aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/natsemi.c
blob: ab2862990a5bbab99b0ab407bd10a9f5dd3917f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
/*
	Written/copyright 1999-2001 by Donald Becker.
	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.  License for under other terms may be
	available.  Contact the original author for details.

	The original author may be reached as becker@scyld.com, or at
	Scyld Computing Corporation
	410 Severn Ave., Suite 210
	Annapolis MD 21403

	Support information and updates available at
	http://www.scyld.com/network/netsemi.html
	[link no longer provides useful info -jgarzik]


	TODO:
	* big endian support with CFG:BEM instead of cpu_to_le32
*/

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/delay.h>
#include <linux/rtnetlink.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <linux/bitops.h>
#include <linux/prefetch.h>
#include <asm/processor.h>	/* Processor type for cache alignment. */
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>

#define DRV_NAME	"natsemi"
#define DRV_VERSION	"2.1"
#define DRV_RELDATE	"Sept 11, 2006"

#define RX_OFFSET	2

/* Updated to recommendations in pci-skeleton v2.03. */

/* The user-configurable values.
   These may be modified when a driver module is loaded.*/

#define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
				 NETIF_MSG_LINK		| \
				 NETIF_MSG_WOL		| \
				 NETIF_MSG_RX_ERR	| \
				 NETIF_MSG_TX_ERR)
static int debug = -1;

static int mtu;

/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   This chip uses a 512 element hash table based on the Ethernet CRC.  */
static const int multicast_filter_limit = 100;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature. */
static int rx_copybreak;

static int dspcfg_workaround = 1;

/* Used to pass the media type, etc.
   Both 'options[]' and 'full_duplex[]' should exist for driver
   interoperability.
   The media type is usually passed in 'options[]'.
*/
#define MAX_UNITS 8		/* More are supported, limit only on options */
static int options[MAX_UNITS];
static int full_duplex[MAX_UNITS];

/* Operational parameters that are set at compile time. */

/* Keep the ring sizes a power of two for compile efficiency.
   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority.
   There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE	16
#define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
#define RX_RING_SIZE	32

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (2*HZ)

#define NATSEMI_HW_TIMEOUT	400
#define NATSEMI_TIMER_FREQ	5*HZ
#define NATSEMI_PG0_NREGS	64
#define NATSEMI_RFDR_NREGS	8
#define NATSEMI_PG1_NREGS	4
#define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
				 NATSEMI_PG1_NREGS)
#define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
#define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))

/* Buffer sizes:
 * The nic writes 32-bit values, even if the upper bytes of
 * a 32-bit value are beyond the end of the buffer.
 */
#define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
#define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
#define NATSEMI_LONGPKT		1518	/* limit for normal packets */
#define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */

/* These identify the driver base version and may not be removed. */
static const char version[] __devinitconst =
  KERN_INFO DRV_NAME " dp8381x driver, version "
      DRV_VERSION ", " DRV_RELDATE "\n"
  "  originally by Donald Becker <becker@scyld.com>\n"
  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
MODULE_LICENSE("GPL");

module_param(mtu, int, 0);
module_param(debug, int, 0);
module_param(rx_copybreak, int, 0);
module_param(dspcfg_workaround, int, 1);
module_param_array(options, int, NULL, 0);
module_param_array(full_duplex, int, NULL, 0);
MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
MODULE_PARM_DESC(debug, "DP8381x default debug level");
MODULE_PARM_DESC(rx_copybreak,
	"DP8381x copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
MODULE_PARM_DESC(options,
	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");

/*
				Theory of Operation

I. Board Compatibility

This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
It also works with other chips in in the DP83810 series.

II. Board-specific settings

This driver requires the PCI interrupt line to be valid.
It honors the EEPROM-set values.

III. Driver operation

IIIa. Ring buffers

This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
The NatSemi design uses a 'next descriptor' pointer that the driver forms
into a list.

IIIb/c. Transmit/Receive Structure

This driver uses a zero-copy receive and transmit scheme.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack.  Buffers consumed this way are replaced by newly allocated
skbuffs in a later phase of receives.

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.  New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets.  When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine.  Copying also preloads the cache, which is
most useful with small frames.

A subtle aspect of the operation is that unaligned buffers are not permitted
by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
longword aligned for further processing.  On copies frames are put into the
skbuff at an offset of "+2", 16-byte aligning the IP header.

IIId. Synchronization

Most operations are synchronized on the np->lock irq spinlock, except the
receive and transmit paths which are synchronised using a combination of
hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.

IVb. References

http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html
Datasheet is available from:
http://www.national.com/pf/DP/DP83815.html

IVc. Errata

None characterised.
*/



/*
 * Support for fibre connections on Am79C874:
 * This phy needs a special setup when connected to a fibre cable.
 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 */
#define PHYID_AM79C874	0x0022561b

enum {
	MII_MCTRL	= 0x15,		/* mode control register */
	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
};

enum {
	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
};

/* array of board data directly indexed by pci_tbl[x].driver_data */
static struct {
	const char *name;
	unsigned long flags;
	unsigned int eeprom_size;
} natsemi_pci_info[] __devinitdata = {
	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
	{ "NatSemi DP8381[56]", 0, 24 },
};

static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);

/* Offsets to the device registers.
   Unlike software-only systems, device drivers interact with complex hardware.
   It's not useful to define symbolic names for every register bit in the
   device.
*/
enum register_offsets {
	ChipCmd			= 0x00,
	ChipConfig		= 0x04,
	EECtrl			= 0x08,
	PCIBusCfg		= 0x0C,
	IntrStatus		= 0x10,
	IntrMask		= 0x14,
	IntrEnable		= 0x18,
	IntrHoldoff		= 0x1C, /* DP83816 only */
	TxRingPtr		= 0x20,
	TxConfig		= 0x24,
	RxRingPtr		= 0x30,
	RxConfig		= 0x34,
	ClkRun			= 0x3C,
	WOLCmd			= 0x40,
	PauseCmd		= 0x44,
	RxFilterAddr		= 0x48,
	RxFilterData		= 0x4C,
	BootRomAddr		= 0x50,
	BootRomData		= 0x54,
	SiliconRev		= 0x58,
	StatsCtrl		= 0x5C,
	StatsData		= 0x60,
	RxPktErrs		= 0x60,
	RxMissed		= 0x68,
	RxCRCErrs		= 0x64,
	BasicControl		= 0x80,
	BasicStatus		= 0x84,
	AnegAdv			= 0x90,
	AnegPeer		= 0x94,
	PhyStatus		= 0xC0,
	MIntrCtrl		= 0xC4,
	MIntrStatus		= 0xC8,
	PhyCtrl			= 0xE4,

	/* These are from the spec, around page 78... on a separate table.
	 * The meaning of these registers depend on the value of PGSEL. */
	PGSEL			= 0xCC,
	PMDCSR			= 0xE4,
	TSTDAT			= 0xFC,
	DSPCFG			= 0xF4,
	SDCFG			= 0xF8
};
/* the values for the 'magic' registers above (PGSEL=1) */
#define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
#define TSTDAT_VAL	0x0
#define DSPCFG_VAL	0x5040
#define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
#define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
#define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
#define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */

/* misc PCI space registers */
enum pci_register_offsets {
	PCIPM			= 0x44,
};

enum ChipCmd_bits {
	ChipReset		= 0x100,
	RxReset			= 0x20,
	TxReset			= 0x10,
	RxOff			= 0x08,
	RxOn			= 0x04,
	TxOff			= 0x02,
	TxOn			= 0x01,
};

enum ChipConfig_bits {
	CfgPhyDis		= 0x200,
	CfgPhyRst		= 0x400,
	CfgExtPhy		= 0x1000,
	CfgAnegEnable		= 0x2000,
	CfgAneg100		= 0x4000,
	CfgAnegFull		= 0x8000,
	CfgAnegDone		= 0x8000000,
	CfgFullDuplex		= 0x20000000,
	CfgSpeed100		= 0x40000000,
	CfgLink			= 0x80000000,
};

enum EECtrl_bits {
	EE_ShiftClk		= 0x04,
	EE_DataIn		= 0x01,
	EE_ChipSelect		= 0x08,
	EE_DataOut		= 0x02,
	MII_Data 		= 0x10,
	MII_Write		= 0x20,
	MII_ShiftClk		= 0x40,
};

enum PCIBusCfg_bits {
	EepromReload		= 0x4,
};

/* Bits in the interrupt status/mask registers. */
enum IntrStatus_bits {
	IntrRxDone		= 0x0001,
	IntrRxIntr		= 0x0002,
	IntrRxErr		= 0x0004,
	IntrRxEarly		= 0x0008,
	IntrRxIdle		= 0x0010,
	IntrRxOverrun		= 0x0020,
	IntrTxDone		= 0x0040,
	IntrTxIntr		= 0x0080,
	IntrTxErr		= 0x0100,
	IntrTxIdle		= 0x0200,
	IntrTxUnderrun		= 0x0400,
	StatsMax		= 0x0800,
	SWInt			= 0x1000,
	WOLPkt			= 0x2000,
	LinkChange		= 0x4000,
	IntrHighBits		= 0x8000,
	RxStatusFIFOOver	= 0x10000,
	IntrPCIErr		= 0xf00000,
	RxResetDone		= 0x1000000,
	TxResetDone		= 0x2000000,
	IntrAbnormalSummary	= 0xCD20,
};

/*
 * Default Interrupts:
 * Rx OK, Rx Packet Error, Rx Overrun,
 * Tx OK, Tx Packet Error, Tx Underrun,
 * MIB Service, Phy Interrupt, High Bits,
 * Rx Status FIFO overrun,
 * Received Target Abort, Received Master Abort,
 * Signalled System Error, Received Parity Error
 */
#define DEFAULT_INTR 0x00f1cd65

enum TxConfig_bits {
	TxDrthMask		= 0x3f,
	TxFlthMask		= 0x3f00,
	TxMxdmaMask		= 0x700000,
	TxMxdma_512		= 0x0,
	TxMxdma_4		= 0x100000,
	TxMxdma_8		= 0x200000,
	TxMxdma_16		= 0x300000,
	TxMxdma_32		= 0x400000,
	TxMxdma_64		= 0x500000,
	TxMxdma_128		= 0x600000,
	TxMxdma_256		= 0x700000,
	TxCollRetry		= 0x800000,
	TxAutoPad		= 0x10000000,
	TxMacLoop		= 0x20000000,
	TxHeartIgn		= 0x40000000,
	TxCarrierIgn		= 0x80000000
};

/*
 * Tx Configuration:
 * - 256 byte DMA burst length
 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 *   when 64 byte are in the fifo)
 * - on tx underruns, increase drain threshold by 64.
 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 *   threshold and the drain threshold must be less than 2016 bytes.
 *
 */
#define TX_FLTH_VAL		((512/32) << 8)
#define TX_DRTH_VAL_START	(64/32)
#define TX_DRTH_VAL_INC		2
#define TX_DRTH_VAL_LIMIT	(1472/32)

enum RxConfig_bits {
	RxDrthMask		= 0x3e,
	RxMxdmaMask		= 0x700000,
	RxMxdma_512		= 0x0,
	RxMxdma_4		= 0x100000,
	RxMxdma_8		= 0x200000,
	RxMxdma_16		= 0x300000,
	RxMxdma_32		= 0x400000,
	RxMxdma_64		= 0x500000,
	RxMxdma_128		= 0x600000,
	RxMxdma_256		= 0x700000,
	RxAcceptLong		= 0x8000000,
	RxAcceptTx		= 0x10000000,
	RxAcceptRunt		= 0x40000000,
	RxAcceptErr		= 0x80000000
};
#define RX_DRTH_VAL		(128/8)

enum ClkRun_bits {
	PMEEnable		= 0x100,
	PMEStatus		= 0x8000,
};

enum WolCmd_bits {
	WakePhy			= 0x1,
	WakeUnicast		= 0x2,
	WakeMulticast		= 0x4,
	WakeBroadcast		= 0x8,
	WakeArp			= 0x10,
	WakePMatch0		= 0x20,
	WakePMatch1		= 0x40,
	WakePMatch2		= 0x80,
	WakePMatch3		= 0x100,
	WakeMagic		= 0x200,
	WakeMagicSecure		= 0x400,
	SecureHack		= 0x100000,
	WokePhy			= 0x400000,
	WokeUnicast		= 0x800000,
	WokeMulticast		= 0x1000000,
	WokeBroadcast		= 0x2000000,
	WokeArp			= 0x4000000,
	WokePMatch0		= 0x8000000,
	WokePMatch1		= 0x10000000,
	WokePMatch2		= 0x20000000,
	WokePMatch3		= 0x40000000,
	WokeMagic		= 0x80000000,
	WakeOptsSummary		= 0x7ff
};

enum RxFilterAddr_bits {
	RFCRAddressMask		= 0x3ff,
	AcceptMulticast		= 0x00200000,
	AcceptMyPhys		= 0x08000000,
	AcceptAllPhys		= 0x10000000,
	AcceptAllMulticast	= 0x20000000,
	AcceptBroadcast		= 0x40000000,
	RxFilterEnable		= 0x80000000
};

enum StatsCtrl_bits {
	StatsWarn		= 0x1,
	StatsFreeze		= 0x2,
	StatsClear		= 0x4,
	StatsStrobe		= 0x8,
};

enum MIntrCtrl_bits {
	MICRIntEn		= 0x2,
};

enum PhyCtrl_bits {
	PhyAddrMask		= 0x1f,
};

#define PHY_ADDR_NONE		32
#define PHY_ADDR_INTERNAL	1

/* values we might find in the silicon revision register */
#define SRR_DP83815_C	0x0302
#define SRR_DP83815_D	0x0403
#define SRR_DP83816_A4	0x0504
#define SRR_DP83816_A5	0x0505

/* The Rx and Tx buffer descriptors. */
/* Note that using only 32 bit fields simplifies conversion to big-endian
   architectures. */
struct netdev_desc {
	__le32 next_desc;
	__le32 cmd_status;
	__le32 addr;
	__le32 software_use;
};

/* Bits in network_desc.status */
enum desc_status_bits {
	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
	DescNoCRC=0x10000000, DescPktOK=0x08000000,
	DescSizeMask=0xfff,

	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,

	DescRxAbort=0x04000000, DescRxOver=0x02000000,
	DescRxDest=0x01800000, DescRxLong=0x00400000,
	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
	DescRxLoop=0x00020000, DesRxColl=0x00010000,
};

struct netdev_private {
	/* Descriptor rings first for alignment */
	dma_addr_t ring_dma;
	struct netdev_desc *rx_ring;
	struct netdev_desc *tx_ring;
	/* The addresses of receive-in-place skbuffs */
	struct sk_buff *rx_skbuff[RX_RING_SIZE];
	dma_addr_t rx_dma[RX_RING_SIZE];
	/* address of a sent-in-place packet/buffer, for later free() */
	struct sk_buff *tx_skbuff[TX_RING_SIZE];
	dma_addr_t tx_dma[TX_RING_SIZE];
	struct net_device *dev;
	struct napi_struct napi;
	/* Media monitoring timer */
	struct timer_list timer;
	/* Frequently used values: keep some adjacent for cache effect */
	struct pci_dev *pci_dev;
	struct netdev_desc *rx_head_desc;
	/* Producer/consumer ring indices */
	unsigned int cur_rx, dirty_rx;
	unsigned int cur_tx, dirty_tx;
	/* Based on MTU+slack. */
	unsigned int rx_buf_sz;
	int oom;
	/* Interrupt status */
	u32 intr_status;
	/* Do not touch the nic registers */
	int hands_off;
	/* Don't pay attention to the reported link state. */
	int ignore_phy;
	/* external phy that is used: only valid if dev->if_port != PORT_TP */
	int mii;
	int phy_addr_external;
	unsigned int full_duplex;
	/* Rx filter */
	u32 cur_rx_mode;
	u32 rx_filter[16];
	/* FIFO and PCI burst thresholds */
	u32 tx_config, rx_config;
	/* original contents of ClkRun register */
	u32 SavedClkRun;
	/* silicon revision */
	u32 srr;
	/* expected DSPCFG value */
	u16 dspcfg;
	int dspcfg_workaround;
	/* parms saved in ethtool format */
	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
	u8	duplex;		/* Duplex, half or full */
	u8	autoneg;	/* Autonegotiation enabled */
	/* MII transceiver section */
	u16 advertising;
	unsigned int iosize;
	spinlock_t lock;
	u32 msg_enable;
	/* EEPROM data */
	int eeprom_size;
};

static void move_int_phy(struct net_device *dev, int addr);
static int eeprom_read(void __iomem *ioaddr, int location);
static int mdio_read(struct net_device *dev, int reg);
static void mdio_write(struct net_device *dev, int reg, u16 data);
static void init_phy_fixup(struct net_device *dev);
static int miiport_read(struct net_device *dev, int phy_id, int reg);
static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
static int find_mii(struct net_device *dev);
static void natsemi_reset(struct net_device *dev);
static void natsemi_reload_eeprom(struct net_device *dev);
static void natsemi_stop_rxtx(struct net_device *dev);
static int netdev_open(struct net_device *dev);
static void do_cable_magic(struct net_device *dev);
static void undo_cable_magic(struct net_device *dev);
static void check_link(struct net_device *dev);
static void netdev_timer(unsigned long data);
static void dump_ring(struct net_device *dev);
static void ns_tx_timeout(struct net_device *dev);
static int alloc_ring(struct net_device *dev);
static void refill_rx(struct net_device *dev);
static void init_ring(struct net_device *dev);
static void drain_tx(struct net_device *dev);
static void drain_ring(struct net_device *dev);
static void free_ring(struct net_device *dev);
static void reinit_ring(struct net_device *dev);
static void init_registers(struct net_device *dev);
static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t intr_handler(int irq, void *dev_instance);
static void netdev_error(struct net_device *dev, int intr_status);
static int natsemi_poll(struct napi_struct *napi, int budget);
static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
static void netdev_tx_done(struct net_device *dev);
static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void natsemi_poll_controller(struct net_device *dev);
#endif
static void __set_rx_mode(struct net_device *dev);
static void set_rx_mode(struct net_device *dev);
static void __get_stats(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int netdev_set_wol(struct net_device *dev, u32 newval);
static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
static int netdev_set_sopass(struct net_device *dev, u8 *newval);
static int netdev_get_sopass(struct net_device *dev, u8 *data);
static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
static void enable_wol_mode(struct net_device *dev, int enable_intr);
static int netdev_close(struct net_device *dev);
static int netdev_get_regs(struct net_device *dev, u8 *buf);
static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
static const struct ethtool_ops ethtool_ops;

#define NATSEMI_ATTR(_name) \
static ssize_t natsemi_show_##_name(struct device *dev, \
         struct device_attribute *attr, char *buf); \
	 static ssize_t natsemi_set_##_name(struct device *dev, \
		struct device_attribute *attr, \
	        const char *buf, size_t count); \
	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)

#define NATSEMI_CREATE_FILE(_dev, _name) \
         device_create_file(&_dev->dev, &dev_attr_##_name)
#define NATSEMI_REMOVE_FILE(_dev, _name) \
         device_remove_file(&_dev->dev, &dev_attr_##_name)

NATSEMI_ATTR(dspcfg_workaround);

static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
				  	      struct device_attribute *attr,
					      char *buf)
{
	struct netdev_private *np = netdev_priv(to_net_dev(dev));

	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
}

static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
					     struct device_attribute *attr,
					     const char *buf, size_t count)
{
	struct netdev_private *np = netdev_priv(to_net_dev(dev));
	int new_setting;
	unsigned long flags;

        /* Find out the new setting */
        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
                new_setting = 1;
        else if (!strncmp("off", buf, count - 1) ||
                 !strncmp("0", buf, count - 1))
		new_setting = 0;
	else
                 return count;

	spin_lock_irqsave(&np->lock, flags);

	np->dspcfg_workaround = new_setting;

	spin_unlock_irqrestore(&np->lock, flags);

	return count;
}

static inline void __iomem *ns_ioaddr(struct net_device *dev)
{
	return (void __iomem *) dev->base_addr;
}

static inline void natsemi_irq_enable(struct net_device *dev)
{
	writel(1, ns_ioaddr(dev) + IntrEnable);
	readl(ns_ioaddr(dev) + IntrEnable);
}

static inline void natsemi_irq_disable(struct net_device *dev)
{
	writel(0, ns_ioaddr(dev) + IntrEnable);
	readl(ns_ioaddr(dev) + IntrEnable);
}

static void move_int_phy(struct net_device *dev, int addr)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);
	int target = 31;

	/*
	 * The internal phy is visible on the external mii bus. Therefore we must
	 * move it away before we can send commands to an external phy.
	 * There are two addresses we must avoid:
	 * - the address on the external phy that is used for transmission.
	 * - the address that we want to access. User space can access phys
	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
	 *   phy that is used for transmission.
	 */

	if (target == addr)
		target--;
	if (target == np->phy_addr_external)
		target--;
	writew(target, ioaddr + PhyCtrl);
	readw(ioaddr + PhyCtrl);
	udelay(1);
}

static void __devinit natsemi_init_media (struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	u32 tmp;

	if (np->ignore_phy)
		netif_carrier_on(dev);
	else
		netif_carrier_off(dev);

	/* get the initial settings from hardware */
	tmp            = mdio_read(dev, MII_BMCR);
	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
	np->advertising= mdio_read(dev, MII_ADVERTISE);

	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
	    netif_msg_probe(np)) {
		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
			"10%s %s duplex.\n",
			pci_name(np->pci_dev),
			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
			  "enabled, advertise" : "disabled, force",
			(np->advertising &
			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
			    "0" : "",
			(np->advertising &
			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
			    "full" : "half");
	}
	if (netif_msg_probe(np))
		printk(KERN_INFO
			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
			np->advertising);

}

static const struct net_device_ops natsemi_netdev_ops = {
	.ndo_open		= netdev_open,
	.ndo_stop		= netdev_close,
	.ndo_start_xmit		= start_tx,
	.ndo_get_stats		= get_stats,
	.ndo_set_multicast_list = set_rx_mode,
	.ndo_change_mtu		= natsemi_change_mtu,
	.ndo_do_ioctl		= netdev_ioctl,
	.ndo_tx_timeout 	= ns_tx_timeout,
	.ndo_set_mac_address 	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= natsemi_poll_controller,
#endif
};

static int __devinit natsemi_probe1 (struct pci_dev *pdev,
	const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct netdev_private *np;
	int i, option, irq, chip_idx = ent->driver_data;
	static int find_cnt = -1;
	resource_size_t iostart;
	unsigned long iosize;
	void __iomem *ioaddr;
	const int pcibar = 1; /* PCI base address register */
	int prev_eedata;
	u32 tmp;

/* when built into the kernel, we only print version if device is found */
#ifndef MODULE
	static int printed_version;
	if (!printed_version++)
		printk(version);
#endif

	i = pci_enable_device(pdev);
	if (i) return i;

	/* natsemi has a non-standard PM control register
	 * in PCI config space.  Some boards apparently need
	 * to be brought to D0 in this manner.
	 */
	pci_read_config_dword(pdev, PCIPM, &tmp);
	if (tmp & PCI_PM_CTRL_STATE_MASK) {
		/* D0 state, disable PME assertion */
		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
		pci_write_config_dword(pdev, PCIPM, newtmp);
	}

	find_cnt++;
	iostart = pci_resource_start(pdev, pcibar);
	iosize = pci_resource_len(pdev, pcibar);
	irq = pdev->irq;

	pci_set_master(pdev);

	dev = alloc_etherdev(sizeof (struct netdev_private));
	if (!dev)
		return -ENOMEM;
	SET_NETDEV_DEV(dev, &pdev->dev);

	i = pci_request_regions(pdev, DRV_NAME);
	if (i)
		goto err_pci_request_regions;

	ioaddr = ioremap(iostart, iosize);
	if (!ioaddr) {
		i = -ENOMEM;
		goto err_ioremap;
	}

	/* Work around the dropped serial bit. */
	prev_eedata = eeprom_read(ioaddr, 6);
	for (i = 0; i < 3; i++) {
		int eedata = eeprom_read(ioaddr, i + 7);
		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
		dev->dev_addr[i*2+1] = eedata >> 7;
		prev_eedata = eedata;
	}

	/* Store MAC Address in perm_addr */
	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);

	dev->base_addr = (unsigned long __force) ioaddr;
	dev->irq = irq;

	np = netdev_priv(dev);
	netif_napi_add(dev, &np->napi, natsemi_poll, 64);
	np->dev = dev;

	np->pci_dev = pdev;
	pci_set_drvdata(pdev, dev);
	np->iosize = iosize;
	spin_lock_init(&np->lock);
	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
	np->hands_off = 0;
	np->intr_status = 0;
	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
		np->ignore_phy = 1;
	else
		np->ignore_phy = 0;
	np->dspcfg_workaround = dspcfg_workaround;

	/* Initial port:
	 * - If configured to ignore the PHY set up for external.
	 * - If the nic was configured to use an external phy and if find_mii
	 *   finds a phy: use external port, first phy that replies.
	 * - Otherwise: internal port.
	 * Note that the phy address for the internal phy doesn't matter:
	 * The address would be used to access a phy over the mii bus, but
	 * the internal phy is accessed through mapped registers.
	 */
	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
		dev->if_port = PORT_MII;
	else
		dev->if_port = PORT_TP;
	/* Reset the chip to erase previous misconfiguration. */
	natsemi_reload_eeprom(dev);
	natsemi_reset(dev);

	if (dev->if_port != PORT_TP) {
		np->phy_addr_external = find_mii(dev);
		/* If we're ignoring the PHY it doesn't matter if we can't
		 * find one. */
		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
			dev->if_port = PORT_TP;
			np->phy_addr_external = PHY_ADDR_INTERNAL;
		}
	} else {
		np->phy_addr_external = PHY_ADDR_INTERNAL;
	}

	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
	if (dev->mem_start)
		option = dev->mem_start;

	/* The lower four bits are the media type. */
	if (option) {
		if (option & 0x200)
			np->full_duplex = 1;
		if (option & 15)
			printk(KERN_INFO
				"natsemi %s: ignoring user supplied media type %d",
				pci_name(np->pci_dev), option & 15);
	}
	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
		np->full_duplex = 1;

	dev->netdev_ops = &natsemi_netdev_ops;
	dev->watchdog_timeo = TX_TIMEOUT;

	SET_ETHTOOL_OPS(dev, &ethtool_ops);

	if (mtu)
		dev->mtu = mtu;

	natsemi_init_media(dev);

	/* save the silicon revision for later querying */
	np->srr = readl(ioaddr + SiliconRev);
	if (netif_msg_hw(np))
		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
				pci_name(np->pci_dev), np->srr);

	i = register_netdev(dev);
	if (i)
		goto err_register_netdev;

	if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
		goto err_create_file;

	if (netif_msg_drv(np)) {
		printk(KERN_INFO "natsemi %s: %s at %#08llx "
		       "(%s), %pM, IRQ %d",
		       dev->name, natsemi_pci_info[chip_idx].name,
		       (unsigned long long)iostart, pci_name(np->pci_dev),
		       dev->dev_addr, irq);
		if (dev->if_port == PORT_TP)
			printk(", port TP.\n");
		else if (np->ignore_phy)
			printk(", port MII, ignoring PHY\n");
		else
			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
	}
	return 0;

 err_create_file:
 	unregister_netdev(dev);

 err_register_netdev:
	iounmap(ioaddr);

 err_ioremap:
	pci_release_regions(pdev);
	pci_set_drvdata(pdev, NULL);

 err_pci_request_regions:
	free_netdev(dev);
	return i;
}


/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */

/* Delay between EEPROM clock transitions.
   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
   made udelay() unreliable.
   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
   deprecated.
*/
#define eeprom_delay(ee_addr)	readl(ee_addr)

#define EE_Write0 (EE_ChipSelect)
#define EE_Write1 (EE_ChipSelect | EE_DataIn)

/* The EEPROM commands include the alway-set leading bit. */
enum EEPROM_Cmds {
	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
};

static int eeprom_read(void __iomem *addr, int location)
{
	int i;
	int retval = 0;
	void __iomem *ee_addr = addr + EECtrl;
	int read_cmd = location | EE_ReadCmd;

	writel(EE_Write0, ee_addr);

	/* Shift the read command bits out. */
	for (i = 10; i >= 0; i--) {
		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
		writel(dataval, ee_addr);
		eeprom_delay(ee_addr);
		writel(dataval | EE_ShiftClk, ee_addr);
		eeprom_delay(ee_addr);
	}
	writel(EE_ChipSelect, ee_addr);
	eeprom_delay(ee_addr);

	for (i = 0; i < 16; i++) {
		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
		eeprom_delay(ee_addr);
		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
		writel(EE_ChipSelect, ee_addr);
		eeprom_delay(ee_addr);
	}

	/* Terminate the EEPROM access. */
	writel(EE_Write0, ee_addr);
	writel(0, ee_addr);
	return retval;
}

/* MII transceiver control section.
 * The 83815 series has an internal transceiver, and we present the
 * internal management registers as if they were MII connected.
 * External Phy registers are referenced through the MII interface.
 */

/* clock transitions >= 20ns (25MHz)
 * One readl should be good to PCI @ 100MHz
 */
#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)

static int mii_getbit (struct net_device *dev)
{
	int data;
	void __iomem *ioaddr = ns_ioaddr(dev);

	writel(MII_ShiftClk, ioaddr + EECtrl);
	data = readl(ioaddr + EECtrl);
	writel(0, ioaddr + EECtrl);
	mii_delay(ioaddr);
	return (data & MII_Data)? 1 : 0;
}

static void mii_send_bits (struct net_device *dev, u32 data, int len)
{
	u32 i;
	void __iomem *ioaddr = ns_ioaddr(dev);

	for (i = (1 << (len-1)); i; i >>= 1)
	{
		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
		writel(mdio_val, ioaddr + EECtrl);
		mii_delay(ioaddr);
		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
		mii_delay(ioaddr);
	}
	writel(0, ioaddr + EECtrl);
	mii_delay(ioaddr);
}

static int miiport_read(struct net_device *dev, int phy_id, int reg)
{
	u32 cmd;
	int i;
	u32 retval = 0;

	/* Ensure sync */
	mii_send_bits (dev, 0xffffffff, 32);
	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
	/* ST,OP = 0110'b for read operation */
	cmd = (0x06 << 10) | (phy_id << 5) | reg;
	mii_send_bits (dev, cmd, 14);
	/* Turnaround */
	if (mii_getbit (dev))
		return 0;
	/* Read data */
	for (i = 0; i < 16; i++) {
		retval <<= 1;
		retval |= mii_getbit (dev);
	}
	/* End cycle */
	mii_getbit (dev);
	return retval;
}

static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
{
	u32 cmd;

	/* Ensure sync */
	mii_send_bits (dev, 0xffffffff, 32);
	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
	mii_send_bits (dev, cmd, 32);
	/* End cycle */
	mii_getbit (dev);
}

static int mdio_read(struct net_device *dev, int reg)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);

	/* The 83815 series has two ports:
	 * - an internal transceiver
	 * - an external mii bus
	 */
	if (dev->if_port == PORT_TP)
		return readw(ioaddr+BasicControl+(reg<<2));
	else
		return miiport_read(dev, np->phy_addr_external, reg);
}

static void mdio_write(struct net_device *dev, int reg, u16 data)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);

	/* The 83815 series has an internal transceiver; handle separately */
	if (dev->if_port == PORT_TP)
		writew(data, ioaddr+BasicControl+(reg<<2));
	else
		miiport_write(dev, np->phy_addr_external, reg, data);
}

static void init_phy_fixup(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);
	int i;
	u32 cfg;
	u16 tmp;

	/* restore stuff lost when power was out */
	tmp = mdio_read(dev, MII_BMCR);
	if (np->autoneg == AUTONEG_ENABLE) {
		/* renegotiate if something changed */
		if ((tmp & BMCR_ANENABLE) == 0 ||
		    np->advertising != mdio_read(dev, MII_ADVERTISE))
		{
			/* turn on autonegotiation and force negotiation */
			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
			mdio_write(dev, MII_ADVERTISE, np->advertising);
		}
	} else {
		/* turn off auto negotiation, set speed and duplexity */
		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
		if (np->speed == SPEED_100)
			tmp |= BMCR_SPEED100;
		if (np->duplex == DUPLEX_FULL)
			tmp |= BMCR_FULLDPLX;
		/*
		 * Note: there is no good way to inform the link partner
		 * that our capabilities changed. The user has to unplug
		 * and replug the network cable after some changes, e.g.
		 * after switching from 10HD, autoneg off to 100 HD,
		 * autoneg off.
		 */
	}
	mdio_write(dev, MII_BMCR, tmp);
	readl(ioaddr + ChipConfig);
	udelay(1);

	/* find out what phy this is */
	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
				+ mdio_read(dev, MII_PHYSID2);

	/* handle external phys here */
	switch (np->mii) {
	case PHYID_AM79C874:
		/* phy specific configuration for fibre/tp operation */
		tmp = mdio_read(dev, MII_MCTRL);
		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
		if (dev->if_port == PORT_FIBRE)
			tmp |= MII_FX_SEL;
		else
			tmp |= MII_EN_SCRM;
		mdio_write(dev, MII_MCTRL, tmp);
		break;
	default:
		break;
	}
	cfg = readl(ioaddr + ChipConfig);
	if (cfg & CfgExtPhy)
		return;

	/* On page 78 of the spec, they recommend some settings for "optimum
	   performance" to be done in sequence.  These settings optimize some
	   of the 100Mbit autodetection circuitry.  They say we only want to
	   do this for rev C of the chip, but engineers at NSC (Bradley
	   Kennedy) recommends always setting them.  If you don't, you get
	   errors on some autonegotiations that make the device unusable.

	   It seems that the DSP needs a few usec to reinitialize after
	   the start of the phy. Just retry writing these values until they
	   stick.
	*/
	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {

		int dspcfg;
		writew(1, ioaddr + PGSEL);
		writew(PMDCSR_VAL, ioaddr + PMDCSR);
		writew(TSTDAT_VAL, ioaddr + TSTDAT);
		np->dspcfg = (np->srr <= SRR_DP83815_C)?
			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
		writew(np->dspcfg, ioaddr + DSPCFG);
		writew(SDCFG_VAL, ioaddr + SDCFG);
		writew(0, ioaddr + PGSEL);
		readl(ioaddr + ChipConfig);
		udelay(10);

		writew(1, ioaddr + PGSEL);
		dspcfg = readw(ioaddr + DSPCFG);
		writew(0, ioaddr + PGSEL);
		if (np->dspcfg == dspcfg)
			break;
	}

	if (netif_msg_link(np)) {
		if (i==NATSEMI_HW_TIMEOUT) {
			printk(KERN_INFO
				"%s: DSPCFG mismatch after retrying for %d usec.\n",
				dev->name, i*10);
		} else {
			printk(KERN_INFO
				"%s: DSPCFG accepted after %d usec.\n",
				dev->name, i*10);
		}
	}
	/*
	 * Enable PHY Specific event based interrupts.  Link state change
	 * and Auto-Negotiation Completion are among the affected.
	 * Read the intr status to clear it (needed for wake events).
	 */
	readw(ioaddr + MIntrStatus);
	writew(MICRIntEn, ioaddr + MIntrCtrl);
}

static int switch_port_external(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);
	u32 cfg;

	cfg = readl(ioaddr + ChipConfig);
	if (cfg & CfgExtPhy)
		return 0;

	if (netif_msg_link(np)) {
		printk(KERN_INFO "%s: switching to external transceiver.\n",
				dev->name);
	}

	/* 1) switch back to external phy */
	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
	readl(ioaddr + ChipConfig);
	udelay(1);

	/* 2) reset the external phy: */
	/* resetting the external PHY has been known to cause a hub supplying
	 * power over Ethernet to kill the power.  We don't want to kill
	 * power to this computer, so we avoid resetting the phy.
	 */

	/* 3) reinit the phy fixup, it got lost during power down. */
	move_int_phy(dev, np->phy_addr_external);
	init_phy_fixup(dev);

	return 1;
}

static int switch_port_internal(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);
	int i;
	u32 cfg;
	u16 bmcr;

	cfg = readl(ioaddr + ChipConfig);
	if (!(cfg &CfgExtPhy))
		return 0;

	if (netif_msg_link(np)) {
		printk(KERN_INFO "%s: switching to internal transceiver.\n",
				dev->name);
	}
	/* 1) switch back to internal phy: */
	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
	writel(cfg, ioaddr + ChipConfig);
	readl(ioaddr + ChipConfig);
	udelay(1);

	/* 2) reset the internal phy: */
	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
	readl(ioaddr + ChipConfig);
	udelay(10);
	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
		if (!(bmcr & BMCR_RESET))
			break;
		udelay(10);
	}
	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
		printk(KERN_INFO
			"%s: phy reset did not complete in %d usec.\n",
			dev->name, i*10);
	}
	/* 3) reinit the phy fixup, it got lost during power down. */
	init_phy_fixup(dev);

	return 1;
}

/* Scan for a PHY on the external mii bus.
 * There are two tricky points:
 * - Do not scan while the internal phy is enabled. The internal phy will
 *   crash: e.g. reads from the DSPCFG register will return odd values and
 *   the nasty random phy reset code will reset the nic every few seconds.
 * - The internal phy must be moved around, an external phy could
 *   have the same address as the internal phy.
 */
static int find_mii(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int tmp;
	int i;
	int did_switch;

	/* Switch to external phy */
	did_switch = switch_port_external(dev);

	/* Scan the possible phy addresses:
	 *
	 * PHY address 0 means that the phy is in isolate mode. Not yet
	 * supported due to lack of test hardware. User space should
	 * handle it through ethtool.
	 */
	for (i = 1; i <= 31; i++) {
		move_int_phy(dev, i);
		tmp = miiport_read(dev, i, MII_BMSR);
		if (tmp != 0xffff && tmp != 0x0000) {
			/* found something! */
			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
					+ mdio_read(dev, MII_PHYSID2);
	 		if (netif_msg_probe(np)) {
				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
						pci_name(np->pci_dev), np->mii, i);
			}
			break;
		}
	}
	/* And switch back to internal phy: */
	if (did_switch)
		switch_port_internal(dev);
	return i;
}

/* CFG bits [13:16] [18:23] */
#define CFG_RESET_SAVE 0xfde000
/* WCSR bits [0:4] [9:10] */
#define WCSR_RESET_SAVE 0x61f
/* RFCR bits [20] [22] [27:31] */
#define RFCR_RESET_SAVE 0xf8500000;

static void natsemi_reset(struct net_device *dev)
{
	int i;
	u32 cfg;
	u32 wcsr;
	u32 rfcr;
	u16 pmatch[3];
	u16 sopass[3];
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);

	/*
	 * Resetting the chip causes some registers to be lost.
	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
	 * we save the state that would have been loaded from EEPROM
	 * on a normal power-up (see the spec EEPROM map).  This assumes
	 * whoever calls this will follow up with init_registers() eventually.
	 */

	/* CFG */
	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
	/* WCSR */
	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
	/* RFCR */
	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
	/* PMATCH */
	for (i = 0; i < 3; i++) {
		writel(i*2, ioaddr + RxFilterAddr);
		pmatch[i] = readw(ioaddr + RxFilterData);
	}
	/* SOPAS */
	for (i = 0; i < 3; i++) {
		writel(0xa+(i*2), ioaddr + RxFilterAddr);
		sopass[i] = readw(ioaddr + RxFilterData);
	}

	/* now whack the chip */
	writel(ChipReset, ioaddr + ChipCmd);
	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
		if (!(readl(ioaddr + ChipCmd) & ChipReset))
			break;
		udelay(5);
	}
	if (i==NATSEMI_HW_TIMEOUT) {
		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
			dev->name, i*5);
	} else if (netif_msg_hw(np)) {
		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
			dev->name, i*5);
	}

	/* restore CFG */
	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
	/* turn on external phy if it was selected */
	if (dev->if_port == PORT_TP)
		cfg &= ~(CfgExtPhy | CfgPhyDis);
	else
		cfg |= (CfgExtPhy | CfgPhyDis);
	writel(cfg, ioaddr + ChipConfig);
	/* restore WCSR */
	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
	writel(wcsr, ioaddr + WOLCmd);
	/* read RFCR */
	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
	/* restore PMATCH */
	for (i = 0; i < 3; i++) {
		writel(i*2, ioaddr + RxFilterAddr);
		writew(pmatch[i], ioaddr + RxFilterData);
	}
	for (i = 0; i < 3; i++) {
		writel(0xa+(i*2), ioaddr + RxFilterAddr);
		writew(sopass[i], ioaddr + RxFilterData);
	}
	/* restore RFCR */
	writel(rfcr, ioaddr + RxFilterAddr);
}

static void reset_rx(struct net_device *dev)
{
	int i;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);

	np->intr_status &= ~RxResetDone;

	writel(RxReset, ioaddr + ChipCmd);

	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
		np->intr_status |= readl(ioaddr + IntrStatus);
		if (np->intr_status & RxResetDone)
			break;
		udelay(15);
	}
	if (i==NATSEMI_HW_TIMEOUT) {
		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
		       dev->name, i*15);
	} else if (netif_msg_hw(np)) {
		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
		       dev->name, i*15);
	}
}

static void natsemi_reload_eeprom(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);
	int i;

	writel(EepromReload, ioaddr + PCIBusCfg);
	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
		udelay(50);
		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
			break;
	}
	if (i==NATSEMI_HW_TIMEOUT) {
		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
			pci_name(np->pci_dev), i*50);
	} else if (netif_msg_hw(np)) {
		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
			pci_name(np->pci_dev), i*50);
	}
}

static void natsemi_stop_rxtx(struct net_device *dev)
{
	void __iomem * ioaddr = ns_ioaddr(dev);
	struct netdev_private *np = netdev_priv(dev);
	int i;

	writel(RxOff | TxOff, ioaddr + ChipCmd);
	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
			break;
		udelay(5);
	}
	if (i==NATSEMI_HW_TIMEOUT) {
		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
			dev->name, i*5);
	} else if (netif_msg_hw(np)) {
		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
			dev->name, i*5);
	}
}

static int netdev_open(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	int i;

	/* Reset the chip, just in case. */
	natsemi_reset(dev);

	i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
	if (i) return i;

	if (netif_msg_ifup(np))
		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
			dev->name, dev->irq);
	i = alloc_ring(dev);
	if (i < 0) {
		free_irq(dev->irq, dev);
		return i;
	}
	napi_enable(&np->napi);

	init_ring(dev);
	spin_lock_irq(&np->lock);
	init_registers(dev);
	/* now set the MAC address according to dev->dev_addr */
	for (i = 0; i < 3; i++) {
		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];

		writel(i*2, ioaddr + RxFilterAddr);
		writew(mac, ioaddr + RxFilterData);
	}
	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
	spin_unlock_irq(&np->lock);

	netif_start_queue(dev);

	if (netif_msg_ifup(np))
		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
			dev->name, (int)readl(ioaddr + ChipCmd));

	/* Set the timer to check for link beat. */
	init_timer(&np->timer);
	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
	np->timer.data = (unsigned long)dev;
	np->timer.function = netdev_timer; /* timer handler */
	add_timer(&np->timer);

	return 0;
}

static void do_cable_magic(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem *ioaddr = ns_ioaddr(dev);

	if (dev->if_port != PORT_TP)
		return;

	if (np->srr >= SRR_DP83816_A5)
		return;

	/*
	 * 100 MBit links with short cables can trip an issue with the chip.
	 * The problem manifests as lots of CRC errors and/or flickering
	 * activity LED while idle.  This process is based on instructions
	 * from engineers at National.
	 */
	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
		u16 data;

		writew(1, ioaddr + PGSEL);
		/*
		 * coefficient visibility should already be enabled via
		 * DSPCFG | 0x1000
		 */
		data = readw(ioaddr + TSTDAT) & 0xff;
		/*
		 * the value must be negative, and within certain values
		 * (these values all come from National)
		 */
		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
			np = netdev_priv(dev);

			/* the bug has been triggered - fix the coefficient */
			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
			/* lock the value */
			data = readw(ioaddr + DSPCFG);
			np->dspcfg = data | DSPCFG_LOCK;
			writew(np->dspcfg, ioaddr + DSPCFG);
		}
		writew(0, ioaddr + PGSEL);
	}
}

static void undo_cable_magic(struct net_device *dev)
{
	u16 data;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	if (dev->if_port != PORT_TP)
		return;

	if (np->srr >= SRR_DP83816_A5)
		return;

	writew(1, ioaddr + PGSEL);
	/* make sure the lock bit is clear */
	data = readw(ioaddr + DSPCFG);
	np->dspcfg = data & ~DSPCFG_LOCK;
	writew(np->dspcfg, ioaddr + DSPCFG);
	writew(0, ioaddr + PGSEL);
}

static void check_link(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	int duplex = np->duplex;
	u16 bmsr;

	/* If we are ignoring the PHY then don't try reading it. */
	if (np->ignore_phy)
		goto propagate_state;

	/* The link status field is latched: it remains low after a temporary
	 * link failure until it's read. We need the current link status,
	 * thus read twice.
	 */
	mdio_read(dev, MII_BMSR);
	bmsr = mdio_read(dev, MII_BMSR);

	if (!(bmsr & BMSR_LSTATUS)) {
		if (netif_carrier_ok(dev)) {
			if (netif_msg_link(np))
				printk(KERN_NOTICE "%s: link down.\n",
				       dev->name);
			netif_carrier_off(dev);
			undo_cable_magic(dev);
		}
		return;
	}
	if (!netif_carrier_ok(dev)) {
		if (netif_msg_link(np))
			printk(KERN_NOTICE "%s: link up.\n", dev->name);
		netif_carrier_on(dev);
		do_cable_magic(dev);
	}

	duplex = np->full_duplex;
	if (!duplex) {
		if (bmsr & BMSR_ANEGCOMPLETE) {
			int tmp = mii_nway_result(
				np->advertising & mdio_read(dev, MII_LPA));
			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
				duplex = 1;
		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
			duplex = 1;
	}

propagate_state:
	/* if duplex is set then bit 28 must be set, too */
	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
		if (netif_msg_link(np))
			printk(KERN_INFO
				"%s: Setting %s-duplex based on negotiated "
				"link capability.\n", dev->name,
				duplex ? "full" : "half");
		if (duplex) {
			np->rx_config |= RxAcceptTx;
			np->tx_config |= TxCarrierIgn | TxHeartIgn;
		} else {
			np->rx_config &= ~RxAcceptTx;
			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
		}
		writel(np->tx_config, ioaddr + TxConfig);
		writel(np->rx_config, ioaddr + RxConfig);
	}
}

static void init_registers(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	init_phy_fixup(dev);

	/* clear any interrupts that are pending, such as wake events */
	readl(ioaddr + IntrStatus);

	writel(np->ring_dma, ioaddr + RxRingPtr);
	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
		ioaddr + TxRingPtr);

	/* Initialize other registers.
	 * Configure the PCI bus bursts and FIFO thresholds.
	 * Configure for standard, in-spec Ethernet.
	 * Start with half-duplex. check_link will update
	 * to the correct settings.
	 */

	/* DRTH: 2: start tx if 64 bytes are in the fifo
	 * FLTH: 0x10: refill with next packet if 512 bytes are free
	 * MXDMA: 0: up to 256 byte bursts.
	 * 	MXDMA must be <= FLTH
	 * ECRETRY=1
	 * ATP=1
	 */
	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
				TX_FLTH_VAL | TX_DRTH_VAL_START;
	writel(np->tx_config, ioaddr + TxConfig);

	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
	 * MXDMA 0: up to 256 byte bursts
	 */
	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
	/* if receive ring now has bigger buffers than normal, enable jumbo */
	if (np->rx_buf_sz > NATSEMI_LONGPKT)
		np->rx_config |= RxAcceptLong;

	writel(np->rx_config, ioaddr + RxConfig);

	/* Disable PME:
	 * The PME bit is initialized from the EEPROM contents.
	 * PCI cards probably have PME disabled, but motherboard
	 * implementations may have PME set to enable WakeOnLan.
	 * With PME set the chip will scan incoming packets but
	 * nothing will be written to memory. */
	np->SavedClkRun = readl(ioaddr + ClkRun);
	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
			dev->name, readl(ioaddr + WOLCmd));
	}

	check_link(dev);
	__set_rx_mode(dev);

	/* Enable interrupts by setting the interrupt mask. */
	writel(DEFAULT_INTR, ioaddr + IntrMask);
	natsemi_irq_enable(dev);

	writel(RxOn | TxOn, ioaddr + ChipCmd);
	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
}

/*
 * netdev_timer:
 * Purpose:
 * 1) check for link changes. Usually they are handled by the MII interrupt
 *    but it doesn't hurt to check twice.
 * 2) check for sudden death of the NIC:
 *    It seems that a reference set for this chip went out with incorrect info,
 *    and there exist boards that aren't quite right.  An unexpected voltage
 *    drop can cause the PHY to get itself in a weird state (basically reset).
 *    NOTE: this only seems to affect revC chips.  The user can disable
 *    this check via dspcfg_workaround sysfs option.
 * 3) check of death of the RX path due to OOM
 */
static void netdev_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	int next_tick = NATSEMI_TIMER_FREQ;

	if (netif_msg_timer(np)) {
		/* DO NOT read the IntrStatus register,
		 * a read clears any pending interrupts.
		 */
		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
			dev->name);
	}

	if (dev->if_port == PORT_TP) {
		u16 dspcfg;

		spin_lock_irq(&np->lock);
		/* check for a nasty random phy-reset - use dspcfg as a flag */
		writew(1, ioaddr+PGSEL);
		dspcfg = readw(ioaddr+DSPCFG);
		writew(0, ioaddr+PGSEL);
		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
			if (!netif_queue_stopped(dev)) {
				spin_unlock_irq(&np->lock);
				if (netif_msg_drv(np))
					printk(KERN_NOTICE "%s: possible phy reset: "
						"re-initializing\n", dev->name);
				disable_irq(dev->irq);
				spin_lock_irq(&np->lock);
				natsemi_stop_rxtx(dev);
				dump_ring(dev);
				reinit_ring(dev);
				init_registers(dev);
				spin_unlock_irq(&np->lock);
				enable_irq(dev->irq);
			} else {
				/* hurry back */
				next_tick = HZ;
				spin_unlock_irq(&np->lock);
			}
		} else {
			/* init_registers() calls check_link() for the above case */
			check_link(dev);
			spin_unlock_irq(&np->lock);
		}
	} else {
		spin_lock_irq(&np->lock);
		check_link(dev);
		spin_unlock_irq(&np->lock);
	}
	if (np->oom) {
		disable_irq(dev->irq);
		np->oom = 0;
		refill_rx(dev);
		enable_irq(dev->irq);
		if (!np->oom) {
			writel(RxOn, ioaddr + ChipCmd);
		} else {
			next_tick = 1;
		}
	}

	if (next_tick > 1)
		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
	else
		mod_timer(&np->timer, jiffies + next_tick);
}

static void dump_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);

	if (netif_msg_pktdata(np)) {
		int i;
		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
		for (i = 0; i < TX_RING_SIZE; i++) {
			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
				i, np->tx_ring[i].next_desc,
				np->tx_ring[i].cmd_status,
				np->tx_ring[i].addr);
		}
		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
		for (i = 0; i < RX_RING_SIZE; i++) {
			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
				i, np->rx_ring[i].next_desc,
				np->rx_ring[i].cmd_status,
				np->rx_ring[i].addr);
		}
	}
}

static void ns_tx_timeout(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	disable_irq(dev->irq);
	spin_lock_irq(&np->lock);
	if (!np->hands_off) {
		if (netif_msg_tx_err(np))
			printk(KERN_WARNING
				"%s: Transmit timed out, status %#08x,"
				" resetting...\n",
				dev->name, readl(ioaddr + IntrStatus));
		dump_ring(dev);

		natsemi_reset(dev);
		reinit_ring(dev);
		init_registers(dev);
	} else {
		printk(KERN_WARNING
			"%s: tx_timeout while in hands_off state?\n",
			dev->name);
	}
	spin_unlock_irq(&np->lock);
	enable_irq(dev->irq);

	dev->trans_start = jiffies; /* prevent tx timeout */
	dev->stats.tx_errors++;
	netif_wake_queue(dev);
}

static int alloc_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	np->rx_ring = pci_alloc_consistent(np->pci_dev,
		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
		&np->ring_dma);
	if (!np->rx_ring)
		return -ENOMEM;
	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
	return 0;
}

static void refill_rx(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);

	/* Refill the Rx ring buffers. */
	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
		struct sk_buff *skb;
		int entry = np->dirty_rx % RX_RING_SIZE;
		if (np->rx_skbuff[entry] == NULL) {
			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
			skb = dev_alloc_skb(buflen);
			np->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break; /* Better luck next round. */
			skb->dev = dev; /* Mark as being used by this device. */
			np->rx_dma[entry] = pci_map_single(np->pci_dev,
				skb->data, buflen, PCI_DMA_FROMDEVICE);
			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
		}
		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
	}
	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
		if (netif_msg_rx_err(np))
			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
		np->oom = 1;
	}
}

static void set_bufsize(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	if (dev->mtu <= ETH_DATA_LEN)
		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
	else
		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
}

/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	/* 1) TX ring */
	np->dirty_tx = np->cur_tx = 0;
	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = NULL;
		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
			+sizeof(struct netdev_desc)
			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
		np->tx_ring[i].cmd_status = 0;
	}

	/* 2) RX ring */
	np->dirty_rx = 0;
	np->cur_rx = RX_RING_SIZE;
	np->oom = 0;
	set_bufsize(dev);

	np->rx_head_desc = &np->rx_ring[0];

	/* Please be careful before changing this loop - at least gcc-2.95.1
	 * miscompiles it otherwise.
	 */
	/* Initialize all Rx descriptors. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
				+sizeof(struct netdev_desc)
				*((i+1)%RX_RING_SIZE));
		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
		np->rx_skbuff[i] = NULL;
	}
	refill_rx(dev);
	dump_ring(dev);
}

static void drain_tx(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	for (i = 0; i < TX_RING_SIZE; i++) {
		if (np->tx_skbuff[i]) {
			pci_unmap_single(np->pci_dev,
				np->tx_dma[i], np->tx_skbuff[i]->len,
				PCI_DMA_TODEVICE);
			dev_kfree_skb(np->tx_skbuff[i]);
			dev->stats.tx_dropped++;
		}
		np->tx_skbuff[i] = NULL;
	}
}

static void drain_rx(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	unsigned int buflen = np->rx_buf_sz;
	int i;

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].cmd_status = 0;
		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (np->rx_skbuff[i]) {
			pci_unmap_single(np->pci_dev,
				np->rx_dma[i], buflen,
				PCI_DMA_FROMDEVICE);
			dev_kfree_skb(np->rx_skbuff[i]);
		}
		np->rx_skbuff[i] = NULL;
	}
}

static void drain_ring(struct net_device *dev)
{
	drain_rx(dev);
	drain_tx(dev);
}

static void free_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	pci_free_consistent(np->pci_dev,
		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
		np->rx_ring, np->ring_dma);
}

static void reinit_rx(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	/* RX Ring */
	np->dirty_rx = 0;
	np->cur_rx = RX_RING_SIZE;
	np->rx_head_desc = &np->rx_ring[0];
	/* Initialize all Rx descriptors. */
	for (i = 0; i < RX_RING_SIZE; i++)
		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);

	refill_rx(dev);
}

static void reinit_ring(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	int i;

	/* drain TX ring */
	drain_tx(dev);
	np->dirty_tx = np->cur_tx = 0;
	for (i=0;i<TX_RING_SIZE;i++)
		np->tx_ring[i].cmd_status = 0;

	reinit_rx(dev);
}

static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	unsigned entry;
	unsigned long flags;

	/* Note: Ordering is important here, set the field with the
	   "ownership" bit last, and only then increment cur_tx. */

	/* Calculate the next Tx descriptor entry. */
	entry = np->cur_tx % TX_RING_SIZE;

	np->tx_skbuff[entry] = skb;
	np->tx_dma[entry] = pci_map_single(np->pci_dev,
				skb->data,skb->len, PCI_DMA_TODEVICE);

	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);

	spin_lock_irqsave(&np->lock, flags);

	if (!np->hands_off) {
		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
		/* StrongARM: Explicitly cache flush np->tx_ring and
		 * skb->data,skb->len. */
		wmb();
		np->cur_tx++;
		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
			netdev_tx_done(dev);
			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
				netif_stop_queue(dev);
		}
		/* Wake the potentially-idle transmit channel. */
		writel(TxOn, ioaddr + ChipCmd);
	} else {
		dev_kfree_skb_irq(skb);
		dev->stats.tx_dropped++;
	}
	spin_unlock_irqrestore(&np->lock, flags);

	if (netif_msg_tx_queued(np)) {
		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
			dev->name, np->cur_tx, entry);
	}
	return NETDEV_TX_OK;
}

static void netdev_tx_done(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);

	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
		int entry = np->dirty_tx % TX_RING_SIZE;
		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
			break;
		if (netif_msg_tx_done(np))
			printk(KERN_DEBUG
				"%s: tx frame #%d finished, status %#08x.\n",
					dev->name, np->dirty_tx,
					le32_to_cpu(np->tx_ring[entry].cmd_status));
		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
			dev->stats.tx_packets++;
			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
		} else { /* Various Tx errors */
			int tx_status =
				le32_to_cpu(np->tx_ring[entry].cmd_status);
			if (tx_status & (DescTxAbort|DescTxExcColl))
				dev->stats.tx_aborted_errors++;
			if (tx_status & DescTxFIFO)
				dev->stats.tx_fifo_errors++;
			if (tx_status & DescTxCarrier)
				dev->stats.tx_carrier_errors++;
			if (tx_status & DescTxOOWCol)
				dev->stats.tx_window_errors++;
			dev->stats.tx_errors++;
		}
		pci_unmap_single(np->pci_dev,np->tx_dma[entry],
					np->tx_skbuff[entry]->len,
					PCI_DMA_TODEVICE);
		/* Free the original skb. */
		dev_kfree_skb_irq(np->tx_skbuff[entry]);
		np->tx_skbuff[entry] = NULL;
	}
	if (netif_queue_stopped(dev) &&
	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
		/* The ring is no longer full, wake queue. */
		netif_wake_queue(dev);
	}
}

/* The interrupt handler doesn't actually handle interrupts itself, it
 * schedules a NAPI poll if there is anything to do. */
static irqreturn_t intr_handler(int irq, void *dev_instance)
{
	struct net_device *dev = dev_instance;
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	/* Reading IntrStatus automatically acknowledges so don't do
	 * that while interrupts are disabled, (for example, while a
	 * poll is scheduled).  */
	if (np->hands_off || !readl(ioaddr + IntrEnable))
		return IRQ_NONE;

	np->intr_status = readl(ioaddr + IntrStatus);

	if (!np->intr_status)
		return IRQ_NONE;

	if (netif_msg_intr(np))
		printk(KERN_DEBUG
		       "%s: Interrupt, status %#08x, mask %#08x.\n",
		       dev->name, np->intr_status,
		       readl(ioaddr + IntrMask));

	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);

	if (napi_schedule_prep(&np->napi)) {
		/* Disable interrupts and register for poll */
		natsemi_irq_disable(dev);
		__napi_schedule(&np->napi);
	} else
		printk(KERN_WARNING
	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
		       dev->name, np->intr_status,
		       readl(ioaddr + IntrMask));

	return IRQ_HANDLED;
}

/* This is the NAPI poll routine.  As well as the standard RX handling
 * it also handles all other interrupts that the chip might raise.
 */
static int natsemi_poll(struct napi_struct *napi, int budget)
{
	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
	struct net_device *dev = np->dev;
	void __iomem * ioaddr = ns_ioaddr(dev);
	int work_done = 0;

	do {
		if (netif_msg_intr(np))
			printk(KERN_DEBUG
			       "%s: Poll, status %#08x, mask %#08x.\n",
			       dev->name, np->intr_status,
			       readl(ioaddr + IntrMask));

		/* netdev_rx() may read IntrStatus again if the RX state
		 * machine falls over so do it first. */
		if (np->intr_status &
		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
		     IntrRxErr | IntrRxOverrun)) {
			netdev_rx(dev, &work_done, budget);
		}

		if (np->intr_status &
		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
			spin_lock(&np->lock);
			netdev_tx_done(dev);
			spin_unlock(&np->lock);
		}

		/* Abnormal error summary/uncommon events handlers. */
		if (np->intr_status & IntrAbnormalSummary)
			netdev_error(dev, np->intr_status);

		if (work_done >= budget)
			return work_done;

		np->intr_status = readl(ioaddr + IntrStatus);
	} while (np->intr_status);

	napi_complete(napi);

	/* Reenable interrupts providing nothing is trying to shut
	 * the chip down. */
	spin_lock(&np->lock);
	if (!np->hands_off)
		natsemi_irq_enable(dev);
	spin_unlock(&np->lock);

	return work_done;
}

/* This routine is logically part of the interrupt handler, but separated
   for clarity and better register allocation. */
static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
{
	struct netdev_private *np = netdev_priv(dev);
	int entry = np->cur_rx % RX_RING_SIZE;
	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
	unsigned int buflen = np->rx_buf_sz;
	void __iomem * ioaddr = ns_ioaddr(dev);

	/* If the driver owns the next entry it's a new packet. Send it up. */
	while (desc_status < 0) { /* e.g. & DescOwn */
		int pkt_len;
		if (netif_msg_rx_status(np))
			printk(KERN_DEBUG
				"  netdev_rx() entry %d status was %#08x.\n",
				entry, desc_status);
		if (--boguscnt < 0)
			break;

		if (*work_done >= work_to_do)
			break;

		(*work_done)++;

		pkt_len = (desc_status & DescSizeMask) - 4;
		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
			if (desc_status & DescMore) {
				unsigned long flags;

				if (netif_msg_rx_err(np))
					printk(KERN_WARNING
						"%s: Oversized(?) Ethernet "
						"frame spanned multiple "
						"buffers, entry %#08x "
						"status %#08x.\n", dev->name,
						np->cur_rx, desc_status);
				dev->stats.rx_length_errors++;

				/* The RX state machine has probably
				 * locked up beneath us.  Follow the
				 * reset procedure documented in
				 * AN-1287. */

				spin_lock_irqsave(&np->lock, flags);
				reset_rx(dev);
				reinit_rx(dev);
				writel(np->ring_dma, ioaddr + RxRingPtr);
				check_link(dev);
				spin_unlock_irqrestore(&np->lock, flags);

				/* We'll enable RX on exit from this
				 * function. */
				break;

			} else {
				/* There was an error. */
				dev->stats.rx_errors++;
				if (desc_status & (DescRxAbort|DescRxOver))
					dev->stats.rx_over_errors++;
				if (desc_status & (DescRxLong|DescRxRunt))
					dev->stats.rx_length_errors++;
				if (desc_status & (DescRxInvalid|DescRxAlign))
					dev->stats.rx_frame_errors++;
				if (desc_status & DescRxCRC)
					dev->stats.rx_crc_errors++;
			}
		} else if (pkt_len > np->rx_buf_sz) {
			/* if this is the tail of a double buffer
			 * packet, we've already counted the error
			 * on the first part.  Ignore the second half.
			 */
		} else {
			struct sk_buff *skb;
			/* Omit CRC size. */
			/* Check if the packet is long enough to accept
			 * without copying to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak &&
			    (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
				/* 16 byte align the IP header */
				skb_reserve(skb, RX_OFFSET);
				pci_dma_sync_single_for_cpu(np->pci_dev,
					np->rx_dma[entry],
					buflen,
					PCI_DMA_FROMDEVICE);
				skb_copy_to_linear_data(skb,
					np->rx_skbuff[entry]->data, pkt_len);
				skb_put(skb, pkt_len);
				pci_dma_sync_single_for_device(np->pci_dev,
					np->rx_dma[entry],
					buflen,
					PCI_DMA_FROMDEVICE);
			} else {
				pci_unmap_single(np->pci_dev, np->rx_dma[entry],
					buflen, PCI_DMA_FROMDEVICE);
				skb_put(skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
			}
			skb->protocol = eth_type_trans(skb, dev);
			netif_receive_skb(skb);
			dev->stats.rx_packets++;
			dev->stats.rx_bytes += pkt_len;
		}
		entry = (++np->cur_rx) % RX_RING_SIZE;
		np->rx_head_desc = &np->rx_ring[entry];
		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
	}
	refill_rx(dev);

	/* Restart Rx engine if stopped. */
	if (np->oom)
		mod_timer(&np->timer, jiffies + 1);
	else
		writel(RxOn, ioaddr + ChipCmd);
}

static void netdev_error(struct net_device *dev, int intr_status)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	spin_lock(&np->lock);
	if (intr_status & LinkChange) {
		u16 lpa = mdio_read(dev, MII_LPA);
		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
		    netif_msg_link(np)) {
			printk(KERN_INFO
				"%s: Autonegotiation advertising"
				" %#04x  partner %#04x.\n", dev->name,
				np->advertising, lpa);
		}

		/* read MII int status to clear the flag */
		readw(ioaddr + MIntrStatus);
		check_link(dev);
	}
	if (intr_status & StatsMax) {
		__get_stats(dev);
	}
	if (intr_status & IntrTxUnderrun) {
		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
			np->tx_config += TX_DRTH_VAL_INC;
			if (netif_msg_tx_err(np))
				printk(KERN_NOTICE
					"%s: increased tx threshold, txcfg %#08x.\n",
					dev->name, np->tx_config);
		} else {
			if (netif_msg_tx_err(np))
				printk(KERN_NOTICE
					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
					dev->name, np->tx_config);
		}
		writel(np->tx_config, ioaddr + TxConfig);
	}
	if (intr_status & WOLPkt && netif_msg_wol(np)) {
		int wol_status = readl(ioaddr + WOLCmd);
		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
			dev->name, wol_status);
	}
	if (intr_status & RxStatusFIFOOver) {
		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
				dev->name);
		}
		dev->stats.rx_fifo_errors++;
		dev->stats.rx_errors++;
	}
	/* Hmmmmm, it's not clear how to recover from PCI faults. */
	if (intr_status & IntrPCIErr) {
		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
			intr_status & IntrPCIErr);
		dev->stats.tx_fifo_errors++;
		dev->stats.tx_errors++;
		dev->stats.rx_fifo_errors++;
		dev->stats.rx_errors++;
	}
	spin_unlock(&np->lock);
}

static void __get_stats(struct net_device *dev)
{
	void __iomem * ioaddr = ns_ioaddr(dev);

	/* The chip only need report frame silently dropped. */
	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
}

static struct net_device_stats *get_stats(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);

	/* The chip only need report frame silently dropped. */
	spin_lock_irq(&np->lock);
	if (netif_running(dev) && !np->hands_off)
		__get_stats(dev);
	spin_unlock_irq(&np->lock);

	return &dev->stats;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void natsemi_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	intr_handler(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

#define HASH_TABLE	0x200
static void __set_rx_mode(struct net_device *dev)
{
	void __iomem * ioaddr = ns_ioaddr(dev);
	struct netdev_private *np = netdev_priv(dev);
	u8 mc_filter[64]; /* Multicast hash filter */
	u32 rx_mode;

	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
		rx_mode = RxFilterEnable | AcceptBroadcast
			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
		   (dev->flags & IFF_ALLMULTI)) {
		rx_mode = RxFilterEnable | AcceptBroadcast
			| AcceptAllMulticast | AcceptMyPhys;
	} else {
		struct netdev_hw_addr *ha;
		int i;

		memset(mc_filter, 0, sizeof(mc_filter));
		netdev_for_each_mc_addr(ha, dev) {
			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
			mc_filter[b/8] |= (1 << (b & 0x07));
		}
		rx_mode = RxFilterEnable | AcceptBroadcast
			| AcceptMulticast | AcceptMyPhys;
		for (i = 0; i < 64; i += 2) {
			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
			writel((mc_filter[i + 1] << 8) + mc_filter[i],
			       ioaddr + RxFilterData);
		}
	}
	writel(rx_mode, ioaddr + RxFilterAddr);
	np->cur_rx_mode = rx_mode;
}

static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
{
	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
		return -EINVAL;

	dev->mtu = new_mtu;

	/* synchronized against open : rtnl_lock() held by caller */
	if (netif_running(dev)) {
		struct netdev_private *np = netdev_priv(dev);
		void __iomem * ioaddr = ns_ioaddr(dev);

		disable_irq(dev->irq);
		spin_lock(&np->lock);
		/* stop engines */
		natsemi_stop_rxtx(dev);
		/* drain rx queue */
		drain_rx(dev);
		/* change buffers */
		set_bufsize(dev);
		reinit_rx(dev);
		writel(np->ring_dma, ioaddr + RxRingPtr);
		/* restart engines */
		writel(RxOn | TxOn, ioaddr + ChipCmd);
		spin_unlock(&np->lock);
		enable_irq(dev->irq);
	}
	return 0;
}

static void set_rx_mode(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	spin_lock_irq(&np->lock);
	if (!np->hands_off)
		__set_rx_mode(dev);
	spin_unlock_irq(&np->lock);
}

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct netdev_private *np = netdev_priv(dev);
	strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
	strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
	strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
}

static int get_regs_len(struct net_device *dev)
{
	return NATSEMI_REGS_SIZE;
}

static int get_eeprom_len(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return np->eeprom_size;
}

static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	spin_lock_irq(&np->lock);
	netdev_get_ecmd(dev, ecmd);
	spin_unlock_irq(&np->lock);
	return 0;
}

static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	int res;
	spin_lock_irq(&np->lock);
	res = netdev_set_ecmd(dev, ecmd);
	spin_unlock_irq(&np->lock);
	return res;
}

static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct netdev_private *np = netdev_priv(dev);
	spin_lock_irq(&np->lock);
	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
	netdev_get_sopass(dev, wol->sopass);
	spin_unlock_irq(&np->lock);
}

static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	struct netdev_private *np = netdev_priv(dev);
	int res;
	spin_lock_irq(&np->lock);
	netdev_set_wol(dev, wol->wolopts);
	res = netdev_set_sopass(dev, wol->sopass);
	spin_unlock_irq(&np->lock);
	return res;
}

static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
{
	struct netdev_private *np = netdev_priv(dev);
	regs->version = NATSEMI_REGS_VER;
	spin_lock_irq(&np->lock);
	netdev_get_regs(dev, buf);
	spin_unlock_irq(&np->lock);
}

static u32 get_msglevel(struct net_device *dev)
{
	struct netdev_private *np = netdev_priv(dev);
	return np->msg_enable;
}

static void set_msglevel(struct net_device *dev, u32 val)
{
	struct netdev_private *np = netdev_priv(dev);
	np->msg_enable = val;
}

static int nway_reset(struct net_device *dev)
{
	int tmp;
	int r = -EINVAL;
	/* if autoneg is off, it's an error */
	tmp = mdio_read(dev, MII_BMCR);
	if (tmp & BMCR_ANENABLE) {
		tmp |= (BMCR_ANRESTART);
		mdio_write(dev, MII_BMCR, tmp);
		r = 0;
	}
	return r;
}

static u32 get_link(struct net_device *dev)
{
	/* LSTATUS is latched low until a read - so read twice */
	mdio_read(dev, MII_BMSR);
	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
}

static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
{
	struct netdev_private *np = netdev_priv(dev);
	u8 *eebuf;
	int res;

	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
	if (!eebuf)
		return -ENOMEM;

	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
	spin_lock_irq(&np->lock);
	res = netdev_get_eeprom(dev, eebuf);
	spin_unlock_irq(&np->lock);
	if (!res)
		memcpy(data, eebuf+eeprom->offset, eeprom->len);
	kfree(eebuf);
	return res;
}

static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo = get_drvinfo,
	.get_regs_len = get_regs_len,
	.get_eeprom_len = get_eeprom_len,
	.get_settings = get_settings,
	.set_settings = set_settings,
	.get_wol = get_wol,
	.set_wol = set_wol,
	.get_regs = get_regs,
	.get_msglevel = get_msglevel,
	.set_msglevel = set_msglevel,
	.nway_reset = nway_reset,
	.get_link = get_link,
	.get_eeprom = get_eeprom,
};

static int netdev_set_wol(struct net_device *dev, u32 newval)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;

	/* translate to bitmasks this chip understands */
	if (newval & WAKE_PHY)
		data |= WakePhy;
	if (newval & WAKE_UCAST)
		data |= WakeUnicast;
	if (newval & WAKE_MCAST)
		data |= WakeMulticast;
	if (newval & WAKE_BCAST)
		data |= WakeBroadcast;
	if (newval & WAKE_ARP)
		data |= WakeArp;
	if (newval & WAKE_MAGIC)
		data |= WakeMagic;
	if (np->srr >= SRR_DP83815_D) {
		if (newval & WAKE_MAGICSECURE) {
			data |= WakeMagicSecure;
		}
	}

	writel(data, ioaddr + WOLCmd);

	return 0;
}

static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	u32 regval = readl(ioaddr + WOLCmd);

	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
			| WAKE_ARP | WAKE_MAGIC);

	if (np->srr >= SRR_DP83815_D) {
		/* SOPASS works on revD and higher */
		*supported |= WAKE_MAGICSECURE;
	}
	*cur = 0;

	/* translate from chip bitmasks */
	if (regval & WakePhy)
		*cur |= WAKE_PHY;
	if (regval & WakeUnicast)
		*cur |= WAKE_UCAST;
	if (regval & WakeMulticast)
		*cur |= WAKE_MCAST;
	if (regval & WakeBroadcast)
		*cur |= WAKE_BCAST;
	if (regval & WakeArp)
		*cur |= WAKE_ARP;
	if (regval & WakeMagic)
		*cur |= WAKE_MAGIC;
	if (regval & WakeMagicSecure) {
		/* this can be on in revC, but it's broken */
		*cur |= WAKE_MAGICSECURE;
	}

	return 0;
}

static int netdev_set_sopass(struct net_device *dev, u8 *newval)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	u16 *sval = (u16 *)newval;
	u32 addr;

	if (np->srr < SRR_DP83815_D) {
		return 0;
	}

	/* enable writing to these registers by disabling the RX filter */
	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
	addr &= ~RxFilterEnable;
	writel(addr, ioaddr + RxFilterAddr);

	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
	writel(addr | 0xa, ioaddr + RxFilterAddr);
	writew(sval[0], ioaddr + RxFilterData);

	writel(addr | 0xc, ioaddr + RxFilterAddr);
	writew(sval[1], ioaddr + RxFilterData);

	writel(addr | 0xe, ioaddr + RxFilterAddr);
	writew(sval[2], ioaddr + RxFilterData);

	/* re-enable the RX filter */
	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);

	return 0;
}

static int netdev_get_sopass(struct net_device *dev, u8 *data)
{
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);
	u16 *sval = (u16 *)data;
	u32 addr;

	if (np->srr < SRR_DP83815_D) {
		sval[0] = sval[1] = sval[2] = 0;
		return 0;
	}

	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;

	writel(addr | 0xa, ioaddr + RxFilterAddr);
	sval[0] = readw(ioaddr + RxFilterData);

	writel(addr | 0xc, ioaddr + RxFilterAddr);
	sval[1] = readw(ioaddr + RxFilterData);

	writel(addr | 0xe, ioaddr + RxFilterAddr);
	sval[2] = readw(ioaddr + RxFilterData);

	writel(addr, ioaddr + RxFilterAddr);

	return 0;
}

static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);
	u32 tmp;

	ecmd->port        = dev->if_port;
	ethtool_cmd_speed_set(ecmd, np->speed);
	ecmd->duplex      = np->duplex;
	ecmd->autoneg     = np->autoneg;
	ecmd->advertising = 0;
	if (np->advertising & ADVERTISE_10HALF)
		ecmd->advertising |= ADVERTISED_10baseT_Half;
	if (np->advertising & ADVERTISE_10FULL)
		ecmd->advertising |= ADVERTISED_10baseT_Full;
	if (np->advertising & ADVERTISE_100HALF)
		ecmd->advertising |= ADVERTISED_100baseT_Half;
	if (np->advertising & ADVERTISE_100FULL)
		ecmd->advertising |= ADVERTISED_100baseT_Full;
	ecmd->supported   = (SUPPORTED_Autoneg |
		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
	ecmd->phy_address = np->phy_addr_external;
	/*
	 * We intentionally report the phy address of the external
	 * phy, even if the internal phy is used. This is necessary
	 * to work around a deficiency of the ethtool interface:
	 * It's only possible to query the settings of the active
	 * port. Therefore
	 * # ethtool -s ethX port mii
	 * actually sends an ioctl to switch to port mii with the
	 * settings that are used for the current active port.
	 * If we would report a different phy address in this
	 * command, then
	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
	 * would unintentionally change the phy address.
	 *
	 * Fortunately the phy address doesn't matter with the
	 * internal phy...
	 */

	/* set information based on active port type */
	switch (ecmd->port) {
	default:
	case PORT_TP:
		ecmd->advertising |= ADVERTISED_TP;
		ecmd->transceiver = XCVR_INTERNAL;
		break;
	case PORT_MII:
		ecmd->advertising |= ADVERTISED_MII;
		ecmd->transceiver = XCVR_EXTERNAL;
		break;
	case PORT_FIBRE:
		ecmd->advertising |= ADVERTISED_FIBRE;
		ecmd->transceiver = XCVR_EXTERNAL;
		break;
	}

	/* if autonegotiation is on, try to return the active speed/duplex */
	if (ecmd->autoneg == AUTONEG_ENABLE) {
		ecmd->advertising |= ADVERTISED_Autoneg;
		tmp = mii_nway_result(
			np->advertising & mdio_read(dev, MII_LPA));
		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
			ethtool_cmd_speed_set(ecmd, SPEED_100);
		else
			ethtool_cmd_speed_set(ecmd, SPEED_10);
		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
			ecmd->duplex = DUPLEX_FULL;
		else
			ecmd->duplex = DUPLEX_HALF;
	}

	/* ignore maxtxpkt, maxrxpkt for now */

	return 0;
}

static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
{
	struct netdev_private *np = netdev_priv(dev);

	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
		return -EINVAL;
	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
		return -EINVAL;
	if (ecmd->autoneg == AUTONEG_ENABLE) {
		if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
					  ADVERTISED_10baseT_Full |
					  ADVERTISED_100baseT_Half |
					  ADVERTISED_100baseT_Full)) == 0) {
			return -EINVAL;
		}
	} else if (ecmd->autoneg == AUTONEG_DISABLE) {
		u32 speed = ethtool_cmd_speed(ecmd);
		if (speed != SPEED_10 && speed != SPEED_100)
			return -EINVAL;
		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
			return -EINVAL;
	} else {
		return -EINVAL;
	}

	/*
	 * If we're ignoring the PHY then autoneg and the internal
	 * transceiver are really not going to work so don't let the
	 * user select them.
	 */
	if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
			       ecmd->port == PORT_TP))
		return -EINVAL;

	/*
	 * maxtxpkt, maxrxpkt: ignored for now.
	 *
	 * transceiver:
	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
	 * selects based on ecmd->port.
	 *
	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
	 * phys that are connected to the mii bus. It's used to apply fibre
	 * specific updates.
	 */

	/* WHEW! now lets bang some bits */

	/* save the parms */
	dev->if_port          = ecmd->port;
	np->autoneg           = ecmd->autoneg;
	np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
	if (np->autoneg == AUTONEG_ENABLE) {
		/* advertise only what has been requested */
		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
		if (ecmd->advertising & ADVERTISED_10baseT_Half)
			np->advertising |= ADVERTISE_10HALF;
		if (ecmd->advertising & ADVERTISED_10baseT_Full)
			np->advertising |= ADVERTISE_10FULL;
		if (ecmd->advertising & ADVERTISED_100baseT_Half)
			np->advertising |= ADVERTISE_100HALF;
		if (ecmd->advertising & ADVERTISED_100baseT_Full)
			np->advertising |= ADVERTISE_100FULL;
	} else {
		np->speed  = ethtool_cmd_speed(ecmd);
		np->duplex = ecmd->duplex;
		/* user overriding the initial full duplex parm? */
		if (np->duplex == DUPLEX_HALF)
			np->full_duplex = 0;
	}

	/* get the right phy enabled */
	if (ecmd->port == PORT_TP)
		switch_port_internal(dev);
	else
		switch_port_external(dev);

	/* set parms and see how this affected our link status */
	init_phy_fixup(dev);
	check_link(dev);
	return 0;
}

static int netdev_get_regs(struct net_device *dev, u8 *buf)
{
	int i;
	int j;
	u32 rfcr;
	u32 *rbuf = (u32 *)buf;
	void __iomem * ioaddr = ns_ioaddr(dev);

	/* read non-mii page 0 of registers */
	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
		rbuf[i] = readl(ioaddr + i*4);
	}

	/* read current mii registers */
	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
		rbuf[i] = mdio_read(dev, i & 0x1f);

	/* read only the 'magic' registers from page 1 */
	writew(1, ioaddr + PGSEL);
	rbuf[i++] = readw(ioaddr + PMDCSR);
	rbuf[i++] = readw(ioaddr + TSTDAT);
	rbuf[i++] = readw(ioaddr + DSPCFG);
	rbuf[i++] = readw(ioaddr + SDCFG);
	writew(0, ioaddr + PGSEL);

	/* read RFCR indexed registers */
	rfcr = readl(ioaddr + RxFilterAddr);
	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
		writel(j*2, ioaddr + RxFilterAddr);
		rbuf[i++] = readw(ioaddr + RxFilterData);
	}
	writel(rfcr, ioaddr + RxFilterAddr);

	/* the interrupt status is clear-on-read - see if we missed any */
	if (rbuf[4] & rbuf[5]) {
		printk(KERN_WARNING
			"%s: shoot, we dropped an interrupt (%#08x)\n",
			dev->name, rbuf[4] & rbuf[5]);
	}

	return 0;
}

#define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )

static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
{
	int i;
	u16 *ebuf = (u16 *)buf;
	void __iomem * ioaddr = ns_ioaddr(dev);
	struct netdev_private *np = netdev_priv(dev);

	/* eeprom_read reads 16 bits, and indexes by 16 bits */
	for (i = 0; i < np->eeprom_size/2; i++) {
		ebuf[i] = eeprom_read(ioaddr, i);
		/* The EEPROM itself stores data bit-swapped, but eeprom_read
		 * reads it back "sanely". So we swap it back here in order to
		 * present it to userland as it is stored. */
		ebuf[i] = SWAP_BITS(ebuf[i]);
	}
	return 0;
}

static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct mii_ioctl_data *data = if_mii(rq);
	struct netdev_private *np = netdev_priv(dev);

	switch(cmd) {
	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
		data->phy_id = np->phy_addr_external;
		/* Fall Through */

	case SIOCGMIIREG:		/* Read MII PHY register. */
		/* The phy_id is not enough to uniquely identify
		 * the intended target. Therefore the command is sent to
		 * the given mii on the current port.
		 */
		if (dev->if_port == PORT_TP) {
			if ((data->phy_id & 0x1f) == np->phy_addr_external)
				data->val_out = mdio_read(dev,
							data->reg_num & 0x1f);
			else
				data->val_out = 0;
		} else {
			move_int_phy(dev, data->phy_id & 0x1f);
			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
							data->reg_num & 0x1f);
		}
		return 0;

	case SIOCSMIIREG:		/* Write MII PHY register. */
		if (dev->if_port == PORT_TP) {
			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
					np->advertising = data->val_in;
				mdio_write(dev, data->reg_num & 0x1f,
							data->val_in);
			}
		} else {
			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
					np->advertising = data->val_in;
			}
			move_int_phy(dev, data->phy_id & 0x1f);
			miiport_write(dev, data->phy_id & 0x1f,
						data->reg_num & 0x1f,
						data->val_in);
		}
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static void enable_wol_mode(struct net_device *dev, int enable_intr)
{
	void __iomem * ioaddr = ns_ioaddr(dev);
	struct netdev_private *np = netdev_priv(dev);

	if (netif_msg_wol(np))
		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
			dev->name);

	/* For WOL we must restart the rx process in silent mode.
	 * Write NULL to the RxRingPtr. Only possible if
	 * rx process is stopped
	 */
	writel(0, ioaddr + RxRingPtr);

	/* read WoL status to clear */
	readl(ioaddr + WOLCmd);

	/* PME on, clear status */
	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);

	/* and restart the rx process */
	writel(RxOn, ioaddr + ChipCmd);

	if (enable_intr) {
		/* enable the WOL interrupt.
		 * Could be used to send a netlink message.
		 */
		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
		natsemi_irq_enable(dev);
	}
}

static int netdev_close(struct net_device *dev)
{
	void __iomem * ioaddr = ns_ioaddr(dev);
	struct netdev_private *np = netdev_priv(dev);

	if (netif_msg_ifdown(np))
		printk(KERN_DEBUG
			"%s: Shutting down ethercard, status was %#04x.\n",
			dev->name, (int)readl(ioaddr + ChipCmd));
	if (netif_msg_pktdata(np))
		printk(KERN_DEBUG
			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
			dev->name, np->cur_tx, np->dirty_tx,
			np->cur_rx, np->dirty_rx);

	napi_disable(&np->napi);

	/*
	 * FIXME: what if someone tries to close a device
	 * that is suspended?
	 * Should we reenable the nic to switch to
	 * the final WOL settings?
	 */

	del_timer_sync(&np->timer);
	disable_irq(dev->irq);
	spin_lock_irq(&np->lock);
	natsemi_irq_disable(dev);
	np->hands_off = 1;
	spin_unlock_irq(&np->lock);
	enable_irq(dev->irq);

	free_irq(dev->irq, dev);

	/* Interrupt disabled, interrupt handler released,
	 * queue stopped, timer deleted, rtnl_lock held
	 * All async codepaths that access the driver are disabled.
	 */
	spin_lock_irq(&np->lock);
	np->hands_off = 0;
	readl(ioaddr + IntrMask);
	readw(ioaddr + MIntrStatus);

	/* Freeze Stats */
	writel(StatsFreeze, ioaddr + StatsCtrl);

	/* Stop the chip's Tx and Rx processes. */
	natsemi_stop_rxtx(dev);

	__get_stats(dev);
	spin_unlock_irq(&np->lock);

	/* clear the carrier last - an interrupt could reenable it otherwise */
	netif_carrier_off(dev);
	netif_stop_queue(dev);

	dump_ring(dev);
	drain_ring(dev);
	free_ring(dev);

	{
		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
		if (wol) {
			/* restart the NIC in WOL mode.
			 * The nic must be stopped for this.
			 */
			enable_wol_mode(dev, 0);
		} else {
			/* Restore PME enable bit unmolested */
			writel(np->SavedClkRun, ioaddr + ClkRun);
		}
	}
	return 0;
}


static void __devexit natsemi_remove1 (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
	unregister_netdev (dev);
	pci_release_regions (pdev);
	iounmap(ioaddr);
	free_netdev (dev);
	pci_set_drvdata(pdev, NULL);
}

#ifdef CONFIG_PM

/*
 * The ns83815 chip doesn't have explicit RxStop bits.
 * Kicking the Rx or Tx process for a new packet reenables the Rx process
 * of the nic, thus this function must be very careful:
 *
 * suspend/resume synchronization:
 * entry points:
 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
 *   start_tx, ns_tx_timeout
 *
 * No function accesses the hardware without checking np->hands_off.
 *	the check occurs under spin_lock_irq(&np->lock);
 * exceptions:
 *	* netdev_ioctl: noncritical access.
 *	* netdev_open: cannot happen due to the device_detach
 *	* netdev_close: doesn't hurt.
 *	* netdev_timer: timer stopped by natsemi_suspend.
 *	* intr_handler: doesn't acquire the spinlock. suspend calls
 *		disable_irq() to enforce synchronization.
 *      * natsemi_poll: checks before reenabling interrupts.  suspend
 *              sets hands_off, disables interrupts and then waits with
 *              napi_disable().
 *
 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
 */

static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *dev = pci_get_drvdata (pdev);
	struct netdev_private *np = netdev_priv(dev);
	void __iomem * ioaddr = ns_ioaddr(dev);

	rtnl_lock();
	if (netif_running (dev)) {
		del_timer_sync(&np->timer);

		disable_irq(dev->irq);
		spin_lock_irq(&np->lock);

		natsemi_irq_disable(dev);
		np->hands_off = 1;
		natsemi_stop_rxtx(dev);
		netif_stop_queue(dev);

		spin_unlock_irq(&np->lock);
		enable_irq(dev->irq);

		napi_disable(&np->napi);

		/* Update the error counts. */
		__get_stats(dev);

		/* pci_power_off(pdev, -1); */
		drain_ring(dev);
		{
			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
			/* Restore PME enable bit */
			if (wol) {
				/* restart the NIC in WOL mode.
				 * The nic must be stopped for this.
				 * FIXME: use the WOL interrupt
				 */
				enable_wol_mode(dev, 0);
			} else {
				/* Restore PME enable bit unmolested */
				writel(np->SavedClkRun, ioaddr + ClkRun);
			}
		}
	}
	netif_device_detach(dev);
	rtnl_unlock();
	return 0;
}


static int natsemi_resume (struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata (pdev);
	struct netdev_private *np = netdev_priv(dev);
	int ret = 0;

	rtnl_lock();
	if (netif_device_present(dev))
		goto out;
	if (netif_running(dev)) {
		BUG_ON(!np->hands_off);
		ret = pci_enable_device(pdev);
		if (ret < 0) {
			dev_err(&pdev->dev,
				"pci_enable_device() failed: %d\n", ret);
			goto out;
		}
	/*	pci_power_on(pdev); */

		napi_enable(&np->napi);

		natsemi_reset(dev);
		init_ring(dev);
		disable_irq(dev->irq);
		spin_lock_irq(&np->lock);
		np->hands_off = 0;
		init_registers(dev);
		netif_device_attach(dev);
		spin_unlock_irq(&np->lock);
		enable_irq(dev->irq);

		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
	}
	netif_device_attach(dev);
out:
	rtnl_unlock();
	return ret;
}

#endif /* CONFIG_PM */

static struct pci_driver natsemi_driver = {
	.name		= DRV_NAME,
	.id_table	= natsemi_pci_tbl,
	.probe		= natsemi_probe1,
	.remove		= __devexit_p(natsemi_remove1),
#ifdef CONFIG_PM
	.suspend	= natsemi_suspend,
	.resume		= natsemi_resume,
#endif
};

static int __init natsemi_init_mod (void)
{
/* when a module, this is printed whether or not devices are found in probe */
#ifdef MODULE
	printk(version);
#endif

	return pci_register_driver(&natsemi_driver);
}

static void __exit natsemi_exit_mod (void)
{
	pci_unregister_driver (&natsemi_driver);
}

module_init(natsemi_init_mod);
module_exit(natsemi_exit_mod);