aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/e100.c
blob: e498effb85d9e2cba3595206b61d53e644127688 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
/*******************************************************************************

  Intel PRO/100 Linux driver
  Copyright(c) 1999 - 2006 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
 *	e100.c: Intel(R) PRO/100 ethernet driver
 *
 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
 *	original e100 driver, but better described as a munging of
 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
 *
 *	References:
 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
 *		Open Source Software Developers Manual,
 *		http://sourceforge.net/projects/e1000
 *
 *
 *	                      Theory of Operation
 *
 *	I.   General
 *
 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
 *	controller family, which includes the 82557, 82558, 82559, 82550,
 *	82551, and 82562 devices.  82558 and greater controllers
 *	integrate the Intel 82555 PHY.  The controllers are used in
 *	server and client network interface cards, as well as in
 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
 *	configurations.  8255x supports a 32-bit linear addressing
 *	mode and operates at 33Mhz PCI clock rate.
 *
 *	II.  Driver Operation
 *
 *	Memory-mapped mode is used exclusively to access the device's
 *	shared-memory structure, the Control/Status Registers (CSR). All
 *	setup, configuration, and control of the device, including queuing
 *	of Tx, Rx, and configuration commands is through the CSR.
 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
 *	protects the shared Command Block List (CBL).
 *
 *	8255x is highly MII-compliant and all access to the PHY go
 *	through the Management Data Interface (MDI).  Consequently, the
 *	driver leverages the mii.c library shared with other MII-compliant
 *	devices.
 *
 *	Big- and Little-Endian byte order as well as 32- and 64-bit
 *	archs are supported.  Weak-ordered memory and non-cache-coherent
 *	archs are supported.
 *
 *	III. Transmit
 *
 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
 *	together in a fixed-size ring (CBL) thus forming the flexible mode
 *	memory structure.  A TCB marked with the suspend-bit indicates
 *	the end of the ring.  The last TCB processed suspends the
 *	controller, and the controller can be restarted by issue a CU
 *	resume command to continue from the suspend point, or a CU start
 *	command to start at a given position in the ring.
 *
 *	Non-Tx commands (config, multicast setup, etc) are linked
 *	into the CBL ring along with Tx commands.  The common structure
 *	used for both Tx and non-Tx commands is the Command Block (CB).
 *
 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
 *	is the next CB to check for completion; cb_to_send is the first
 *	CB to start on in case of a previous failure to resume.  CB clean
 *	up happens in interrupt context in response to a CU interrupt.
 *	cbs_avail keeps track of number of free CB resources available.
 *
 * 	Hardware padding of short packets to minimum packet size is
 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
 * 	with 00h.
 *
 *	IV.  Receive
 *
 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
 *	memory structure.  Rx skbs are allocated to contain both the RFD
 *	and the data buffer, but the RFD is pulled off before the skb is
 *	indicated.  The data buffer is aligned such that encapsulated
 *	protocol headers are u32-aligned.  Since the RFD is part of the
 *	mapped shared memory, and completion status is contained within
 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
 *	view from software and hardware.
 *
 *	In order to keep updates to the RFD link field from colliding with
 *	hardware writes to mark packets complete, we use the feature that
 *	hardware will not write to a size 0 descriptor and mark the previous
 *	packet as end-of-list (EL).   After updating the link, we remove EL
 *	and only then restore the size such that hardware may use the
 *	previous-to-end RFD.
 *
 *	Under typical operation, the  receive unit (RU) is start once,
 *	and the controller happily fills RFDs as frames arrive.  If
 *	replacement RFDs cannot be allocated, or the RU goes non-active,
 *	the RU must be restarted.  Frame arrival generates an interrupt,
 *	and Rx indication and re-allocation happen in the same context,
 *	therefore no locking is required.  A software-generated interrupt
 *	is generated from the watchdog to recover from a failed allocation
 *	scenario where all Rx resources have been indicated and none re-
 *	placed.
 *
 *	V.   Miscellaneous
 *
 * 	VLAN offloading of tagging, stripping and filtering is not
 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 * 	not supported (hardware limitation).
 *
 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 *
 * 	Thanks to JC (jchapman@katalix.com) for helping with
 * 	testing/troubleshooting the development driver.
 *
 * 	TODO:
 * 	o several entry points race with dev->close
 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
 *
 *	FIXES:
 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 *	- Stratus87247: protect MDI control register manipulations
 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/hardirq.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/string.h>
#include <linux/firmware.h>
#include <linux/rtnetlink.h>
#include <asm/unaligned.h>


#define DRV_NAME		"e100"
#define DRV_EXT			"-NAPI"
#define DRV_VERSION		"3.5.24-k2"DRV_EXT
#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"

#define E100_WATCHDOG_PERIOD	(2 * HZ)
#define E100_NAPI_WEIGHT	16

#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
#define FIRMWARE_D102E		"e100/d102e_ucode.bin"

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_FIRMWARE(FIRMWARE_D101M);
MODULE_FIRMWARE(FIRMWARE_D101S);
MODULE_FIRMWARE(FIRMWARE_D102E);

static int debug = 3;
static int eeprom_bad_csum_allow = 0;
static int use_io = 0;
module_param(debug, int, 0);
module_param(eeprom_bad_csum_allow, int, 0);
module_param(use_io, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
MODULE_PARM_DESC(use_io, "Force use of i/o access mode");

#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
	{ 0, }
};
MODULE_DEVICE_TABLE(pci, e100_id_table);

enum mac {
	mac_82557_D100_A  = 0,
	mac_82557_D100_B  = 1,
	mac_82557_D100_C  = 2,
	mac_82558_D101_A4 = 4,
	mac_82558_D101_B0 = 5,
	mac_82559_D101M   = 8,
	mac_82559_D101S   = 9,
	mac_82550_D102    = 12,
	mac_82550_D102_C  = 13,
	mac_82551_E       = 14,
	mac_82551_F       = 15,
	mac_82551_10      = 16,
	mac_unknown       = 0xFF,
};

enum phy {
	phy_100a     = 0x000003E0,
	phy_100c     = 0x035002A8,
	phy_82555_tx = 0x015002A8,
	phy_nsc_tx   = 0x5C002000,
	phy_82562_et = 0x033002A8,
	phy_82562_em = 0x032002A8,
	phy_82562_ek = 0x031002A8,
	phy_82562_eh = 0x017002A8,
	phy_82552_v  = 0xd061004d,
	phy_unknown  = 0xFFFFFFFF,
};

/* CSR (Control/Status Registers) */
struct csr {
	struct {
		u8 status;
		u8 stat_ack;
		u8 cmd_lo;
		u8 cmd_hi;
		u32 gen_ptr;
	} scb;
	u32 port;
	u16 flash_ctrl;
	u8 eeprom_ctrl_lo;
	u8 eeprom_ctrl_hi;
	u32 mdi_ctrl;
	u32 rx_dma_count;
};

enum scb_status {
	rus_no_res       = 0x08,
	rus_ready        = 0x10,
	rus_mask         = 0x3C,
};

enum ru_state  {
	RU_SUSPENDED = 0,
	RU_RUNNING	 = 1,
	RU_UNINITIALIZED = -1,
};

enum scb_stat_ack {
	stat_ack_not_ours    = 0x00,
	stat_ack_sw_gen      = 0x04,
	stat_ack_rnr         = 0x10,
	stat_ack_cu_idle     = 0x20,
	stat_ack_frame_rx    = 0x40,
	stat_ack_cu_cmd_done = 0x80,
	stat_ack_not_present = 0xFF,
	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
};

enum scb_cmd_hi {
	irq_mask_none = 0x00,
	irq_mask_all  = 0x01,
	irq_sw_gen    = 0x02,
};

enum scb_cmd_lo {
	cuc_nop        = 0x00,
	ruc_start      = 0x01,
	ruc_load_base  = 0x06,
	cuc_start      = 0x10,
	cuc_resume     = 0x20,
	cuc_dump_addr  = 0x40,
	cuc_dump_stats = 0x50,
	cuc_load_base  = 0x60,
	cuc_dump_reset = 0x70,
};

enum cuc_dump {
	cuc_dump_complete       = 0x0000A005,
	cuc_dump_reset_complete = 0x0000A007,
};

enum port {
	software_reset  = 0x0000,
	selftest        = 0x0001,
	selective_reset = 0x0002,
};

enum eeprom_ctrl_lo {
	eesk = 0x01,
	eecs = 0x02,
	eedi = 0x04,
	eedo = 0x08,
};

enum mdi_ctrl {
	mdi_write = 0x04000000,
	mdi_read  = 0x08000000,
	mdi_ready = 0x10000000,
};

enum eeprom_op {
	op_write = 0x05,
	op_read  = 0x06,
	op_ewds  = 0x10,
	op_ewen  = 0x13,
};

enum eeprom_offsets {
	eeprom_cnfg_mdix  = 0x03,
	eeprom_phy_iface  = 0x06,
	eeprom_id         = 0x0A,
	eeprom_config_asf = 0x0D,
	eeprom_smbus_addr = 0x90,
};

enum eeprom_cnfg_mdix {
	eeprom_mdix_enabled = 0x0080,
};

enum eeprom_phy_iface {
	NoSuchPhy = 0,
	I82553AB,
	I82553C,
	I82503,
	DP83840,
	S80C240,
	S80C24,
	I82555,
	DP83840A = 10,
};

enum eeprom_id {
	eeprom_id_wol = 0x0020,
};

enum eeprom_config_asf {
	eeprom_asf = 0x8000,
	eeprom_gcl = 0x4000,
};

enum cb_status {
	cb_complete = 0x8000,
	cb_ok       = 0x2000,
};

/**
 * cb_command - Command Block flags
 * @cb_tx_nc:  0: controler does CRC (normal),  1: CRC from skb memory
 */
enum cb_command {
	cb_nop    = 0x0000,
	cb_iaaddr = 0x0001,
	cb_config = 0x0002,
	cb_multi  = 0x0003,
	cb_tx     = 0x0004,
	cb_ucode  = 0x0005,
	cb_dump   = 0x0006,
	cb_tx_sf  = 0x0008,
	cb_tx_nc  = 0x0010,
	cb_cid    = 0x1f00,
	cb_i      = 0x2000,
	cb_s      = 0x4000,
	cb_el     = 0x8000,
};

struct rfd {
	__le16 status;
	__le16 command;
	__le32 link;
	__le32 rbd;
	__le16 actual_size;
	__le16 size;
};

struct rx {
	struct rx *next, *prev;
	struct sk_buff *skb;
	dma_addr_t dma_addr;
};

#if defined(__BIG_ENDIAN_BITFIELD)
#define X(a,b)	b,a
#else
#define X(a,b)	a,b
#endif
struct config {
/*0*/	u8 X(byte_count:6, pad0:2);
/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
/*2*/	u8 adaptive_ifs;
/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
	   term_write_cache_line:1), pad3:4);
/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
	   rx_save_overruns : 1), rx_save_bad_frames : 1);
/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
	   tx_dynamic_tbd:1);
/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
	   loopback:2);
/*11*/	u8 X(linear_priority:3, pad11:5);
/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
/*13*/	u8 ip_addr_lo;
/*14*/	u8 ip_addr_hi;
/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
	   pad15_2:1), crs_or_cdt:1);
/*16*/	u8 fc_delay_lo;
/*17*/	u8 fc_delay_hi;
/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
	   full_duplex_force:1), full_duplex_pin:1);
/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
	u8 pad_d102[9];
};

#define E100_MAX_MULTICAST_ADDRS	64
struct multi {
	__le16 count;
	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
};

/* Important: keep total struct u32-aligned */
#define UCODE_SIZE			134
struct cb {
	__le16 status;
	__le16 command;
	__le32 link;
	union {
		u8 iaaddr[ETH_ALEN];
		__le32 ucode[UCODE_SIZE];
		struct config config;
		struct multi multi;
		struct {
			u32 tbd_array;
			u16 tcb_byte_count;
			u8 threshold;
			u8 tbd_count;
			struct {
				__le32 buf_addr;
				__le16 size;
				u16 eol;
			} tbd;
		} tcb;
		__le32 dump_buffer_addr;
	} u;
	struct cb *next, *prev;
	dma_addr_t dma_addr;
	struct sk_buff *skb;
};

enum loopback {
	lb_none = 0, lb_mac = 1, lb_phy = 3,
};

struct stats {
	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
		tx_multiple_collisions, tx_total_collisions;
	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
		rx_short_frame_errors;
	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
	__le16 xmt_tco_frames, rcv_tco_frames;
	__le32 complete;
};

struct mem {
	struct {
		u32 signature;
		u32 result;
	} selftest;
	struct stats stats;
	u8 dump_buf[596];
};

struct param_range {
	u32 min;
	u32 max;
	u32 count;
};

struct params {
	struct param_range rfds;
	struct param_range cbs;
};

struct nic {
	/* Begin: frequently used values: keep adjacent for cache effect */
	u32 msg_enable				____cacheline_aligned;
	struct net_device *netdev;
	struct pci_dev *pdev;
	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);

	struct rx *rxs				____cacheline_aligned;
	struct rx *rx_to_use;
	struct rx *rx_to_clean;
	struct rfd blank_rfd;
	enum ru_state ru_running;

	spinlock_t cb_lock			____cacheline_aligned;
	spinlock_t cmd_lock;
	struct csr __iomem *csr;
	enum scb_cmd_lo cuc_cmd;
	unsigned int cbs_avail;
	struct napi_struct napi;
	struct cb *cbs;
	struct cb *cb_to_use;
	struct cb *cb_to_send;
	struct cb *cb_to_clean;
	__le16 tx_command;
	/* End: frequently used values: keep adjacent for cache effect */

	enum {
		ich                = (1 << 0),
		promiscuous        = (1 << 1),
		multicast_all      = (1 << 2),
		wol_magic          = (1 << 3),
		ich_10h_workaround = (1 << 4),
	} flags					____cacheline_aligned;

	enum mac mac;
	enum phy phy;
	struct params params;
	struct timer_list watchdog;
	struct mii_if_info mii;
	struct work_struct tx_timeout_task;
	enum loopback loopback;

	struct mem *mem;
	dma_addr_t dma_addr;

	struct pci_pool *cbs_pool;
	dma_addr_t cbs_dma_addr;
	u8 adaptive_ifs;
	u8 tx_threshold;
	u32 tx_frames;
	u32 tx_collisions;
	u32 tx_deferred;
	u32 tx_single_collisions;
	u32 tx_multiple_collisions;
	u32 tx_fc_pause;
	u32 tx_tco_frames;

	u32 rx_fc_pause;
	u32 rx_fc_unsupported;
	u32 rx_tco_frames;
	u32 rx_short_frame_errors;
	u32 rx_over_length_errors;

	u16 eeprom_wc;
	__le16 eeprom[256];
	spinlock_t mdio_lock;
	const struct firmware *fw;
};

static inline void e100_write_flush(struct nic *nic)
{
	/* Flush previous PCI writes through intermediate bridges
	 * by doing a benign read */
	(void)ioread8(&nic->csr->scb.status);
}

static void e100_enable_irq(struct nic *nic)
{
	unsigned long flags;

	spin_lock_irqsave(&nic->cmd_lock, flags);
	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
	e100_write_flush(nic);
	spin_unlock_irqrestore(&nic->cmd_lock, flags);
}

static void e100_disable_irq(struct nic *nic)
{
	unsigned long flags;

	spin_lock_irqsave(&nic->cmd_lock, flags);
	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
	e100_write_flush(nic);
	spin_unlock_irqrestore(&nic->cmd_lock, flags);
}

static void e100_hw_reset(struct nic *nic)
{
	/* Put CU and RU into idle with a selective reset to get
	 * device off of PCI bus */
	iowrite32(selective_reset, &nic->csr->port);
	e100_write_flush(nic); udelay(20);

	/* Now fully reset device */
	iowrite32(software_reset, &nic->csr->port);
	e100_write_flush(nic); udelay(20);

	/* Mask off our interrupt line - it's unmasked after reset */
	e100_disable_irq(nic);
}

static int e100_self_test(struct nic *nic)
{
	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);

	/* Passing the self-test is a pretty good indication
	 * that the device can DMA to/from host memory */

	nic->mem->selftest.signature = 0;
	nic->mem->selftest.result = 0xFFFFFFFF;

	iowrite32(selftest | dma_addr, &nic->csr->port);
	e100_write_flush(nic);
	/* Wait 10 msec for self-test to complete */
	msleep(10);

	/* Interrupts are enabled after self-test */
	e100_disable_irq(nic);

	/* Check results of self-test */
	if (nic->mem->selftest.result != 0) {
		netif_err(nic, hw, nic->netdev,
			  "Self-test failed: result=0x%08X\n",
			  nic->mem->selftest.result);
		return -ETIMEDOUT;
	}
	if (nic->mem->selftest.signature == 0) {
		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
{
	u32 cmd_addr_data[3];
	u8 ctrl;
	int i, j;

	/* Three cmds: write/erase enable, write data, write/erase disable */
	cmd_addr_data[0] = op_ewen << (addr_len - 2);
	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
		le16_to_cpu(data);
	cmd_addr_data[2] = op_ewds << (addr_len - 2);

	/* Bit-bang cmds to write word to eeprom */
	for (j = 0; j < 3; j++) {

		/* Chip select */
		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
		e100_write_flush(nic); udelay(4);

		for (i = 31; i >= 0; i--) {
			ctrl = (cmd_addr_data[j] & (1 << i)) ?
				eecs | eedi : eecs;
			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
			e100_write_flush(nic); udelay(4);

			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
			e100_write_flush(nic); udelay(4);
		}
		/* Wait 10 msec for cmd to complete */
		msleep(10);

		/* Chip deselect */
		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
		e100_write_flush(nic); udelay(4);
	}
};

/* General technique stolen from the eepro100 driver - very clever */
static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
{
	u32 cmd_addr_data;
	u16 data = 0;
	u8 ctrl;
	int i;

	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;

	/* Chip select */
	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
	e100_write_flush(nic); udelay(4);

	/* Bit-bang to read word from eeprom */
	for (i = 31; i >= 0; i--) {
		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
		e100_write_flush(nic); udelay(4);

		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
		e100_write_flush(nic); udelay(4);

		/* Eeprom drives a dummy zero to EEDO after receiving
		 * complete address.  Use this to adjust addr_len. */
		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
		if (!(ctrl & eedo) && i > 16) {
			*addr_len -= (i - 16);
			i = 17;
		}

		data = (data << 1) | (ctrl & eedo ? 1 : 0);
	}

	/* Chip deselect */
	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
	e100_write_flush(nic); udelay(4);

	return cpu_to_le16(data);
};

/* Load entire EEPROM image into driver cache and validate checksum */
static int e100_eeprom_load(struct nic *nic)
{
	u16 addr, addr_len = 8, checksum = 0;

	/* Try reading with an 8-bit addr len to discover actual addr len */
	e100_eeprom_read(nic, &addr_len, 0);
	nic->eeprom_wc = 1 << addr_len;

	for (addr = 0; addr < nic->eeprom_wc; addr++) {
		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
		if (addr < nic->eeprom_wc - 1)
			checksum += le16_to_cpu(nic->eeprom[addr]);
	}

	/* The checksum, stored in the last word, is calculated such that
	 * the sum of words should be 0xBABA */
	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
		if (!eeprom_bad_csum_allow)
			return -EAGAIN;
	}

	return 0;
}

/* Save (portion of) driver EEPROM cache to device and update checksum */
static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
{
	u16 addr, addr_len = 8, checksum = 0;

	/* Try reading with an 8-bit addr len to discover actual addr len */
	e100_eeprom_read(nic, &addr_len, 0);
	nic->eeprom_wc = 1 << addr_len;

	if (start + count >= nic->eeprom_wc)
		return -EINVAL;

	for (addr = start; addr < start + count; addr++)
		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);

	/* The checksum, stored in the last word, is calculated such that
	 * the sum of words should be 0xBABA */
	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
		checksum += le16_to_cpu(nic->eeprom[addr]);
	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
		nic->eeprom[nic->eeprom_wc - 1]);

	return 0;
}

#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
{
	unsigned long flags;
	unsigned int i;
	int err = 0;

	spin_lock_irqsave(&nic->cmd_lock, flags);

	/* Previous command is accepted when SCB clears */
	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
			break;
		cpu_relax();
		if (unlikely(i > E100_WAIT_SCB_FAST))
			udelay(5);
	}
	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
		err = -EAGAIN;
		goto err_unlock;
	}

	if (unlikely(cmd != cuc_resume))
		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
	iowrite8(cmd, &nic->csr->scb.cmd_lo);

err_unlock:
	spin_unlock_irqrestore(&nic->cmd_lock, flags);

	return err;
}

static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
	void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
{
	struct cb *cb;
	unsigned long flags;
	int err = 0;

	spin_lock_irqsave(&nic->cb_lock, flags);

	if (unlikely(!nic->cbs_avail)) {
		err = -ENOMEM;
		goto err_unlock;
	}

	cb = nic->cb_to_use;
	nic->cb_to_use = cb->next;
	nic->cbs_avail--;
	cb->skb = skb;

	if (unlikely(!nic->cbs_avail))
		err = -ENOSPC;

	cb_prepare(nic, cb, skb);

	/* Order is important otherwise we'll be in a race with h/w:
	 * set S-bit in current first, then clear S-bit in previous. */
	cb->command |= cpu_to_le16(cb_s);
	wmb();
	cb->prev->command &= cpu_to_le16(~cb_s);

	while (nic->cb_to_send != nic->cb_to_use) {
		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
			nic->cb_to_send->dma_addr))) {
			/* Ok, here's where things get sticky.  It's
			 * possible that we can't schedule the command
			 * because the controller is too busy, so
			 * let's just queue the command and try again
			 * when another command is scheduled. */
			if (err == -ENOSPC) {
				//request a reset
				schedule_work(&nic->tx_timeout_task);
			}
			break;
		} else {
			nic->cuc_cmd = cuc_resume;
			nic->cb_to_send = nic->cb_to_send->next;
		}
	}

err_unlock:
	spin_unlock_irqrestore(&nic->cb_lock, flags);

	return err;
}

static int mdio_read(struct net_device *netdev, int addr, int reg)
{
	struct nic *nic = netdev_priv(netdev);
	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
}

static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
{
	struct nic *nic = netdev_priv(netdev);

	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
}

/* the standard mdio_ctrl() function for usual MII-compliant hardware */
static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
{
	u32 data_out = 0;
	unsigned int i;
	unsigned long flags;


	/*
	 * Stratus87247: we shouldn't be writing the MDI control
	 * register until the Ready bit shows True.  Also, since
	 * manipulation of the MDI control registers is a multi-step
	 * procedure it should be done under lock.
	 */
	spin_lock_irqsave(&nic->mdio_lock, flags);
	for (i = 100; i; --i) {
		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
			break;
		udelay(20);
	}
	if (unlikely(!i)) {
		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
		spin_unlock_irqrestore(&nic->mdio_lock, flags);
		return 0;		/* No way to indicate timeout error */
	}
	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);

	for (i = 0; i < 100; i++) {
		udelay(20);
		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
			break;
	}
	spin_unlock_irqrestore(&nic->mdio_lock, flags);
	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
		     dir == mdi_read ? "READ" : "WRITE",
		     addr, reg, data, data_out);
	return (u16)data_out;
}

/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
				 u32 addr,
				 u32 dir,
				 u32 reg,
				 u16 data)
{
	if ((reg == MII_BMCR) && (dir == mdi_write)) {
		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
							MII_ADVERTISE);

			/*
			 * Workaround Si issue where sometimes the part will not
			 * autoneg to 100Mbps even when advertised.
			 */
			if (advert & ADVERTISE_100FULL)
				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
			else if (advert & ADVERTISE_100HALF)
				data |= BMCR_SPEED100;
		}
	}
	return mdio_ctrl_hw(nic, addr, dir, reg, data);
}

/* Fully software-emulated mdio_ctrl() function for cards without
 * MII-compliant PHYs.
 * For now, this is mainly geared towards 80c24 support; in case of further
 * requirements for other types (i82503, ...?) either extend this mechanism
 * or split it, whichever is cleaner.
 */
static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
				      u32 addr,
				      u32 dir,
				      u32 reg,
				      u16 data)
{
	/* might need to allocate a netdev_priv'ed register array eventually
	 * to be able to record state changes, but for now
	 * some fully hardcoded register handling ought to be ok I guess. */

	if (dir == mdi_read) {
		switch (reg) {
		case MII_BMCR:
			/* Auto-negotiation, right? */
			return  BMCR_ANENABLE |
				BMCR_FULLDPLX;
		case MII_BMSR:
			return	BMSR_LSTATUS /* for mii_link_ok() */ |
				BMSR_ANEGCAPABLE |
				BMSR_10FULL;
		case MII_ADVERTISE:
			/* 80c24 is a "combo card" PHY, right? */
			return	ADVERTISE_10HALF |
				ADVERTISE_10FULL;
		default:
			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
				     dir == mdi_read ? "READ" : "WRITE",
				     addr, reg, data);
			return 0xFFFF;
		}
	} else {
		switch (reg) {
		default:
			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
				     dir == mdi_read ? "READ" : "WRITE",
				     addr, reg, data);
			return 0xFFFF;
		}
	}
}
static inline int e100_phy_supports_mii(struct nic *nic)
{
	/* for now, just check it by comparing whether we
	   are using MII software emulation.
	*/
	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
}

static void e100_get_defaults(struct nic *nic)
{
	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };

	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
	if (nic->mac == mac_unknown)
		nic->mac = mac_82557_D100_A;

	nic->params.rfds = rfds;
	nic->params.cbs = cbs;

	/* Quadwords to DMA into FIFO before starting frame transmit */
	nic->tx_threshold = 0xE0;

	/* no interrupt for every tx completion, delay = 256us if not 557 */
	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));

	/* Template for a freshly allocated RFD */
	nic->blank_rfd.command = 0;
	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);

	/* MII setup */
	nic->mii.phy_id_mask = 0x1F;
	nic->mii.reg_num_mask = 0x1F;
	nic->mii.dev = nic->netdev;
	nic->mii.mdio_read = mdio_read;
	nic->mii.mdio_write = mdio_write;
}

static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
	struct config *config = &cb->u.config;
	u8 *c = (u8 *)config;
	struct net_device *netdev = nic->netdev;

	cb->command = cpu_to_le16(cb_config);

	memset(config, 0, sizeof(struct config));

	config->byte_count = 0x16;		/* bytes in this struct */
	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
	config->direct_rx_dma = 0x1;		/* reserved */
	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
	if (e100_phy_supports_mii(nic))
		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
	config->pad10 = 0x6;
	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
	config->ifs = 0x6;			/* x16 = inter frame spacing */
	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
	config->pad15_1 = 0x1;
	config->pad15_2 = 0x1;
	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
	config->tx_padding = 0x1;		/* 1=pad short frames */
	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
	config->pad18 = 0x1;
	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
	config->pad20_1 = 0x1F;
	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
	config->pad21_1 = 0x5;

	config->adaptive_ifs = nic->adaptive_ifs;
	config->loopback = nic->loopback;

	if (nic->mii.force_media && nic->mii.full_duplex)
		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */

	if (nic->flags & promiscuous || nic->loopback) {
		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
	}

	if (unlikely(netdev->features & NETIF_F_RXFCS))
		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */

	if (nic->flags & multicast_all)
		config->multicast_all = 0x1;		/* 1=accept, 0=no */

	/* disable WoL when up */
	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */

	if (nic->mac >= mac_82558_D101_A4) {
		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
		if (nic->mac >= mac_82559_D101M) {
			config->tno_intr = 0x1;		/* TCO stats enable */
			/* Enable TCO in extended config */
			if (nic->mac >= mac_82551_10) {
				config->byte_count = 0x20; /* extended bytes */
				config->rx_d102_mode = 0x1; /* GMRC for TCO */
			}
		} else {
			config->standard_stat_counter = 0x0;
		}
	}

	if (netdev->features & NETIF_F_RXALL) {
		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
	}

	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
		     "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
		     c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
		     "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
		     c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
		     "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
		     c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
}

/*************************************************************************
*  CPUSaver parameters
*
*  All CPUSaver parameters are 16-bit literals that are part of a
*  "move immediate value" instruction.  By changing the value of
*  the literal in the instruction before the code is loaded, the
*  driver can change the algorithm.
*
*  INTDELAY - This loads the dead-man timer with its initial value.
*    When this timer expires the interrupt is asserted, and the
*    timer is reset each time a new packet is received.  (see
*    BUNDLEMAX below to set the limit on number of chained packets)
*    The current default is 0x600 or 1536.  Experiments show that
*    the value should probably stay within the 0x200 - 0x1000.
*
*  BUNDLEMAX -
*    This sets the maximum number of frames that will be bundled.  In
*    some situations, such as the TCP windowing algorithm, it may be
*    better to limit the growth of the bundle size than let it go as
*    high as it can, because that could cause too much added latency.
*    The default is six, because this is the number of packets in the
*    default TCP window size.  A value of 1 would make CPUSaver indicate
*    an interrupt for every frame received.  If you do not want to put
*    a limit on the bundle size, set this value to xFFFF.
*
*  BUNDLESMALL -
*    This contains a bit-mask describing the minimum size frame that
*    will be bundled.  The default masks the lower 7 bits, which means
*    that any frame less than 128 bytes in length will not be bundled,
*    but will instead immediately generate an interrupt.  This does
*    not affect the current bundle in any way.  Any frame that is 128
*    bytes or large will be bundled normally.  This feature is meant
*    to provide immediate indication of ACK frames in a TCP environment.
*    Customers were seeing poor performance when a machine with CPUSaver
*    enabled was sending but not receiving.  The delay introduced when
*    the ACKs were received was enough to reduce total throughput, because
*    the sender would sit idle until the ACK was finally seen.
*
*    The current default is 0xFF80, which masks out the lower 7 bits.
*    This means that any frame which is x7F (127) bytes or smaller
*    will cause an immediate interrupt.  Because this value must be a
*    bit mask, there are only a few valid values that can be used.  To
*    turn this feature off, the driver can write the value xFFFF to the
*    lower word of this instruction (in the same way that the other
*    parameters are used).  Likewise, a value of 0xF800 (2047) would
*    cause an interrupt to be generated for every frame, because all
*    standard Ethernet frames are <= 2047 bytes in length.
*************************************************************************/

/* if you wish to disable the ucode functionality, while maintaining the
 * workarounds it provides, set the following defines to:
 * BUNDLESMALL 0
 * BUNDLEMAX 1
 * INTDELAY 1
 */
#define BUNDLESMALL 1
#define BUNDLEMAX (u16)6
#define INTDELAY (u16)1536 /* 0x600 */

/* Initialize firmware */
static const struct firmware *e100_request_firmware(struct nic *nic)
{
	const char *fw_name;
	const struct firmware *fw = nic->fw;
	u8 timer, bundle, min_size;
	int err = 0;

	/* do not load u-code for ICH devices */
	if (nic->flags & ich)
		return NULL;

	/* Search for ucode match against h/w revision */
	if (nic->mac == mac_82559_D101M)
		fw_name = FIRMWARE_D101M;
	else if (nic->mac == mac_82559_D101S)
		fw_name = FIRMWARE_D101S;
	else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10)
		fw_name = FIRMWARE_D102E;
	else /* No ucode on other devices */
		return NULL;

	/* If the firmware has not previously been loaded, request a pointer
	 * to it. If it was previously loaded, we are reinitializing the
	 * adapter, possibly in a resume from hibernate, in which case
	 * request_firmware() cannot be used.
	 */
	if (!fw)
		err = request_firmware(&fw, fw_name, &nic->pdev->dev);

	if (err) {
		netif_err(nic, probe, nic->netdev,
			  "Failed to load firmware \"%s\": %d\n",
			  fw_name, err);
		return ERR_PTR(err);
	}

	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
	if (fw->size != UCODE_SIZE * 4 + 3) {
		netif_err(nic, probe, nic->netdev,
			  "Firmware \"%s\" has wrong size %zu\n",
			  fw_name, fw->size);
		release_firmware(fw);
		return ERR_PTR(-EINVAL);
	}

	/* Read timer, bundle and min_size from end of firmware blob */
	timer = fw->data[UCODE_SIZE * 4];
	bundle = fw->data[UCODE_SIZE * 4 + 1];
	min_size = fw->data[UCODE_SIZE * 4 + 2];

	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
	    min_size >= UCODE_SIZE) {
		netif_err(nic, probe, nic->netdev,
			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
			  fw_name, timer, bundle, min_size);
		release_firmware(fw);
		return ERR_PTR(-EINVAL);
	}

	/* OK, firmware is validated and ready to use. Save a pointer
	 * to it in the nic */
	nic->fw = fw;
	return fw;
}

static void e100_setup_ucode(struct nic *nic, struct cb *cb,
			     struct sk_buff *skb)
{
	const struct firmware *fw = (void *)skb;
	u8 timer, bundle, min_size;

	/* It's not a real skb; we just abused the fact that e100_exec_cb
	   will pass it through to here... */
	cb->skb = NULL;

	/* firmware is stored as little endian already */
	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);

	/* Read timer, bundle and min_size from end of firmware blob */
	timer = fw->data[UCODE_SIZE * 4];
	bundle = fw->data[UCODE_SIZE * 4 + 1];
	min_size = fw->data[UCODE_SIZE * 4 + 2];

	/* Insert user-tunable settings in cb->u.ucode */
	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);

	cb->command = cpu_to_le16(cb_ucode | cb_el);
}

static inline int e100_load_ucode_wait(struct nic *nic)
{
	const struct firmware *fw;
	int err = 0, counter = 50;
	struct cb *cb = nic->cb_to_clean;

	fw = e100_request_firmware(nic);
	/* If it's NULL, then no ucode is required */
	if (!fw || IS_ERR(fw))
		return PTR_ERR(fw);

	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
		netif_err(nic, probe, nic->netdev,
			  "ucode cmd failed with error %d\n", err);

	/* must restart cuc */
	nic->cuc_cmd = cuc_start;

	/* wait for completion */
	e100_write_flush(nic);
	udelay(10);

	/* wait for possibly (ouch) 500ms */
	while (!(cb->status & cpu_to_le16(cb_complete))) {
		msleep(10);
		if (!--counter) break;
	}

	/* ack any interrupts, something could have been set */
	iowrite8(~0, &nic->csr->scb.stat_ack);

	/* if the command failed, or is not OK, notify and return */
	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
		err = -EPERM;
	}

	return err;
}

static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
	struct sk_buff *skb)
{
	cb->command = cpu_to_le16(cb_iaaddr);
	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
}

static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
	cb->command = cpu_to_le16(cb_dump);
	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
		offsetof(struct mem, dump_buf));
}

static int e100_phy_check_without_mii(struct nic *nic)
{
	u8 phy_type;
	int without_mii;

	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;

	switch (phy_type) {
	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
	case I82503: /* Non-MII PHY; UNTESTED! */
	case S80C24: /* Non-MII PHY; tested and working */
		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
		 * doesn't have a programming interface of any sort.  The
		 * media is sensed automatically based on how the link partner
		 * is configured.  This is, in essence, manual configuration.
		 */
		netif_info(nic, probe, nic->netdev,
			   "found MII-less i82503 or 80c24 or other PHY\n");

		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */

		/* these might be needed for certain MII-less cards...
		 * nic->flags |= ich;
		 * nic->flags |= ich_10h_workaround; */

		without_mii = 1;
		break;
	default:
		without_mii = 0;
		break;
	}
	return without_mii;
}

#define NCONFIG_AUTO_SWITCH	0x0080
#define MII_NSC_CONG		MII_RESV1
#define NSC_CONG_ENABLE		0x0100
#define NSC_CONG_TXREADY	0x0400
#define ADVERTISE_FC_SUPPORTED	0x0400
static int e100_phy_init(struct nic *nic)
{
	struct net_device *netdev = nic->netdev;
	u32 addr;
	u16 bmcr, stat, id_lo, id_hi, cong;

	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
	for (addr = 0; addr < 32; addr++) {
		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
			break;
	}
	if (addr == 32) {
		/* uhoh, no PHY detected: check whether we seem to be some
		 * weird, rare variant which is *known* to not have any MII.
		 * But do this AFTER MII checking only, since this does
		 * lookup of EEPROM values which may easily be unreliable. */
		if (e100_phy_check_without_mii(nic))
			return 0; /* simply return and hope for the best */
		else {
			/* for unknown cases log a fatal error */
			netif_err(nic, hw, nic->netdev,
				  "Failed to locate any known PHY, aborting\n");
			return -EAGAIN;
		}
	} else
		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
			     "phy_addr = %d\n", nic->mii.phy_id);

	/* Get phy ID */
	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
		     "phy ID = 0x%08X\n", nic->phy);

	/* Select the phy and isolate the rest */
	for (addr = 0; addr < 32; addr++) {
		if (addr != nic->mii.phy_id) {
			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
		} else if (nic->phy != phy_82552_v) {
			bmcr = mdio_read(netdev, addr, MII_BMCR);
			mdio_write(netdev, addr, MII_BMCR,
				bmcr & ~BMCR_ISOLATE);
		}
	}
	/*
	 * Workaround for 82552:
	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
	 * other phy_id's) using bmcr value from addr discovery loop above.
	 */
	if (nic->phy == phy_82552_v)
		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
			bmcr & ~BMCR_ISOLATE);

	/* Handle National tx phys */
#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
		/* Disable congestion control */
		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
		cong |= NSC_CONG_TXREADY;
		cong &= ~NSC_CONG_ENABLE;
		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
	}

	if (nic->phy == phy_82552_v) {
		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);

		/* assign special tweaked mdio_ctrl() function */
		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;

		/* Workaround Si not advertising flow-control during autoneg */
		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);

		/* Reset for the above changes to take effect */
		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
		bmcr |= BMCR_RESET;
		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
		/* enable/disable MDI/MDI-X auto-switching. */
		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
	}

	return 0;
}

static int e100_hw_init(struct nic *nic)
{
	int err = 0;

	e100_hw_reset(nic);

	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
	if (!in_interrupt() && (err = e100_self_test(nic)))
		return err;

	if ((err = e100_phy_init(nic)))
		return err;
	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
		return err;
	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
		return err;
	if ((err = e100_load_ucode_wait(nic)))
		return err;
	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
		return err;
	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
		return err;
	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
		nic->dma_addr + offsetof(struct mem, stats))))
		return err;
	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
		return err;

	e100_disable_irq(nic);

	return 0;
}

static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
{
	struct net_device *netdev = nic->netdev;
	struct netdev_hw_addr *ha;
	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);

	cb->command = cpu_to_le16(cb_multi);
	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
	i = 0;
	netdev_for_each_mc_addr(ha, netdev) {
		if (i == count)
			break;
		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
			ETH_ALEN);
	}
}

static void e100_set_multicast_list(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);

	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
		     "mc_count=%d, flags=0x%04X\n",
		     netdev_mc_count(netdev), netdev->flags);

	if (netdev->flags & IFF_PROMISC)
		nic->flags |= promiscuous;
	else
		nic->flags &= ~promiscuous;

	if (netdev->flags & IFF_ALLMULTI ||
		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
		nic->flags |= multicast_all;
	else
		nic->flags &= ~multicast_all;

	e100_exec_cb(nic, NULL, e100_configure);
	e100_exec_cb(nic, NULL, e100_multi);
}

static void e100_update_stats(struct nic *nic)
{
	struct net_device *dev = nic->netdev;
	struct net_device_stats *ns = &dev->stats;
	struct stats *s = &nic->mem->stats;
	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
		&s->complete;

	/* Device's stats reporting may take several microseconds to
	 * complete, so we're always waiting for results of the
	 * previous command. */

	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
		*complete = 0;
		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
		ns->collisions += nic->tx_collisions;
		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
			le32_to_cpu(s->tx_lost_crs);
		nic->rx_short_frame_errors +=
			le32_to_cpu(s->rx_short_frame_errors);
		ns->rx_length_errors = nic->rx_short_frame_errors +
			nic->rx_over_length_errors;
		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
			le32_to_cpu(s->rx_alignment_errors) +
			le32_to_cpu(s->rx_short_frame_errors) +
			le32_to_cpu(s->rx_cdt_errors);
		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
		nic->tx_single_collisions +=
			le32_to_cpu(s->tx_single_collisions);
		nic->tx_multiple_collisions +=
			le32_to_cpu(s->tx_multiple_collisions);
		if (nic->mac >= mac_82558_D101_A4) {
			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
			nic->rx_fc_unsupported +=
				le32_to_cpu(s->fc_rcv_unsupported);
			if (nic->mac >= mac_82559_D101M) {
				nic->tx_tco_frames +=
					le16_to_cpu(s->xmt_tco_frames);
				nic->rx_tco_frames +=
					le16_to_cpu(s->rcv_tco_frames);
			}
		}
	}


	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
			     "exec cuc_dump_reset failed\n");
}

static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
{
	/* Adjust inter-frame-spacing (IFS) between two transmits if
	 * we're getting collisions on a half-duplex connection. */

	if (duplex == DUPLEX_HALF) {
		u32 prev = nic->adaptive_ifs;
		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;

		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
		   (nic->tx_frames > min_frames)) {
			if (nic->adaptive_ifs < 60)
				nic->adaptive_ifs += 5;
		} else if (nic->tx_frames < min_frames) {
			if (nic->adaptive_ifs >= 5)
				nic->adaptive_ifs -= 5;
		}
		if (nic->adaptive_ifs != prev)
			e100_exec_cb(nic, NULL, e100_configure);
	}
}

static void e100_watchdog(unsigned long data)
{
	struct nic *nic = (struct nic *)data;
	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
	u32 speed;

	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
		     "right now = %ld\n", jiffies);

	/* mii library handles link maintenance tasks */

	mii_ethtool_gset(&nic->mii, &cmd);
	speed = ethtool_cmd_speed(&cmd);

	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
			    speed == SPEED_100 ? 100 : 10,
			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
		netdev_info(nic->netdev, "NIC Link is Down\n");
	}

	mii_check_link(&nic->mii);

	/* Software generated interrupt to recover from (rare) Rx
	 * allocation failure.
	 * Unfortunately have to use a spinlock to not re-enable interrupts
	 * accidentally, due to hardware that shares a register between the
	 * interrupt mask bit and the SW Interrupt generation bit */
	spin_lock_irq(&nic->cmd_lock);
	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
	e100_write_flush(nic);
	spin_unlock_irq(&nic->cmd_lock);

	e100_update_stats(nic);
	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);

	if (nic->mac <= mac_82557_D100_C)
		/* Issue a multicast command to workaround a 557 lock up */
		e100_set_multicast_list(nic->netdev);

	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
		nic->flags |= ich_10h_workaround;
	else
		nic->flags &= ~ich_10h_workaround;

	mod_timer(&nic->watchdog,
		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
}

static void e100_xmit_prepare(struct nic *nic, struct cb *cb,
	struct sk_buff *skb)
{
	cb->command = nic->tx_command;

	/*
	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
	 * testing, ie sending frames with bad CRC.
	 */
	if (unlikely(skb->no_fcs))
		cb->command |= __constant_cpu_to_le16(cb_tx_nc);
	else
		cb->command &= ~__constant_cpu_to_le16(cb_tx_nc);

	/* interrupt every 16 packets regardless of delay */
	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
		cb->command |= cpu_to_le16(cb_i);
	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
	cb->u.tcb.tcb_byte_count = 0;
	cb->u.tcb.threshold = nic->tx_threshold;
	cb->u.tcb.tbd_count = 1;
	cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
		skb->data, skb->len, PCI_DMA_TODEVICE));
	/* check for mapping failure? */
	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
}

static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
				   struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	int err;

	if (nic->flags & ich_10h_workaround) {
		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
		   Issue a NOP command followed by a 1us delay before
		   issuing the Tx command. */
		if (e100_exec_cmd(nic, cuc_nop, 0))
			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
				     "exec cuc_nop failed\n");
		udelay(1);
	}

	err = e100_exec_cb(nic, skb, e100_xmit_prepare);

	switch (err) {
	case -ENOSPC:
		/* We queued the skb, but now we're out of space. */
		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
			     "No space for CB\n");
		netif_stop_queue(netdev);
		break;
	case -ENOMEM:
		/* This is a hard error - log it. */
		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
			     "Out of Tx resources, returning skb\n");
		netif_stop_queue(netdev);
		return NETDEV_TX_BUSY;
	}

	return NETDEV_TX_OK;
}

static int e100_tx_clean(struct nic *nic)
{
	struct net_device *dev = nic->netdev;
	struct cb *cb;
	int tx_cleaned = 0;

	spin_lock(&nic->cb_lock);

	/* Clean CBs marked complete */
	for (cb = nic->cb_to_clean;
	    cb->status & cpu_to_le16(cb_complete);
	    cb = nic->cb_to_clean = cb->next) {
		rmb(); /* read skb after status */
		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
			     "cb[%d]->status = 0x%04X\n",
			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
			     cb->status);

		if (likely(cb->skb != NULL)) {
			dev->stats.tx_packets++;
			dev->stats.tx_bytes += cb->skb->len;

			pci_unmap_single(nic->pdev,
				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
				le16_to_cpu(cb->u.tcb.tbd.size),
				PCI_DMA_TODEVICE);
			dev_kfree_skb_any(cb->skb);
			cb->skb = NULL;
			tx_cleaned = 1;
		}
		cb->status = 0;
		nic->cbs_avail++;
	}

	spin_unlock(&nic->cb_lock);

	/* Recover from running out of Tx resources in xmit_frame */
	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
		netif_wake_queue(nic->netdev);

	return tx_cleaned;
}

static void e100_clean_cbs(struct nic *nic)
{
	if (nic->cbs) {
		while (nic->cbs_avail != nic->params.cbs.count) {
			struct cb *cb = nic->cb_to_clean;
			if (cb->skb) {
				pci_unmap_single(nic->pdev,
					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
					le16_to_cpu(cb->u.tcb.tbd.size),
					PCI_DMA_TODEVICE);
				dev_kfree_skb(cb->skb);
			}
			nic->cb_to_clean = nic->cb_to_clean->next;
			nic->cbs_avail++;
		}
		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
		nic->cbs = NULL;
		nic->cbs_avail = 0;
	}
	nic->cuc_cmd = cuc_start;
	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
		nic->cbs;
}

static int e100_alloc_cbs(struct nic *nic)
{
	struct cb *cb;
	unsigned int i, count = nic->params.cbs.count;

	nic->cuc_cmd = cuc_start;
	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
	nic->cbs_avail = 0;

	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
				  &nic->cbs_dma_addr);
	if (!nic->cbs)
		return -ENOMEM;
	memset(nic->cbs, 0, count * sizeof(struct cb));

	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;

		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
		cb->link = cpu_to_le32(nic->cbs_dma_addr +
			((i+1) % count) * sizeof(struct cb));
	}

	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
	nic->cbs_avail = count;

	return 0;
}

static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
{
	if (!nic->rxs) return;
	if (RU_SUSPENDED != nic->ru_running) return;

	/* handle init time starts */
	if (!rx) rx = nic->rxs;

	/* (Re)start RU if suspended or idle and RFA is non-NULL */
	if (rx->skb) {
		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
		nic->ru_running = RU_RUNNING;
	}
}

#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
{
	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
		return -ENOMEM;

	/* Init, and map the RFD. */
	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);

	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
		dev_kfree_skb_any(rx->skb);
		rx->skb = NULL;
		rx->dma_addr = 0;
		return -ENOMEM;
	}

	/* Link the RFD to end of RFA by linking previous RFD to
	 * this one.  We are safe to touch the previous RFD because
	 * it is protected by the before last buffer's el bit being set */
	if (rx->prev->skb) {
		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
	}

	return 0;
}

static int e100_rx_indicate(struct nic *nic, struct rx *rx,
	unsigned int *work_done, unsigned int work_to_do)
{
	struct net_device *dev = nic->netdev;
	struct sk_buff *skb = rx->skb;
	struct rfd *rfd = (struct rfd *)skb->data;
	u16 rfd_status, actual_size;
	u16 fcs_pad = 0;

	if (unlikely(work_done && *work_done >= work_to_do))
		return -EAGAIN;

	/* Need to sync before taking a peek at cb_complete bit */
	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
	rfd_status = le16_to_cpu(rfd->status);

	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
		     "status=0x%04X\n", rfd_status);
	rmb(); /* read size after status bit */

	/* If data isn't ready, nothing to indicate */
	if (unlikely(!(rfd_status & cb_complete))) {
		/* If the next buffer has the el bit, but we think the receiver
		 * is still running, check to see if it really stopped while
		 * we had interrupts off.
		 * This allows for a fast restart without re-enabling
		 * interrupts */
		if ((le16_to_cpu(rfd->command) & cb_el) &&
		    (RU_RUNNING == nic->ru_running))

			if (ioread8(&nic->csr->scb.status) & rus_no_res)
				nic->ru_running = RU_SUSPENDED;
		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
					       sizeof(struct rfd),
					       PCI_DMA_FROMDEVICE);
		return -ENODATA;
	}

	/* Get actual data size */
	if (unlikely(dev->features & NETIF_F_RXFCS))
		fcs_pad = 4;
	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
		actual_size = RFD_BUF_LEN - sizeof(struct rfd);

	/* Get data */
	pci_unmap_single(nic->pdev, rx->dma_addr,
		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);

	/* If this buffer has the el bit, but we think the receiver
	 * is still running, check to see if it really stopped while
	 * we had interrupts off.
	 * This allows for a fast restart without re-enabling interrupts.
	 * This can happen when the RU sees the size change but also sees
	 * the el bit set. */
	if ((le16_to_cpu(rfd->command) & cb_el) &&
	    (RU_RUNNING == nic->ru_running)) {

	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
		nic->ru_running = RU_SUSPENDED;
	}

	/* Pull off the RFD and put the actual data (minus eth hdr) */
	skb_reserve(skb, sizeof(struct rfd));
	skb_put(skb, actual_size);
	skb->protocol = eth_type_trans(skb, nic->netdev);

	/* If we are receiving all frames, then don't bother
	 * checking for errors.
	 */
	if (unlikely(dev->features & NETIF_F_RXALL)) {
		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
			/* Received oversized frame, but keep it. */
			nic->rx_over_length_errors++;
		goto process_skb;
	}

	if (unlikely(!(rfd_status & cb_ok))) {
		/* Don't indicate if hardware indicates errors */
		dev_kfree_skb_any(skb);
	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
		/* Don't indicate oversized frames */
		nic->rx_over_length_errors++;
		dev_kfree_skb_any(skb);
	} else {
process_skb:
		dev->stats.rx_packets++;
		dev->stats.rx_bytes += (actual_size - fcs_pad);
		netif_receive_skb(skb);
		if (work_done)
			(*work_done)++;
	}

	rx->skb = NULL;

	return 0;
}

static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
	unsigned int work_to_do)
{
	struct rx *rx;
	int restart_required = 0, err = 0;
	struct rx *old_before_last_rx, *new_before_last_rx;
	struct rfd *old_before_last_rfd, *new_before_last_rfd;

	/* Indicate newly arrived packets */
	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
		/* Hit quota or no more to clean */
		if (-EAGAIN == err || -ENODATA == err)
			break;
	}


	/* On EAGAIN, hit quota so have more work to do, restart once
	 * cleanup is complete.
	 * Else, are we already rnr? then pay attention!!! this ensures that
	 * the state machine progression never allows a start with a
	 * partially cleaned list, avoiding a race between hardware
	 * and rx_to_clean when in NAPI mode */
	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
		restart_required = 1;

	old_before_last_rx = nic->rx_to_use->prev->prev;
	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;

	/* Alloc new skbs to refill list */
	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
		if (unlikely(e100_rx_alloc_skb(nic, rx)))
			break; /* Better luck next time (see watchdog) */
	}

	new_before_last_rx = nic->rx_to_use->prev->prev;
	if (new_before_last_rx != old_before_last_rx) {
		/* Set the el-bit on the buffer that is before the last buffer.
		 * This lets us update the next pointer on the last buffer
		 * without worrying about hardware touching it.
		 * We set the size to 0 to prevent hardware from touching this
		 * buffer.
		 * When the hardware hits the before last buffer with el-bit
		 * and size of 0, it will RNR interrupt, the RUS will go into
		 * the No Resources state.  It will not complete nor write to
		 * this buffer. */
		new_before_last_rfd =
			(struct rfd *)new_before_last_rx->skb->data;
		new_before_last_rfd->size = 0;
		new_before_last_rfd->command |= cpu_to_le16(cb_el);
		pci_dma_sync_single_for_device(nic->pdev,
			new_before_last_rx->dma_addr, sizeof(struct rfd),
			PCI_DMA_BIDIRECTIONAL);

		/* Now that we have a new stopping point, we can clear the old
		 * stopping point.  We must sync twice to get the proper
		 * ordering on the hardware side of things. */
		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
		pci_dma_sync_single_for_device(nic->pdev,
			old_before_last_rx->dma_addr, sizeof(struct rfd),
			PCI_DMA_BIDIRECTIONAL);
		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
							+ ETH_FCS_LEN);
		pci_dma_sync_single_for_device(nic->pdev,
			old_before_last_rx->dma_addr, sizeof(struct rfd),
			PCI_DMA_BIDIRECTIONAL);
	}

	if (restart_required) {
		// ack the rnr?
		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
		e100_start_receiver(nic, nic->rx_to_clean);
		if (work_done)
			(*work_done)++;
	}
}

static void e100_rx_clean_list(struct nic *nic)
{
	struct rx *rx;
	unsigned int i, count = nic->params.rfds.count;

	nic->ru_running = RU_UNINITIALIZED;

	if (nic->rxs) {
		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
			if (rx->skb) {
				pci_unmap_single(nic->pdev, rx->dma_addr,
					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
				dev_kfree_skb(rx->skb);
			}
		}
		kfree(nic->rxs);
		nic->rxs = NULL;
	}

	nic->rx_to_use = nic->rx_to_clean = NULL;
}

static int e100_rx_alloc_list(struct nic *nic)
{
	struct rx *rx;
	unsigned int i, count = nic->params.rfds.count;
	struct rfd *before_last;

	nic->rx_to_use = nic->rx_to_clean = NULL;
	nic->ru_running = RU_UNINITIALIZED;

	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
		return -ENOMEM;

	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
		if (e100_rx_alloc_skb(nic, rx)) {
			e100_rx_clean_list(nic);
			return -ENOMEM;
		}
	}
	/* Set the el-bit on the buffer that is before the last buffer.
	 * This lets us update the next pointer on the last buffer without
	 * worrying about hardware touching it.
	 * We set the size to 0 to prevent hardware from touching this buffer.
	 * When the hardware hits the before last buffer with el-bit and size
	 * of 0, it will RNR interrupt, the RU will go into the No Resources
	 * state.  It will not complete nor write to this buffer. */
	rx = nic->rxs->prev->prev;
	before_last = (struct rfd *)rx->skb->data;
	before_last->command |= cpu_to_le16(cb_el);
	before_last->size = 0;
	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);

	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
	nic->ru_running = RU_SUSPENDED;

	return 0;
}

static irqreturn_t e100_intr(int irq, void *dev_id)
{
	struct net_device *netdev = dev_id;
	struct nic *nic = netdev_priv(netdev);
	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);

	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
		     "stat_ack = 0x%02X\n", stat_ack);

	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
		return IRQ_NONE;

	/* Ack interrupt(s) */
	iowrite8(stat_ack, &nic->csr->scb.stat_ack);

	/* We hit Receive No Resource (RNR); restart RU after cleaning */
	if (stat_ack & stat_ack_rnr)
		nic->ru_running = RU_SUSPENDED;

	if (likely(napi_schedule_prep(&nic->napi))) {
		e100_disable_irq(nic);
		__napi_schedule(&nic->napi);
	}

	return IRQ_HANDLED;
}

static int e100_poll(struct napi_struct *napi, int budget)
{
	struct nic *nic = container_of(napi, struct nic, napi);
	unsigned int work_done = 0;

	e100_rx_clean(nic, &work_done, budget);
	e100_tx_clean(nic);

	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
		napi_complete(napi);
		e100_enable_irq(nic);
	}

	return work_done;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void e100_netpoll(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);

	e100_disable_irq(nic);
	e100_intr(nic->pdev->irq, netdev);
	e100_tx_clean(nic);
	e100_enable_irq(nic);
}
#endif

static int e100_set_mac_address(struct net_device *netdev, void *p)
{
	struct nic *nic = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	e100_exec_cb(nic, NULL, e100_setup_iaaddr);

	return 0;
}

static int e100_change_mtu(struct net_device *netdev, int new_mtu)
{
	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
		return -EINVAL;
	netdev->mtu = new_mtu;
	return 0;
}

static int e100_asf(struct nic *nic)
{
	/* ASF can be enabled from eeprom */
	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
}

static int e100_up(struct nic *nic)
{
	int err;

	if ((err = e100_rx_alloc_list(nic)))
		return err;
	if ((err = e100_alloc_cbs(nic)))
		goto err_rx_clean_list;
	if ((err = e100_hw_init(nic)))
		goto err_clean_cbs;
	e100_set_multicast_list(nic->netdev);
	e100_start_receiver(nic, NULL);
	mod_timer(&nic->watchdog, jiffies);
	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
		nic->netdev->name, nic->netdev)))
		goto err_no_irq;
	netif_wake_queue(nic->netdev);
	napi_enable(&nic->napi);
	/* enable ints _after_ enabling poll, preventing a race between
	 * disable ints+schedule */
	e100_enable_irq(nic);
	return 0;

err_no_irq:
	del_timer_sync(&nic->watchdog);
err_clean_cbs:
	e100_clean_cbs(nic);
err_rx_clean_list:
	e100_rx_clean_list(nic);
	return err;
}

static void e100_down(struct nic *nic)
{
	/* wait here for poll to complete */
	napi_disable(&nic->napi);
	netif_stop_queue(nic->netdev);
	e100_hw_reset(nic);
	free_irq(nic->pdev->irq, nic->netdev);
	del_timer_sync(&nic->watchdog);
	netif_carrier_off(nic->netdev);
	e100_clean_cbs(nic);
	e100_rx_clean_list(nic);
}

static void e100_tx_timeout(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);

	/* Reset outside of interrupt context, to avoid request_irq
	 * in interrupt context */
	schedule_work(&nic->tx_timeout_task);
}

static void e100_tx_timeout_task(struct work_struct *work)
{
	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
	struct net_device *netdev = nic->netdev;

	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));

	rtnl_lock();
	if (netif_running(netdev)) {
		e100_down(netdev_priv(netdev));
		e100_up(netdev_priv(netdev));
	}
	rtnl_unlock();
}

static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
{
	int err;
	struct sk_buff *skb;

	/* Use driver resources to perform internal MAC or PHY
	 * loopback test.  A single packet is prepared and transmitted
	 * in loopback mode, and the test passes if the received
	 * packet compares byte-for-byte to the transmitted packet. */

	if ((err = e100_rx_alloc_list(nic)))
		return err;
	if ((err = e100_alloc_cbs(nic)))
		goto err_clean_rx;

	/* ICH PHY loopback is broken so do MAC loopback instead */
	if (nic->flags & ich && loopback_mode == lb_phy)
		loopback_mode = lb_mac;

	nic->loopback = loopback_mode;
	if ((err = e100_hw_init(nic)))
		goto err_loopback_none;

	if (loopback_mode == lb_phy)
		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
			BMCR_LOOPBACK);

	e100_start_receiver(nic, NULL);

	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
		err = -ENOMEM;
		goto err_loopback_none;
	}
	skb_put(skb, ETH_DATA_LEN);
	memset(skb->data, 0xFF, ETH_DATA_LEN);
	e100_xmit_frame(skb, nic->netdev);

	msleep(10);

	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);

	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
	   skb->data, ETH_DATA_LEN))
		err = -EAGAIN;

err_loopback_none:
	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
	nic->loopback = lb_none;
	e100_clean_cbs(nic);
	e100_hw_reset(nic);
err_clean_rx:
	e100_rx_clean_list(nic);
	return err;
}

#define MII_LED_CONTROL	0x1B
#define E100_82552_LED_OVERRIDE 0x19
#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */

static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
	struct nic *nic = netdev_priv(netdev);
	return mii_ethtool_gset(&nic->mii, cmd);
}

static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
{
	struct nic *nic = netdev_priv(netdev);
	int err;

	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
	err = mii_ethtool_sset(&nic->mii, cmd);
	e100_exec_cb(nic, NULL, e100_configure);

	return err;
}

static void e100_get_drvinfo(struct net_device *netdev,
	struct ethtool_drvinfo *info)
{
	struct nic *nic = netdev_priv(netdev);
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, pci_name(nic->pdev),
		sizeof(info->bus_info));
}

#define E100_PHY_REGS 0x1C
static int e100_get_regs_len(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
}

static void e100_get_regs(struct net_device *netdev,
	struct ethtool_regs *regs, void *p)
{
	struct nic *nic = netdev_priv(netdev);
	u32 *buff = p;
	int i;

	regs->version = (1 << 24) | nic->pdev->revision;
	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
		ioread8(&nic->csr->scb.cmd_lo) << 16 |
		ioread16(&nic->csr->scb.status);
	for (i = E100_PHY_REGS; i >= 0; i--)
		buff[1 + E100_PHY_REGS - i] =
			mdio_read(netdev, nic->mii.phy_id, i);
	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
	e100_exec_cb(nic, NULL, e100_dump);
	msleep(10);
	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
		sizeof(nic->mem->dump_buf));
}

static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
	struct nic *nic = netdev_priv(netdev);
	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
}

static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
	struct nic *nic = netdev_priv(netdev);

	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
	    !device_can_wakeup(&nic->pdev->dev))
		return -EOPNOTSUPP;

	if (wol->wolopts)
		nic->flags |= wol_magic;
	else
		nic->flags &= ~wol_magic;

	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);

	e100_exec_cb(nic, NULL, e100_configure);

	return 0;
}

static u32 e100_get_msglevel(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	return nic->msg_enable;
}

static void e100_set_msglevel(struct net_device *netdev, u32 value)
{
	struct nic *nic = netdev_priv(netdev);
	nic->msg_enable = value;
}

static int e100_nway_reset(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	return mii_nway_restart(&nic->mii);
}

static u32 e100_get_link(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	return mii_link_ok(&nic->mii);
}

static int e100_get_eeprom_len(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	return nic->eeprom_wc << 1;
}

#define E100_EEPROM_MAGIC	0x1234
static int e100_get_eeprom(struct net_device *netdev,
	struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct nic *nic = netdev_priv(netdev);

	eeprom->magic = E100_EEPROM_MAGIC;
	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);

	return 0;
}

static int e100_set_eeprom(struct net_device *netdev,
	struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct nic *nic = netdev_priv(netdev);

	if (eeprom->magic != E100_EEPROM_MAGIC)
		return -EINVAL;

	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);

	return e100_eeprom_save(nic, eeprom->offset >> 1,
		(eeprom->len >> 1) + 1);
}

static void e100_get_ringparam(struct net_device *netdev,
	struct ethtool_ringparam *ring)
{
	struct nic *nic = netdev_priv(netdev);
	struct param_range *rfds = &nic->params.rfds;
	struct param_range *cbs = &nic->params.cbs;

	ring->rx_max_pending = rfds->max;
	ring->tx_max_pending = cbs->max;
	ring->rx_pending = rfds->count;
	ring->tx_pending = cbs->count;
}

static int e100_set_ringparam(struct net_device *netdev,
	struct ethtool_ringparam *ring)
{
	struct nic *nic = netdev_priv(netdev);
	struct param_range *rfds = &nic->params.rfds;
	struct param_range *cbs = &nic->params.cbs;

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	if (netif_running(netdev))
		e100_down(nic);
	rfds->count = max(ring->rx_pending, rfds->min);
	rfds->count = min(rfds->count, rfds->max);
	cbs->count = max(ring->tx_pending, cbs->min);
	cbs->count = min(cbs->count, cbs->max);
	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
		   rfds->count, cbs->count);
	if (netif_running(netdev))
		e100_up(nic);

	return 0;
}

static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
	"Link test     (on/offline)",
	"Eeprom test   (on/offline)",
	"Self test        (offline)",
	"Mac loopback     (offline)",
	"Phy loopback     (offline)",
};
#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)

static void e100_diag_test(struct net_device *netdev,
	struct ethtool_test *test, u64 *data)
{
	struct ethtool_cmd cmd;
	struct nic *nic = netdev_priv(netdev);
	int i, err;

	memset(data, 0, E100_TEST_LEN * sizeof(u64));
	data[0] = !mii_link_ok(&nic->mii);
	data[1] = e100_eeprom_load(nic);
	if (test->flags & ETH_TEST_FL_OFFLINE) {

		/* save speed, duplex & autoneg settings */
		err = mii_ethtool_gset(&nic->mii, &cmd);

		if (netif_running(netdev))
			e100_down(nic);
		data[2] = e100_self_test(nic);
		data[3] = e100_loopback_test(nic, lb_mac);
		data[4] = e100_loopback_test(nic, lb_phy);

		/* restore speed, duplex & autoneg settings */
		err = mii_ethtool_sset(&nic->mii, &cmd);

		if (netif_running(netdev))
			e100_up(nic);
	}
	for (i = 0; i < E100_TEST_LEN; i++)
		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;

	msleep_interruptible(4 * 1000);
}

static int e100_set_phys_id(struct net_device *netdev,
			    enum ethtool_phys_id_state state)
{
	struct nic *nic = netdev_priv(netdev);
	enum led_state {
		led_on     = 0x01,
		led_off    = 0x04,
		led_on_559 = 0x05,
		led_on_557 = 0x07,
	};
	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
		MII_LED_CONTROL;
	u16 leds = 0;

	switch (state) {
	case ETHTOOL_ID_ACTIVE:
		return 2;

	case ETHTOOL_ID_ON:
		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
		break;

	case ETHTOOL_ID_OFF:
		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
		break;

	case ETHTOOL_ID_INACTIVE:
		break;
	}

	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
	return 0;
}

static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
	"tx_heartbeat_errors", "tx_window_errors",
	/* device-specific stats */
	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
	"tx_flow_control_pause", "rx_flow_control_pause",
	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
	"rx_short_frame_errors", "rx_over_length_errors",
};
#define E100_NET_STATS_LEN	21
#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)

static int e100_get_sset_count(struct net_device *netdev, int sset)
{
	switch (sset) {
	case ETH_SS_TEST:
		return E100_TEST_LEN;
	case ETH_SS_STATS:
		return E100_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

static void e100_get_ethtool_stats(struct net_device *netdev,
	struct ethtool_stats *stats, u64 *data)
{
	struct nic *nic = netdev_priv(netdev);
	int i;

	for (i = 0; i < E100_NET_STATS_LEN; i++)
		data[i] = ((unsigned long *)&netdev->stats)[i];

	data[i++] = nic->tx_deferred;
	data[i++] = nic->tx_single_collisions;
	data[i++] = nic->tx_multiple_collisions;
	data[i++] = nic->tx_fc_pause;
	data[i++] = nic->rx_fc_pause;
	data[i++] = nic->rx_fc_unsupported;
	data[i++] = nic->tx_tco_frames;
	data[i++] = nic->rx_tco_frames;
	data[i++] = nic->rx_short_frame_errors;
	data[i++] = nic->rx_over_length_errors;
}

static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
	switch (stringset) {
	case ETH_SS_TEST:
		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
		break;
	case ETH_SS_STATS:
		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
		break;
	}
}

static const struct ethtool_ops e100_ethtool_ops = {
	.get_settings		= e100_get_settings,
	.set_settings		= e100_set_settings,
	.get_drvinfo		= e100_get_drvinfo,
	.get_regs_len		= e100_get_regs_len,
	.get_regs		= e100_get_regs,
	.get_wol		= e100_get_wol,
	.set_wol		= e100_set_wol,
	.get_msglevel		= e100_get_msglevel,
	.set_msglevel		= e100_set_msglevel,
	.nway_reset		= e100_nway_reset,
	.get_link		= e100_get_link,
	.get_eeprom_len		= e100_get_eeprom_len,
	.get_eeprom		= e100_get_eeprom,
	.set_eeprom		= e100_set_eeprom,
	.get_ringparam		= e100_get_ringparam,
	.set_ringparam		= e100_set_ringparam,
	.self_test		= e100_diag_test,
	.get_strings		= e100_get_strings,
	.set_phys_id		= e100_set_phys_id,
	.get_ethtool_stats	= e100_get_ethtool_stats,
	.get_sset_count		= e100_get_sset_count,
};

static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct nic *nic = netdev_priv(netdev);

	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
}

static int e100_alloc(struct nic *nic)
{
	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
		&nic->dma_addr);
	return nic->mem ? 0 : -ENOMEM;
}

static void e100_free(struct nic *nic)
{
	if (nic->mem) {
		pci_free_consistent(nic->pdev, sizeof(struct mem),
			nic->mem, nic->dma_addr);
		nic->mem = NULL;
	}
}

static int e100_open(struct net_device *netdev)
{
	struct nic *nic = netdev_priv(netdev);
	int err = 0;

	netif_carrier_off(netdev);
	if ((err = e100_up(nic)))
		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
	return err;
}

static int e100_close(struct net_device *netdev)
{
	e100_down(netdev_priv(netdev));
	return 0;
}

static int e100_set_features(struct net_device *netdev,
			     netdev_features_t features)
{
	struct nic *nic = netdev_priv(netdev);
	netdev_features_t changed = features ^ netdev->features;

	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
		return 0;

	netdev->features = features;
	e100_exec_cb(nic, NULL, e100_configure);
	return 0;
}

static const struct net_device_ops e100_netdev_ops = {
	.ndo_open		= e100_open,
	.ndo_stop		= e100_close,
	.ndo_start_xmit		= e100_xmit_frame,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_rx_mode	= e100_set_multicast_list,
	.ndo_set_mac_address	= e100_set_mac_address,
	.ndo_change_mtu		= e100_change_mtu,
	.ndo_do_ioctl		= e100_do_ioctl,
	.ndo_tx_timeout		= e100_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e100_netpoll,
#endif
	.ndo_set_features	= e100_set_features,
};

static int __devinit e100_probe(struct pci_dev *pdev,
	const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct nic *nic;
	int err;

	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
		return -ENOMEM;

	netdev->hw_features |= NETIF_F_RXFCS;
	netdev->priv_flags |= IFF_SUPP_NOFCS;
	netdev->hw_features |= NETIF_F_RXALL;

	netdev->netdev_ops = &e100_netdev_ops;
	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	nic = netdev_priv(netdev);
	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
	nic->netdev = netdev;
	nic->pdev = pdev;
	nic->msg_enable = (1 << debug) - 1;
	nic->mdio_ctrl = mdio_ctrl_hw;
	pci_set_drvdata(pdev, netdev);

	if ((err = pci_enable_device(pdev))) {
		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
		goto err_out_free_dev;
	}

	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
		err = -ENODEV;
		goto err_out_disable_pdev;
	}

	if ((err = pci_request_regions(pdev, DRV_NAME))) {
		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
		goto err_out_disable_pdev;
	}

	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
		goto err_out_free_res;
	}

	SET_NETDEV_DEV(netdev, &pdev->dev);

	if (use_io)
		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");

	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
	if (!nic->csr) {
		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
		err = -ENOMEM;
		goto err_out_free_res;
	}

	if (ent->driver_data)
		nic->flags |= ich;
	else
		nic->flags &= ~ich;

	e100_get_defaults(nic);

	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
	if (nic->mac < mac_82558_D101_A4)
		netdev->features |= NETIF_F_VLAN_CHALLENGED;

	/* locks must be initialized before calling hw_reset */
	spin_lock_init(&nic->cb_lock);
	spin_lock_init(&nic->cmd_lock);
	spin_lock_init(&nic->mdio_lock);

	/* Reset the device before pci_set_master() in case device is in some
	 * funky state and has an interrupt pending - hint: we don't have the
	 * interrupt handler registered yet. */
	e100_hw_reset(nic);

	pci_set_master(pdev);

	init_timer(&nic->watchdog);
	nic->watchdog.function = e100_watchdog;
	nic->watchdog.data = (unsigned long)nic;

	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);

	if ((err = e100_alloc(nic))) {
		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
		goto err_out_iounmap;
	}

	if ((err = e100_eeprom_load(nic)))
		goto err_out_free;

	e100_phy_init(nic);

	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
	memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN);
	if (!is_valid_ether_addr(netdev->perm_addr)) {
		if (!eeprom_bad_csum_allow) {
			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
			err = -EAGAIN;
			goto err_out_free;
		} else {
			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
		}
	}

	/* Wol magic packet can be enabled from eeprom */
	if ((nic->mac >= mac_82558_D101_A4) &&
	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
		nic->flags |= wol_magic;
		device_set_wakeup_enable(&pdev->dev, true);
	}

	/* ack any pending wake events, disable PME */
	pci_pme_active(pdev, false);

	strcpy(netdev->name, "eth%d");
	if ((err = register_netdev(netdev))) {
		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
		goto err_out_free;
	}
	nic->cbs_pool = pci_pool_create(netdev->name,
			   nic->pdev,
			   nic->params.cbs.max * sizeof(struct cb),
			   sizeof(u32),
			   0);
	netif_info(nic, probe, nic->netdev,
		   "addr 0x%llx, irq %d, MAC addr %pM\n",
		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
		   pdev->irq, netdev->dev_addr);

	return 0;

err_out_free:
	e100_free(nic);
err_out_iounmap:
	pci_iounmap(pdev, nic->csr);
err_out_free_res:
	pci_release_regions(pdev);
err_out_disable_pdev:
	pci_disable_device(pdev);
err_out_free_dev:
	pci_set_drvdata(pdev, NULL);
	free_netdev(netdev);
	return err;
}

static void __devexit e100_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);

	if (netdev) {
		struct nic *nic = netdev_priv(netdev);
		unregister_netdev(netdev);
		e100_free(nic);
		pci_iounmap(pdev, nic->csr);
		pci_pool_destroy(nic->cbs_pool);
		free_netdev(netdev);
		pci_release_regions(pdev);
		pci_disable_device(pdev);
		pci_set_drvdata(pdev, NULL);
	}
}

#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct nic *nic = netdev_priv(netdev);

	if (netif_running(netdev))
		e100_down(nic);
	netif_device_detach(netdev);

	pci_save_state(pdev);

	if ((nic->flags & wol_magic) | e100_asf(nic)) {
		/* enable reverse auto-negotiation */
		if (nic->phy == phy_82552_v) {
			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
			                           E100_82552_SMARTSPEED);

			mdio_write(netdev, nic->mii.phy_id,
			           E100_82552_SMARTSPEED, smartspeed |
			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
		}
		*enable_wake = true;
	} else {
		*enable_wake = false;
	}

	pci_disable_device(pdev);
}

static int __e100_power_off(struct pci_dev *pdev, bool wake)
{
	if (wake)
		return pci_prepare_to_sleep(pdev);

	pci_wake_from_d3(pdev, false);
	pci_set_power_state(pdev, PCI_D3hot);

	return 0;
}

#ifdef CONFIG_PM
static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
{
	bool wake;
	__e100_shutdown(pdev, &wake);
	return __e100_power_off(pdev, wake);
}

static int e100_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct nic *nic = netdev_priv(netdev);

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	/* ack any pending wake events, disable PME */
	pci_enable_wake(pdev, 0, 0);

	/* disable reverse auto-negotiation */
	if (nic->phy == phy_82552_v) {
		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
		                           E100_82552_SMARTSPEED);

		mdio_write(netdev, nic->mii.phy_id,
		           E100_82552_SMARTSPEED,
		           smartspeed & ~(E100_82552_REV_ANEG));
	}

	netif_device_attach(netdev);
	if (netif_running(netdev))
		e100_up(nic);

	return 0;
}
#endif /* CONFIG_PM */

static void e100_shutdown(struct pci_dev *pdev)
{
	bool wake;
	__e100_shutdown(pdev, &wake);
	if (system_state == SYSTEM_POWER_OFF)
		__e100_power_off(pdev, wake);
}

/* ------------------ PCI Error Recovery infrastructure  -------------- */
/**
 * e100_io_error_detected - called when PCI error is detected.
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 */
static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct nic *nic = netdev_priv(netdev);

	netif_device_detach(netdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	if (netif_running(netdev))
		e100_down(nic);
	pci_disable_device(pdev);

	/* Request a slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e100_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch.
 */
static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct nic *nic = netdev_priv(netdev);

	if (pci_enable_device(pdev)) {
		pr_err("Cannot re-enable PCI device after reset\n");
		return PCI_ERS_RESULT_DISCONNECT;
	}
	pci_set_master(pdev);

	/* Only one device per card can do a reset */
	if (0 != PCI_FUNC(pdev->devfn))
		return PCI_ERS_RESULT_RECOVERED;
	e100_hw_reset(nic);
	e100_phy_init(nic);

	return PCI_ERS_RESULT_RECOVERED;
}

/**
 * e100_io_resume - resume normal operations
 * @pdev: Pointer to PCI device
 *
 * Resume normal operations after an error recovery
 * sequence has been completed.
 */
static void e100_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct nic *nic = netdev_priv(netdev);

	/* ack any pending wake events, disable PME */
	pci_enable_wake(pdev, 0, 0);

	netif_device_attach(netdev);
	if (netif_running(netdev)) {
		e100_open(netdev);
		mod_timer(&nic->watchdog, jiffies);
	}
}

static struct pci_error_handlers e100_err_handler = {
	.error_detected = e100_io_error_detected,
	.slot_reset = e100_io_slot_reset,
	.resume = e100_io_resume,
};

static struct pci_driver e100_driver = {
	.name =         DRV_NAME,
	.id_table =     e100_id_table,
	.probe =        e100_probe,
	.remove =       __devexit_p(e100_remove),
#ifdef CONFIG_PM
	/* Power Management hooks */
	.suspend =      e100_suspend,
	.resume =       e100_resume,
#endif
	.shutdown =     e100_shutdown,
	.err_handler = &e100_err_handler,
};

static int __init e100_init_module(void)
{
	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
		pr_info("%s\n", DRV_COPYRIGHT);
	}
	return pci_register_driver(&e100_driver);
}

static void __exit e100_cleanup_module(void)
{
	pci_unregister_driver(&e100_driver);
}

module_init(e100_init_module);
module_exit(e100_cleanup_module);