACMISC_MISC_OBS_BUS_1 <<
		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));

	REG_WRITE(ah, AR_CR, AR_CR_RXD);

	/* Wait for rx enable bit to go low */
	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
			break;

		if (!AR_SREV_9300_20_OR_LATER(ah)) {
			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
				*reset = true;
				break;
			}

			last_mac_status = mac_status;
		}

		udelay(AH_TIME_QUANTUM);
	}

	if (i == 0) {
		ath_err(common,
			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
			AH_RX_STOP_DMA_TIMEOUT / 1000,
			REG_READ(ah, AR_CR),
			REG_READ(ah, AR_DIAG_SW),
			REG_READ(ah, AR_DMADBG_7));
		return false;
	} else {
		return true;
	}

#undef AH_RX_STOP_DMA_TIMEOUT
}
EXPORT_SYMBOL(ath9k_hw_stopdmarecv);

int ath9k_hw_beaconq_setup(struct ath_hw *ah)
{
	struct ath9k_tx_queue_info qi;

	memset(&qi, 0, sizeof(qi));
	qi.tqi_aifs = 1;
	qi.tqi_cwmin = 0;
	qi.tqi_cwmax = 0;

	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
		qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
				TXQ_FLAG_TXERRINT_ENABLE;

	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
}
EXPORT_SYMBOL(ath9k_hw_beaconq_setup);

bool ath9k_hw_intrpend(struct ath_hw *ah)
{
	u32 host_isr;

	if (AR_SREV_9100(ah))
		return true;

	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);

	if (((host_isr & AR_INTR_MAC_IRQ) ||
	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
	    (host_isr != AR_INTR_SPURIOUS))
		return true;

	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
	if ((host_isr & AR_INTR_SYNC_DEFAULT)
	    && (host_isr != AR_INTR_SPURIOUS))
		return true;

	return false;
}
EXPORT_SYMBOL(ath9k_hw_intrpend);

void ath9k_hw_disable_interrupts(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);

	if (!(ah->imask & ATH9K_INT_GLOBAL))
		atomic_set(&ah->intr_ref_cnt, -1);
	else
		atomic_dec(&ah->intr_ref_cnt);

	ath_dbg(common, INTERRUPT, "disable IER\n");
	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
	(void) REG_READ(ah, AR_IER);
	if (!AR_SREV_9100(ah)) {
		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);

		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
	}
}
EXPORT_SYMBOL(ath9k_hw_disable_interrupts);

void ath9k_hw_enable_interrupts(struct ath_hw *ah)
{
	struct ath_common *common = ath9k_hw_common(ah);
	u32 sync_default = AR_INTR_SYNC_DEFAULT;
	u32 async_mask;

	if (!(ah->imask & ATH9K_INT_GLOBAL))
		return;

	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
			atomic_read(&ah->intr_ref_cnt));
		return;
	}

	if (AR_SREV_9340(ah))
		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;

	async_mask = AR_INTR_MAC_IRQ;

	if (ah->imask & ATH9K_INT_MCI)
		async_mask |= AR_INTR_ASYNC_MASK_MCI;

	ath_dbg(common, INTERRUPT, "enable IER\n");
	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
	if (!AR_SREV_9100(ah)) {
		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);

		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
	}
	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
}
EXPORT_SYMBOL(ath9k_hw_enable_interrupts);

void ath9k_hw_set_interrupts(struct ath_hw *ah)
{
	enum ath9k_int ints = ah->imask;
	u32 mask, mask2;
	struct ath9k_hw_capabilities *pCap = &ah->caps;
	struct ath_common *common = ath9k_hw_common(ah);

	if (!(ints & ATH9K_INT_GLOBAL))
		ath9k_hw_disable_interrupts(ah);

	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);

	mask = ints & ATH9K_INT_COMMON;
	mask2 = 0;

	if (ints & ATH9K_INT_TX) {
		if (ah->config.tx_intr_mitigation)
			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
		else {
			if (ah->txok_interrupt_mask)
				mask |= AR_IMR_TXOK;
			if (ah->txdesc_interrupt_mask)
				mask |= AR_IMR_TXDESC;
		}
		if (ah->txerr_interrupt_mask)
			mask |= AR_IMR_TXERR;
		if (ah->txeol_interrupt_mask)
			mask |= AR_IMR_TXEOL;
	}
	if (ints & ATH9K_INT_RX) {
		if (AR_SREV_9300_20_OR_LATER(ah)) {
			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
			if (ah->config.rx_intr_mitigation) {
				mask &= ~AR_IMR_RXOK_LP;
				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
			} else {
				mask |= AR_IMR_RXOK_LP;
			}
		} else {
			if (ah->config.rx_intr_mitigation)
				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
			else
				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
		}
		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
			mask |= AR_IMR_GENTMR;
	}

	if (ints & ATH9K_INT_GENTIMER)
		mask |= AR_IMR_GENTMR;

	if (ints & (ATH9K_INT_BMISC)) {
		mask |= AR_IMR_BCNMISC;
		if (ints & ATH9K_INT_TIM)
			mask2 |= AR_IMR_S2_TIM;
		if (ints & ATH9K_INT_DTIM)
			mask2 |= AR_IMR_S2_DTIM;
		if (ints & ATH9K_INT_DTIMSYNC)
			mask2 |= AR_IMR_S2_DTIMSYNC;
		if (ints & ATH9K_INT_CABEND)
			mask2 |= AR_IMR_S2_CABEND;
		if (ints & ATH9K_INT_TSFOOR)
			mask2 |= AR_IMR_S2_TSFOOR;
	}

	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
		mask |= AR_IMR_BCNMISC;
		if (ints & ATH9K_INT_GTT)
			mask2 |= AR_IMR_S2_GTT;
		if (ints & ATH9K_INT_CST)
			mask2 |= AR_IMR_S2_CST;
	}

	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
	REG_WRITE(ah, AR_IMR, mask);
	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
	ah->imrs2_reg |= mask2;
	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);

	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
		if (ints & ATH9K_INT_TIM_TIMER)
			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
		else
			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
	}

	return;
}
EXPORT_SYMBOL(ath9k_hw_set_interrupts);