aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/au1000_eth.c
blob: 85be0e6aa1f34d5bc5e752495c453cb2b487ff09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
/*
 *
 * Alchemy Au1x00 ethernet driver
 *
 * Copyright 2001-2003, 2006 MontaVista Software Inc.
 * Copyright 2002 TimeSys Corp.
 * Added ethtool/mii-tool support,
 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 
 * or riemer@riemer-nt.de: fixed the link beat detection with 
 * ioctls (SIOCGMIIPHY)
 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
 *  converted to use linux-2.6.x's PHY framework
 *
 * Author: MontaVista Software, Inc.
 *         	ppopov@mvista.com or source@mvista.com
 *
 * ########################################################################
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 *
 * ########################################################################
 *
 * 
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/ioport.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <linux/phy.h>
#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/processor.h>

#include <asm/mach-au1x00/au1000.h>
#include <asm/cpu.h>
#include "au1000_eth.h"

#ifdef AU1000_ETH_DEBUG
static int au1000_debug = 5;
#else
static int au1000_debug = 3;
#endif

#define DRV_NAME	"au1000_eth"
#define DRV_VERSION	"1.6"
#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
#define DRV_DESC	"Au1xxx on-chip Ethernet driver"

MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");

// prototypes
static void hard_stop(struct net_device *);
static void enable_rx_tx(struct net_device *dev);
static struct net_device * au1000_probe(int port_num);
static int au1000_init(struct net_device *);
static int au1000_open(struct net_device *);
static int au1000_close(struct net_device *);
static int au1000_tx(struct sk_buff *, struct net_device *);
static int au1000_rx(struct net_device *);
static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
static void au1000_tx_timeout(struct net_device *);
static void set_rx_mode(struct net_device *);
static struct net_device_stats *au1000_get_stats(struct net_device *);
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, u16);
static void au1000_adjust_link(struct net_device *);
static void enable_mac(struct net_device *, int);

// externs
extern int get_ethernet_addr(char *ethernet_addr);
extern void str2eaddr(unsigned char *ea, unsigned char *str);
extern char * __init prom_getcmdline(void);

/*
 * Theory of operation
 *
 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 
 * There are four receive and four transmit descriptors.  These 
 * descriptors are not in memory; rather, they are just a set of 
 * hardware registers.
 *
 * Since the Au1000 has a coherent data cache, the receive and
 * transmit buffers are allocated from the KSEG0 segment. The 
 * hardware registers, however, are still mapped at KSEG1 to
 * make sure there's no out-of-order writes, and that all writes
 * complete immediately.
 */

/* These addresses are only used if yamon doesn't tell us what
 * the mac address is, and the mac address is not passed on the
 * command line.
 */
static unsigned char au1000_mac_addr[6] __devinitdata = { 
	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
};

struct au1000_private *au_macs[NUM_ETH_INTERFACES];

/*
 * board-specific configurations
 *
 * PHY detection algorithm
 *
 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
 * autodetected:
 *
 * mii_probe() first searches the current MAC's MII bus for a PHY,
 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
 * defined) PHY address not already claimed by another netdev.
 *
 * If nothing was found that way when searching for the 2nd ethernet
 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
 * the first MII bus is searched as well for an unclaimed PHY; this is
 * needed in case of a dual-PHY accessible only through the MAC0's MII
 * bus.
 *
 * Finally, if no PHY is found, then the corresponding ethernet
 * controller is not registered to the network subsystem.
 */

/* autodetection defaults */
#undef  AU1XXX_PHY_SEARCH_HIGHEST_ADDR
#define AU1XXX_PHY1_SEARCH_ON_MAC0

/* static PHY setup
 *
 * most boards PHY setup should be detectable properly with the
 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 * you have a switch attached, or want to use the PHY's interrupt
 * notification capabilities) you can provide a static PHY
 * configuration here
 *
 * IRQs may only be set, if a PHY address was configured
 * If a PHY address is given, also a bus id is required to be set
 *
 * ps: make sure the used irqs are configured properly in the board
 * specific irq-map
 */

#if defined(CONFIG_MIPS_BOSPORUS)
/*
 * Micrel/Kendin 5 port switch attached to MAC0,
 * MAC0 is associated with PHY address 5 (== WAN port)
 * MAC1 is not associated with any PHY, since it's connected directly
 * to the switch.
 * no interrupts are used
 */
# define AU1XXX_PHY_STATIC_CONFIG

# define AU1XXX_PHY0_ADDR  5
# define AU1XXX_PHY0_BUSID 0
#  undef AU1XXX_PHY0_IRQ

#  undef AU1XXX_PHY1_ADDR
#  undef AU1XXX_PHY1_BUSID
#  undef AU1XXX_PHY1_IRQ
#endif

#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
#endif

/*
 * MII operations
 */
static int mdio_read(struct net_device *dev, int phy_addr, int reg)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
	u32 timedout = 20;
	u32 mii_control;

	while (*mii_control_reg & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: read_MII busy timeout!!\n", 
					dev->name);
			return -1;
		}
	}

	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;

	*mii_control_reg = mii_control;

	timedout = 20;
	while (*mii_control_reg & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: mdio_read busy timeout!!\n", 
					dev->name);
			return -1;
		}
	}
	return (int)*mii_data_reg;
}

static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile u32 *const mii_control_reg = &aup->mac->mii_control;
	volatile u32 *const mii_data_reg = &aup->mac->mii_data;
	u32 timedout = 20;
	u32 mii_control;

	while (*mii_control_reg & MAC_MII_BUSY) {
		mdelay(1);
		if (--timedout == 0) {
			printk(KERN_ERR "%s: mdio_write busy timeout!!\n", 
					dev->name);
			return;
		}
	}

	mii_control = MAC_SET_MII_SELECT_REG(reg) | 
		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;

	*mii_data_reg = value;
	*mii_control_reg = mii_control;
}

static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
{
	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
	struct net_device *const dev = bus->priv;

	enable_mac(dev, 0); /* make sure the MAC associated with this
			     * mii_bus is enabled */
	return mdio_read(dev, phy_addr, regnum);
}

static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
			 u16 value)
{
	struct net_device *const dev = bus->priv;

	enable_mac(dev, 0); /* make sure the MAC associated with this
			     * mii_bus is enabled */
	mdio_write(dev, phy_addr, regnum, value);
	return 0;
}

static int mdiobus_reset(struct mii_bus *bus)
{
	struct net_device *const dev = bus->priv;

	enable_mac(dev, 0); /* make sure the MAC associated with this
			     * mii_bus is enabled */
	return 0;
}

static int mii_probe (struct net_device *dev)
{
	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
	struct phy_device *phydev = NULL;

#if defined(AU1XXX_PHY_STATIC_CONFIG)
	BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);

	if(aup->mac_id == 0) { /* get PHY0 */
# if defined(AU1XXX_PHY0_ADDR)
		phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
# else
		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
			dev->name);
		return 0;
# endif /* defined(AU1XXX_PHY0_ADDR) */
	} else if (aup->mac_id == 1) { /* get PHY1 */
# if defined(AU1XXX_PHY1_ADDR)
		phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
# else
		printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
			dev->name);
		return 0;
# endif /* defined(AU1XXX_PHY1_ADDR) */
	}

#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
	int phy_addr;

	/* find the first (lowest address) PHY on the current MAC's MII bus */
	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
		if (aup->mii_bus.phy_map[phy_addr]) {
			phydev = aup->mii_bus.phy_map[phy_addr];
# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
			break; /* break out with first one found */
# endif
		}

# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
	/* try harder to find a PHY */
	if (!phydev && (aup->mac_id == 1)) {
		/* no PHY found, maybe we have a dual PHY? */
		printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
			"let's see if it's attached to MAC0...\n");

		BUG_ON(!au_macs[0]);

		/* find the first (lowest address) non-attached PHY on
		 * the MAC0 MII bus */
		for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
			struct phy_device *const tmp_phydev =
				au_macs[0]->mii_bus.phy_map[phy_addr];

			if (!tmp_phydev)
				continue; /* no PHY here... */

			if (tmp_phydev->attached_dev)
				continue; /* already claimed by MAC0 */

			phydev = tmp_phydev;
			break; /* found it */
		}
	}
# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */

#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
	if (!phydev) {
		printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
		return -1;
	}

	/* now we are supposed to have a proper phydev, to attach to... */
	BUG_ON(!phydev);
	BUG_ON(phydev->attached_dev);

	phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0);

	if (IS_ERR(phydev)) {
		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

	/* mask with MAC supported features */
	phydev->supported &= (SUPPORTED_10baseT_Half
			      | SUPPORTED_10baseT_Full
			      | SUPPORTED_100baseT_Half
			      | SUPPORTED_100baseT_Full
			      | SUPPORTED_Autoneg
			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
			      | SUPPORTED_MII
			      | SUPPORTED_TP);

	phydev->advertising = phydev->supported;

	aup->old_link = 0;
	aup->old_speed = 0;
	aup->old_duplex = -1;
	aup->phy_dev = phydev;

	printk(KERN_INFO "%s: attached PHY driver [%s] "
	       "(mii_bus:phy_addr=%s, irq=%d)\n",
	       dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);

	return 0;
}


/*
 * Buffer allocation/deallocation routines. The buffer descriptor returned
 * has the virtual and dma address of a buffer suitable for 
 * both, receive and transmit operations.
 */
static db_dest_t *GetFreeDB(struct au1000_private *aup)
{
	db_dest_t *pDB;
	pDB = aup->pDBfree;

	if (pDB) {
		aup->pDBfree = pDB->pnext;
	}
	return pDB;
}

void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
{
	db_dest_t *pDBfree = aup->pDBfree;
	if (pDBfree)
		pDBfree->pnext = pDB;
	aup->pDBfree = pDB;
}

static void enable_rx_tx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);

	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
	au_sync_delay(10);
}

static void hard_stop(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: hard stop\n", dev->name);

	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
	au_sync_delay(10);
}

static void enable_mac(struct net_device *dev, int force_reset)
{
	unsigned long flags;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	spin_lock_irqsave(&aup->lock, flags);

	if(force_reset || (!aup->mac_enabled)) {
		*aup->enable = MAC_EN_CLOCK_ENABLE;
		au_sync_delay(2);
		*aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
				| MAC_EN_CLOCK_ENABLE);
		au_sync_delay(2);

		aup->mac_enabled = 1;
	}

	spin_unlock_irqrestore(&aup->lock, flags);
}

static void reset_mac_unlocked(struct net_device *dev)
{
	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
	int i;

	hard_stop(dev);

	*aup->enable = MAC_EN_CLOCK_ENABLE;
	au_sync_delay(2);
	*aup->enable = 0;
	au_sync_delay(2);

	aup->tx_full = 0;
	for (i = 0; i < NUM_RX_DMA; i++) {
		/* reset control bits */
		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		/* reset control bits */
		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
	}

	aup->mac_enabled = 0;

}

static void reset_mac(struct net_device *dev)
{
	struct au1000_private *const aup = (struct au1000_private *) dev->priv;
	unsigned long flags;

	if (au1000_debug > 4)
		printk(KERN_INFO "%s: reset mac, aup %x\n",
		       dev->name, (unsigned)aup);

	spin_lock_irqsave(&aup->lock, flags);

	reset_mac_unlocked (dev);

	spin_unlock_irqrestore(&aup->lock, flags);
}

/* 
 * Setup the receive and transmit "rings".  These pointers are the addresses
 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 * these are not descriptors sitting in memory.
 */
static void 
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
{
	int i;

	for (i = 0; i < NUM_RX_DMA; i++) {
		aup->rx_dma_ring[i] = 
			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		aup->tx_dma_ring[i] = 
			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
	}
}

static struct {
	u32 base_addr;
	u32 macen_addr;
	int irq;
	struct net_device *dev;
} iflist[2] = {
#ifdef CONFIG_SOC_AU1000
	{AU1000_ETH0_BASE, AU1000_MAC0_ENABLE, AU1000_MAC0_DMA_INT},
	{AU1000_ETH1_BASE, AU1000_MAC1_ENABLE, AU1000_MAC1_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1100
	{AU1100_ETH0_BASE, AU1100_MAC0_ENABLE, AU1100_MAC0_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1500
	{AU1500_ETH0_BASE, AU1500_MAC0_ENABLE, AU1500_MAC0_DMA_INT},
	{AU1500_ETH1_BASE, AU1500_MAC1_ENABLE, AU1500_MAC1_DMA_INT}
#endif
#ifdef CONFIG_SOC_AU1550
	{AU1550_ETH0_BASE, AU1550_MAC0_ENABLE, AU1550_MAC0_DMA_INT},
	{AU1550_ETH1_BASE, AU1550_MAC1_ENABLE, AU1550_MAC1_DMA_INT}
#endif
};

static int num_ifs;

/*
 * Setup the base address and interupt of the Au1xxx ethernet macs
 * based on cpu type and whether the interface is enabled in sys_pinfunc
 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
 */
static int __init au1000_init_module(void)
{
	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
	struct net_device *dev;
	int i, found_one = 0;

	num_ifs = NUM_ETH_INTERFACES - ni;

	for(i = 0; i < num_ifs; i++) {
		dev = au1000_probe(i);
		iflist[i].dev = dev;
		if (dev)
			found_one++;
	}
	if (!found_one)
		return -ENODEV;
	return 0;
}

/*
 * ethtool operations
 */

static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;

	if (aup->phy_dev)
		return phy_ethtool_gset(aup->phy_dev, cmd);

	return -EINVAL;
}

static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;

	if (!capable(CAP_NET_ADMIN))
		return -EPERM;

	if (aup->phy_dev)
		return phy_ethtool_sset(aup->phy_dev, cmd);

	return -EINVAL;
}

static void
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	info->fw_version[0] = '\0';
	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
	info->regdump_len = 0;
}

static struct ethtool_ops au1000_ethtool_ops = {
	.get_settings = au1000_get_settings,
	.set_settings = au1000_set_settings,
	.get_drvinfo = au1000_get_drvinfo,
	.get_link = ethtool_op_get_link,
};

static struct net_device * au1000_probe(int port_num)
{
	static unsigned version_printed = 0;
	struct au1000_private *aup = NULL;
	struct net_device *dev = NULL;
	db_dest_t *pDB, *pDBfree;
	char *pmac, *argptr;
	char ethaddr[6];
	int irq, i, err;
	u32 base, macen;

	if (port_num >= NUM_ETH_INTERFACES)
 		return NULL;

	base  = CPHYSADDR(iflist[port_num].base_addr );
	macen = CPHYSADDR(iflist[port_num].macen_addr);
	irq = iflist[port_num].irq;

	if (!request_mem_region( base, MAC_IOSIZE, "Au1x00 ENET") ||
	    !request_mem_region(macen, 4, "Au1x00 ENET"))
		return NULL;

	if (version_printed++ == 0)
		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);

	dev = alloc_etherdev(sizeof(struct au1000_private));
	if (!dev) {
		printk(KERN_ERR "%s: alloc_etherdev failed\n", DRV_NAME);
		return NULL;
	}

	if ((err = register_netdev(dev)) != 0) {
		printk(KERN_ERR "%s: Cannot register net device, error %d\n",
				DRV_NAME, err);
		free_netdev(dev);
		return NULL;
	}

	printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
		dev->name, base, irq);

	aup = dev->priv;

	/* Allocate the data buffers */
	/* Snooping works fine with eth on all au1xxx */
	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
						(NUM_TX_BUFFS + NUM_RX_BUFFS),
						&aup->dma_addr,	0);
	if (!aup->vaddr) {
		free_netdev(dev);
		release_mem_region( base, MAC_IOSIZE);
		release_mem_region(macen, 4);
		return NULL;
	}

	/* aup->mac is the base address of the MAC's registers */
	aup->mac = (volatile mac_reg_t *)iflist[port_num].base_addr;

	/* Setup some variables for quick register address access */
	aup->enable = (volatile u32 *)iflist[port_num].macen_addr;
	aup->mac_id = port_num;
	au_macs[port_num] = aup;

	if (port_num == 0) {
		/* Check the environment variables first */
		if (get_ethernet_addr(ethaddr) == 0)
			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
		else {
			/* Check command line */
			argptr = prom_getcmdline();
			if ((pmac = strstr(argptr, "ethaddr=")) == NULL)
				printk(KERN_INFO "%s: No MAC address found\n",
						 dev->name);
				/* Use the hard coded MAC addresses */
			else {
				str2eaddr(ethaddr, pmac + strlen("ethaddr="));
				memcpy(au1000_mac_addr, ethaddr, 
				       sizeof(au1000_mac_addr));
			}
		}

		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
	} else if (port_num == 1)
		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);

	/*
	 * Assign to the Ethernet ports two consecutive MAC addresses
	 * to match those that are printed on their stickers
	 */
	memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
	dev->dev_addr[5] += port_num;

	*aup->enable = 0;
	aup->mac_enabled = 0;

	aup->mii_bus.priv = dev;
	aup->mii_bus.read = mdiobus_read;
	aup->mii_bus.write = mdiobus_write;
	aup->mii_bus.reset = mdiobus_reset;
	aup->mii_bus.name = "au1000_eth_mii";
	aup->mii_bus.id = aup->mac_id;
	aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
	for(i = 0; i < PHY_MAX_ADDR; ++i)
		aup->mii_bus.irq[i] = PHY_POLL;

	/* if known, set corresponding PHY IRQs */
#if defined(AU1XXX_PHY_STATIC_CONFIG)
# if defined(AU1XXX_PHY0_IRQ)
	if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
		aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
# endif
# if defined(AU1XXX_PHY1_IRQ)
	if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
		aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
# endif
#endif
	mdiobus_register(&aup->mii_bus);

	if (mii_probe(dev) != 0) {
		goto err_out;
	}

	pDBfree = NULL;
	/* setup the data buffer descriptors and attach a buffer to each one */
	pDB = aup->db;
	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
		pDB->pnext = pDBfree;
		pDBfree = pDB;
		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
		pDB++;
	}
	aup->pDBfree = pDBfree;

	for (i = 0; i < NUM_RX_DMA; i++) {
		pDB = GetFreeDB(aup);
		if (!pDB) {
			goto err_out;
		}
		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
		aup->rx_db_inuse[i] = pDB;
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		pDB = GetFreeDB(aup);
		if (!pDB) {
			goto err_out;
		}
		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
		aup->tx_dma_ring[i]->len = 0;
		aup->tx_db_inuse[i] = pDB;
	}

	spin_lock_init(&aup->lock);
	dev->base_addr = base;
	dev->irq = irq;
	dev->open = au1000_open;
	dev->hard_start_xmit = au1000_tx;
	dev->stop = au1000_close;
	dev->get_stats = au1000_get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &au1000_ioctl;
	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
	dev->tx_timeout = au1000_tx_timeout;
	dev->watchdog_timeo = ETH_TX_TIMEOUT;

	/* 
	 * The boot code uses the ethernet controller, so reset it to start 
	 * fresh.  au1000_init() expects that the device is in reset state.
	 */
	reset_mac(dev);

	return dev;

err_out:
	/* here we should have a valid dev plus aup-> register addresses
	 * so we can reset the mac properly.*/
	reset_mac(dev);

	for (i = 0; i < NUM_RX_DMA; i++) {
		if (aup->rx_db_inuse[i])
			ReleaseDB(aup, aup->rx_db_inuse[i]);
	}
	for (i = 0; i < NUM_TX_DMA; i++) {
		if (aup->tx_db_inuse[i])
			ReleaseDB(aup, aup->tx_db_inuse[i]);
	}
	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
			     (void *)aup->vaddr, aup->dma_addr);
	unregister_netdev(dev);
	free_netdev(dev);
	release_mem_region( base, MAC_IOSIZE);
	release_mem_region(macen, 4);
	return NULL;
}

/* 
 * Initialize the interface.
 *
 * When the device powers up, the clocks are disabled and the
 * mac is in reset state.  When the interface is closed, we
 * do the same -- reset the device and disable the clocks to
 * conserve power. Thus, whenever au1000_init() is called,
 * the device should already be in reset state.
 */
static int au1000_init(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	u32 flags;
	int i;
	u32 control;

	if (au1000_debug > 4) 
		printk("%s: au1000_init\n", dev->name);

	/* bring the device out of reset */
	enable_mac(dev, 1);

	spin_lock_irqsave(&aup->lock, flags);

	aup->mac->control = 0;
	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
	aup->tx_tail = aup->tx_head;
	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;

	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
		dev->dev_addr[1]<<8 | dev->dev_addr[0];

	for (i = 0; i < NUM_RX_DMA; i++) {
		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
	}
	au_sync();

	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
	control |= MAC_BIG_ENDIAN;
#endif
	if (aup->phy_dev) {
		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
			control |= MAC_FULL_DUPLEX;
		else
			control |= MAC_DISABLE_RX_OWN;
	} else { /* PHY-less op, assume full-duplex */
		control |= MAC_FULL_DUPLEX;
	}

	aup->mac->control = control;
	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
	au_sync();

	spin_unlock_irqrestore(&aup->lock, flags);
	return 0;
}

static void
au1000_adjust_link(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct phy_device *phydev = aup->phy_dev;
	unsigned long flags;

	int status_change = 0;

	BUG_ON(!aup->phy_dev);

	spin_lock_irqsave(&aup->lock, flags);

	if (phydev->link && (aup->old_speed != phydev->speed)) {
		// speed changed

		switch(phydev->speed) {
		case SPEED_10:
		case SPEED_100:
			break;
		default:
			printk(KERN_WARNING
			       "%s: Speed (%d) is not 10/100 ???\n",
			       dev->name, phydev->speed);
			break;
		}

		aup->old_speed = phydev->speed;

		status_change = 1;
	}

	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
		// duplex mode changed

		/* switching duplex mode requires to disable rx and tx! */
		hard_stop(dev);

		if (DUPLEX_FULL == phydev->duplex)
			aup->mac->control = ((aup->mac->control
					     | MAC_FULL_DUPLEX)
					     & ~MAC_DISABLE_RX_OWN);
		else
			aup->mac->control = ((aup->mac->control
					      & ~MAC_FULL_DUPLEX)
					     | MAC_DISABLE_RX_OWN);
		au_sync_delay(1);

		enable_rx_tx(dev);
		aup->old_duplex = phydev->duplex;

		status_change = 1;
	}

	if(phydev->link != aup->old_link) {
		// link state changed

		if (phydev->link) // link went up
			netif_schedule(dev);
		else { // link went down
			aup->old_speed = 0;
			aup->old_duplex = -1;
		}

		aup->old_link = phydev->link;
		status_change = 1;
	}

	spin_unlock_irqrestore(&aup->lock, flags);

	if (status_change) {
		if (phydev->link)
			printk(KERN_INFO "%s: link up (%d/%s)\n",
			       dev->name, phydev->speed,
			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
		else
			printk(KERN_INFO "%s: link down\n", dev->name);
	}
}

static int au1000_open(struct net_device *dev)
{
	int retval;
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: open: dev=%p\n", dev->name, dev);

	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
					dev->name, dev))) {
		printk(KERN_ERR "%s: unable to get IRQ %d\n",
				dev->name, dev->irq);
		return retval;
	}

	if ((retval = au1000_init(dev))) {
		printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
		free_irq(dev->irq, dev);
		return retval;
	}

	if (aup->phy_dev) {
		/* cause the PHY state machine to schedule a link state check */
		aup->phy_dev->state = PHY_CHANGELINK;
		phy_start(aup->phy_dev);
	}

	netif_start_queue(dev);

	if (au1000_debug > 4)
		printk("%s: open: Initialization done.\n", dev->name);

	return 0;
}

static int au1000_close(struct net_device *dev)
{
	unsigned long flags;
	struct au1000_private *const aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: close: dev=%p\n", dev->name, dev);

	if (aup->phy_dev)
		phy_stop(aup->phy_dev);

	spin_lock_irqsave(&aup->lock, flags);

	reset_mac_unlocked (dev);

	/* stop the device */
	netif_stop_queue(dev);

	/* disable the interrupt */
	free_irq(dev->irq, dev);
	spin_unlock_irqrestore(&aup->lock, flags);

	return 0;
}

static void __exit au1000_cleanup_module(void)
{
	int i, j;
	struct net_device *dev;
	struct au1000_private *aup;

	for (i = 0; i < num_ifs; i++) {
		dev = iflist[i].dev;
		if (dev) {
			aup = (struct au1000_private *) dev->priv;
			unregister_netdev(dev);
			for (j = 0; j < NUM_RX_DMA; j++)
				if (aup->rx_db_inuse[j])
					ReleaseDB(aup, aup->rx_db_inuse[j]);
			for (j = 0; j < NUM_TX_DMA; j++)
				if (aup->tx_db_inuse[j])
					ReleaseDB(aup, aup->tx_db_inuse[j]);
 			dma_free_noncoherent(NULL, MAX_BUF_SIZE *
 					     (NUM_TX_BUFFS + NUM_RX_BUFFS),
 					     (void *)aup->vaddr, aup->dma_addr);
 			release_mem_region(dev->base_addr, MAC_IOSIZE);
 			release_mem_region(CPHYSADDR(iflist[i].macen_addr), 4);
			free_netdev(dev);
		}
	}
}

static void update_tx_stats(struct net_device *dev, u32 status)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;

	if (status & TX_FRAME_ABORTED) {
		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
				/* any other tx errors are only valid
				 * in half duplex mode */
				ps->tx_errors++;
				ps->tx_aborted_errors++;
			}
		}
		else {
			ps->tx_errors++;
			ps->tx_aborted_errors++;
			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
				ps->tx_carrier_errors++;
		}
	}
}


/*
 * Called from the interrupt service routine to acknowledge
 * the TX DONE bits.  This is a must if the irq is setup as
 * edge triggered.
 */
static void au1000_tx_ack(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	volatile tx_dma_t *ptxd;

	ptxd = aup->tx_dma_ring[aup->tx_tail];

	while (ptxd->buff_stat & TX_T_DONE) {
		update_tx_stats(dev, ptxd->status);
		ptxd->buff_stat &= ~TX_T_DONE;
		ptxd->len = 0;
		au_sync();

		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
		ptxd = aup->tx_dma_ring[aup->tx_tail];

		if (aup->tx_full) {
			aup->tx_full = 0;
			netif_wake_queue(dev);
		}
	}
}


/*
 * Au1000 transmit routine.
 */
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;
	volatile tx_dma_t *ptxd;
	u32 buff_stat;
	db_dest_t *pDB;
	int i;

	if (au1000_debug > 5)
		printk("%s: tx: aup %x len=%d, data=%p, head %d\n", 
				dev->name, (unsigned)aup, skb->len, 
				skb->data, aup->tx_head);

	ptxd = aup->tx_dma_ring[aup->tx_head];
	buff_stat = ptxd->buff_stat;
	if (buff_stat & TX_DMA_ENABLE) {
		/* We've wrapped around and the transmitter is still busy */
		netif_stop_queue(dev);
		aup->tx_full = 1;
		return 1;
	}
	else if (buff_stat & TX_T_DONE) {
		update_tx_stats(dev, ptxd->status);
		ptxd->len = 0;
	}

	if (aup->tx_full) {
		aup->tx_full = 0;
		netif_wake_queue(dev);
	}

	pDB = aup->tx_db_inuse[aup->tx_head];
	memcpy((void *)pDB->vaddr, skb->data, skb->len);
	if (skb->len < ETH_ZLEN) {
		for (i=skb->len; i<ETH_ZLEN; i++) { 
			((char *)pDB->vaddr)[i] = 0;
		}
		ptxd->len = ETH_ZLEN;
	}
	else
		ptxd->len = skb->len;

	ps->tx_packets++;
	ps->tx_bytes += ptxd->len;

	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
	au_sync();
	dev_kfree_skb(skb);
	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
	dev->trans_start = jiffies;
	return 0;
}

static inline void update_rx_stats(struct net_device *dev, u32 status)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct net_device_stats *ps = &aup->stats;

	ps->rx_packets++;
	if (status & RX_MCAST_FRAME)
		ps->multicast++;

	if (status & RX_ERROR) {
		ps->rx_errors++;
		if (status & RX_MISSED_FRAME)
			ps->rx_missed_errors++;
		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
			ps->rx_length_errors++;
		if (status & RX_CRC_ERROR)
			ps->rx_crc_errors++;
		if (status & RX_COLL)
			ps->collisions++;
	}
	else 
		ps->rx_bytes += status & RX_FRAME_LEN_MASK;

}

/*
 * Au1000 receive routine.
 */
static int au1000_rx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct sk_buff *skb;
	volatile rx_dma_t *prxd;
	u32 buff_stat, status;
	db_dest_t *pDB;
	u32	frmlen;

	if (au1000_debug > 5)
		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);

	prxd = aup->rx_dma_ring[aup->rx_head];
	buff_stat = prxd->buff_stat;
	while (buff_stat & RX_T_DONE)  {
		status = prxd->status;
		pDB = aup->rx_db_inuse[aup->rx_head];
		update_rx_stats(dev, status);
		if (!(status & RX_ERROR))  {

			/* good frame */
			frmlen = (status & RX_FRAME_LEN_MASK);
			frmlen -= 4; /* Remove FCS */
			skb = dev_alloc_skb(frmlen + 2);
			if (skb == NULL) {
				printk(KERN_ERR
				       "%s: Memory squeeze, dropping packet.\n",
				       dev->name);
				aup->stats.rx_dropped++;
				continue;
			}
			skb->dev = dev;
			skb_reserve(skb, 2);	/* 16 byte IP header align */
			eth_copy_and_sum(skb,
				(unsigned char *)pDB->vaddr, frmlen, 0);
			skb_put(skb, frmlen);
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);	/* pass the packet to upper layers */
		}
		else {
			if (au1000_debug > 4) {
				if (status & RX_MISSED_FRAME) 
					printk("rx miss\n");
				if (status & RX_WDOG_TIMER) 
					printk("rx wdog\n");
				if (status & RX_RUNT) 
					printk("rx runt\n");
				if (status & RX_OVERLEN) 
					printk("rx overlen\n");
				if (status & RX_COLL)
					printk("rx coll\n");
				if (status & RX_MII_ERROR)
					printk("rx mii error\n");
				if (status & RX_CRC_ERROR)
					printk("rx crc error\n");
				if (status & RX_LEN_ERROR)
					printk("rx len error\n");
				if (status & RX_U_CNTRL_FRAME)
					printk("rx u control frame\n");
				if (status & RX_MISSED_FRAME)
					printk("rx miss\n");
			}
		}
		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
		au_sync();

		/* next descriptor */
		prxd = aup->rx_dma_ring[aup->rx_head];
		buff_stat = prxd->buff_stat;
		dev->last_rx = jiffies;
	}
	return 0;
}


/*
 * Au1000 interrupt service routine.
 */
static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *) dev_id;

	if (dev == NULL) {
		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
		return IRQ_RETVAL(1);
	}

	/* Handle RX interrupts first to minimize chance of overrun */

	au1000_rx(dev);
	au1000_tx_ack(dev);
	return IRQ_RETVAL(1);
}


/*
 * The Tx ring has been full longer than the watchdog timeout
 * value. The transmitter must be hung?
 */
static void au1000_tx_timeout(struct net_device *dev)
{
	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
	reset_mac(dev);
	au1000_init(dev);
	dev->trans_start = jiffies;
	netif_wake_queue(dev);
}

static void set_rx_mode(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4) 
		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		aup->mac->control |= MAC_PROMISCUOUS;
	} else if ((dev->flags & IFF_ALLMULTI)  ||
			   dev->mc_count > MULTICAST_FILTER_LIMIT) {
		aup->mac->control |= MAC_PASS_ALL_MULTI;
		aup->mac->control &= ~MAC_PROMISCUOUS;
		printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
	} else {
		int i;
		struct dev_mc_list *mclist;
		u32 mc_filter[2];	/* Multicast hash filter */

		mc_filter[1] = mc_filter[0] = 0;
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			 i++, mclist = mclist->next) {
			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, 
					(long *)mc_filter);
		}
		aup->mac->multi_hash_high = mc_filter[1];
		aup->mac->multi_hash_low = mc_filter[0];
		aup->mac->control &= ~MAC_PROMISCUOUS;
		aup->mac->control |= MAC_HASH_MODE;
	}
}

static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct au1000_private *aup = (struct au1000_private *)dev->priv;

	if (!netif_running(dev)) return -EINVAL;

	if (!aup->phy_dev) return -EINVAL; // PHY not controllable

	return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
}

static struct net_device_stats *au1000_get_stats(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;

	if (au1000_debug > 4)
		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);

	if (netif_device_present(dev)) {
		return &aup->stats;
	}
	return 0;
}

module_init(au1000_init_module);
module_exit(au1000_cleanup_module);