/*
* Author Andreas Eversberg (jolly@eversberg.eu)
* Based on source code structure by
* Karsten Keil (keil@isdn4linux.de)
*
* This file is (c) under GNU PUBLIC LICENSE
* For changes and modifications please read
* ../../../Documentation/isdn/mISDN.cert
*
* Thanks to Karsten Keil (great drivers)
* Cologne Chip (great chips)
*
* This module does:
* Real-time tone generation
* DTMF detection
* Real-time cross-connection and conferrence
* Compensate jitter due to system load and hardware fault.
* All features are done in kernel space and will be realized
* using hardware, if available and supported by chip set.
* Blowfish encryption/decryption
*/
/* STRUCTURE:
*
* The dsp module provides layer 2 for b-channels (64kbit). It provides
* transparent audio forwarding with special digital signal processing:
*
* - (1) generation of tones
* - (2) detection of dtmf tones
* - (3) crossconnecting and conferences (clocking)
* - (4) echo generation for delay test
* - (5) volume control
* - (6) disable receive data
* - (7) pipeline
* - (8) encryption/decryption
*
* Look:
* TX RX
* ------upper layer------
* | ^
* | |(6)
* v |
* +-----+-------------+-----+
* |(3)(4) |
* | CMX |
* | |
* | +-------------+
* | | ^
* | | |
* |+---------+| +----+----+
* ||(1) || |(2) |
* || || | |
* || Tones || | DTMF |
* || || | |
* || || | |
* |+----+----+| +----+----+
* +-----+-----+ ^
* | |
* v |
* +----+----+ +----+----+
* |(5) | |(5) |
* | | | |
* |TX Volume| |RX Volume|
* | | | |
* | | | |
* +----+----+ +----+----+
* | ^
* | |
* v |
* +----+-------------+----+
* |(7) |
* | |
* | Pipeline Processing |
* | |
* | |
* +----+-------------+----+
* | ^
* | |
* v |
* +----+----+ +----+----+
* |(8) | |(8) |
* | | | |
* | Encrypt | | Decrypt |
* | | | |
* | | | |
* +----+----+ +----+----+
* | ^
* | |
* v |
* ------card layer------
* TX RX
*
* Above you can see the logical data flow. If software is used to do the
* process, it is actually the real data flow. If hardware is used, data
* may not flow, but hardware commands to the card, to provide the data flow
* as shown.
*
* NOTE: The channel must be activated in order to make dsp work, even if
* no data flow to the upper layer is intended. Activation can be done
* after and before controlling the setting using PH_CONTROL requests.
*
* DTMF: Will be detected by hardware if possible. It is done before CMX
* processing.
*
* Tones: Will be generated via software if endless looped audio fifos are
* not supported by hardware. Tones will override all data from CMX.
* It is not required to join a conference to use tones at any time.
*
* CMX: Is transparent when not used. When it is used, it will do
* crossconnections and conferences via software if not possible through
* hardware. If hardware capability is available, hardware is used.
*
* Echo: Is generated by CMX and is used to check performance of hard and
* software CMX.
*
* The CMX has special functions for conferences with one, two and more
* members. It will allow different types of data flow. Receive and transmit
* data to/form upper layer may be swithed on/off individually without losing
* features of CMX, Tones and DTMF.
*
* Echo Cancellation: Sometimes we like to cancel echo from the interface.
* Note that a VoIP call may not have echo caused by the IP phone. The echo
* is generated by the telephone line connected to it. Because the delay
* is high, it becomes an echo. RESULT: Echo Cachelation is required if
* both echo AND delay is applied to an interface.
* Remember that software CMX always generates a more or less delay.
*
* If all used features can be realized in hardware, and if transmit and/or
* receive data ist disabled, the card may not send/receive any data at all.
* Not receiving is useful if only announcements are played. Not sending is
* useful if an answering machine records audio. Not sending and receiving is
* useful during most states of the call. If supported by hardware, tones
* will be played without cpu load. Small PBXs and NT-Mode applications will
* not need expensive hardware when processing calls.
*
*
* LOCKING:
*
* When data is received from upper or lower layer (card), the complete dsp
* module is locked by a global lock. This lock MUST lock irq, because it
* must lock timer events by DSP poll timer.
* When data is ready to be transmitted down, the data is queued and sent
* outside lock and timer event.
* PH_CONTROL must not change any settings, join or split conference members
* during process of data.
*
* HDLC:
*
* It works quite the same as transparent, except that HDLC data is forwarded
* to all other conference members if no hardware bridging is possible.
* Send data will be writte to sendq. Sendq will be sent if confirm is received.
* Conference cannot join, if one member is not hdlc.
*
*/
#include <linux/delay.h>
#include <linux/gfp.h>
#include <linux/mISDNif.h>
#include <linux/mISDNdsp.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include "core.h"
#include "dsp.h"
static const char *mISDN_dsp_revision = "2.0";
static int debug;
static int options;
static int poll;
static int dtmfthreshold = 100;
MODULE_AUTHOR("Andreas Eversberg");
module_param(debug, uint, S_IRUGO | S_IWUSR);
module_param(options, uint, S_IRUGO | S_IWUSR);
module_param(poll, uint, S_IRUGO | S_IWUSR);
module_param(dtmfthreshold, uint, S_IRUGO | S_IWUSR);
MODULE_LICENSE("GPL");
/*int spinnest = 0;*/
spinlock_t dsp_lock; /* global dsp lock */
struct list_head dsp_ilist;
struct list_head conf_ilist;
int dsp_debug;
int dsp_options;
int dsp_poll, dsp_tics;
/* check if rx may be turned off or must be turned on */