aboutsummaryrefslogtreecommitdiff
path: root/drivers/edac/i5000_edac.c
blob: 72e07e3cf718fb760c62cda09023b199857bcb13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
/*
 * Intel 5000(P/V/X) class Memory Controllers kernel module
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
 *	norsk5@xmission.com
 *
 * This module is based on the following document:
 *
 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <asm/mmzone.h>

#include "edac_core.h"

/*
 * Alter this version for the I5000 module when modifications are made
 */
#define I5000_REVISION    " Ver: 2.0.12"
#define EDAC_MOD_STR      "i5000_edac"

#define i5000_printk(level, fmt, arg...) \
        edac_printk(level, "i5000", fmt, ##arg)

#define i5000_mc_printk(mci, level, fmt, arg...) \
        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)

#ifndef PCI_DEVICE_ID_INTEL_FBD_0
#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
#endif
#ifndef PCI_DEVICE_ID_INTEL_FBD_1
#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
#endif

/* Device 16,
 * Function 0: System Address
 * Function 1: Memory Branch Map, Control, Errors Register
 * Function 2: FSB Error Registers
 *
 * All 3 functions of Device 16 (0,1,2) share the SAME DID
 */
#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0

/* OFFSETS for Function 0 */

/* OFFSETS for Function 1 */
#define		AMBASE			0x48
#define		MAXCH			0x56
#define		MAXDIMMPERCH		0x57
#define		TOLM			0x6C
#define		REDMEMB			0x7C
#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
#define		MIR0			0x80
#define		MIR1			0x84
#define		MIR2			0x88
#define		AMIR0			0x8C
#define		AMIR1			0x90
#define		AMIR2			0x94

#define		FERR_FAT_FBD		0x98
#define		NERR_FAT_FBD		0x9C
#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
#define			FERR_FAT_FBDCHAN 0x30000000
#define			FERR_FAT_M3ERR	0x00000004
#define			FERR_FAT_M2ERR	0x00000002
#define			FERR_FAT_M1ERR	0x00000001
#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
						FERR_FAT_M2ERR | \
						FERR_FAT_M3ERR)

#define		FERR_NF_FBD		0xA0

/* Thermal and SPD or BFD errors */
#define			FERR_NF_M28ERR	0x01000000
#define			FERR_NF_M27ERR	0x00800000
#define			FERR_NF_M26ERR	0x00400000
#define			FERR_NF_M25ERR	0x00200000
#define			FERR_NF_M24ERR	0x00100000
#define			FERR_NF_M23ERR	0x00080000
#define			FERR_NF_M22ERR	0x00040000
#define			FERR_NF_M21ERR	0x00020000

/* Correctable errors */
#define			FERR_NF_M20ERR	0x00010000
#define			FERR_NF_M19ERR	0x00008000
#define			FERR_NF_M18ERR	0x00004000
#define			FERR_NF_M17ERR	0x00002000

/* Non-Retry or redundant Retry errors */
#define			FERR_NF_M16ERR	0x00001000
#define			FERR_NF_M15ERR	0x00000800
#define			FERR_NF_M14ERR	0x00000400
#define			FERR_NF_M13ERR	0x00000200

/* Uncorrectable errors */
#define			FERR_NF_M12ERR	0x00000100
#define			FERR_NF_M11ERR	0x00000080
#define			FERR_NF_M10ERR	0x00000040
#define			FERR_NF_M9ERR	0x00000020
#define			FERR_NF_M8ERR	0x00000010
#define			FERR_NF_M7ERR	0x00000008
#define			FERR_NF_M6ERR	0x00000004
#define			FERR_NF_M5ERR	0x00000002
#define			FERR_NF_M4ERR	0x00000001

#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
							FERR_NF_M11ERR | \
							FERR_NF_M10ERR | \
							FERR_NF_M9ERR | \
							FERR_NF_M8ERR | \
							FERR_NF_M7ERR | \
							FERR_NF_M6ERR | \
							FERR_NF_M5ERR | \
							FERR_NF_M4ERR)
#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
							FERR_NF_M19ERR | \
							FERR_NF_M18ERR | \
							FERR_NF_M17ERR)
#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
							FERR_NF_M28ERR)
#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
							FERR_NF_M25ERR | \
							FERR_NF_M24ERR | \
							FERR_NF_M23ERR)
#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
							FERR_NF_M14ERR | \
							FERR_NF_M15ERR)

#define		NERR_NF_FBD		0xA4
#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
							FERR_NF_CORRECTABLE | \
							FERR_NF_DIMM_SPARE | \
							FERR_NF_THERMAL | \
							FERR_NF_SPD_PROTOCOL | \
							FERR_NF_NORTH_CRC | \
							FERR_NF_NON_RETRY)

#define		EMASK_FBD		0xA8
#define			EMASK_FBD_M28ERR	0x08000000
#define			EMASK_FBD_M27ERR	0x04000000
#define			EMASK_FBD_M26ERR	0x02000000
#define			EMASK_FBD_M25ERR	0x01000000
#define			EMASK_FBD_M24ERR	0x00800000
#define			EMASK_FBD_M23ERR	0x00400000
#define			EMASK_FBD_M22ERR	0x00200000
#define			EMASK_FBD_M21ERR	0x00100000
#define			EMASK_FBD_M20ERR	0x00080000
#define			EMASK_FBD_M19ERR	0x00040000
#define			EMASK_FBD_M18ERR	0x00020000
#define			EMASK_FBD_M17ERR	0x00010000

#define			EMASK_FBD_M15ERR	0x00004000
#define			EMASK_FBD_M14ERR	0x00002000
#define			EMASK_FBD_M13ERR	0x00001000
#define			EMASK_FBD_M12ERR	0x00000800
#define			EMASK_FBD_M11ERR	0x00000400
#define			EMASK_FBD_M10ERR	0x00000200
#define			EMASK_FBD_M9ERR		0x00000100
#define			EMASK_FBD_M8ERR		0x00000080
#define			EMASK_FBD_M7ERR		0x00000040
#define			EMASK_FBD_M6ERR		0x00000020
#define			EMASK_FBD_M5ERR		0x00000010
#define			EMASK_FBD_M4ERR		0x00000008
#define			EMASK_FBD_M3ERR		0x00000004
#define			EMASK_FBD_M2ERR		0x00000002
#define			EMASK_FBD_M1ERR		0x00000001

#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
							EMASK_FBD_M2ERR | \
							EMASK_FBD_M3ERR)

#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
							EMASK_FBD_M5ERR | \
							EMASK_FBD_M6ERR | \
							EMASK_FBD_M7ERR | \
							EMASK_FBD_M8ERR | \
							EMASK_FBD_M9ERR | \
							EMASK_FBD_M10ERR | \
							EMASK_FBD_M11ERR | \
							EMASK_FBD_M12ERR)
#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
							EMASK_FBD_M18ERR | \
							EMASK_FBD_M19ERR | \
							EMASK_FBD_M20ERR)
#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
							EMASK_FBD_M28ERR)
#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
							EMASK_FBD_M25ERR | \
							EMASK_FBD_M24ERR | \
							EMASK_FBD_M23ERR)
#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
							EMASK_FBD_M14ERR | \
							EMASK_FBD_M13ERR)

#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
					ENABLE_EMASK_FBD_NORTH_CRC | \
					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
					ENABLE_EMASK_FBD_THERMALS | \
					ENABLE_EMASK_FBD_DIMM_SPARE | \
					ENABLE_EMASK_FBD_FATAL_ERRORS | \
					ENABLE_EMASK_FBD_CORRECTABLE | \
					ENABLE_EMASK_FBD_UNCORRECTABLE)

#define		ERR0_FBD		0xAC
#define		ERR1_FBD		0xB0
#define		ERR2_FBD		0xB4
#define		MCERR_FBD		0xB8
#define		NRECMEMA		0xBE
#define			NREC_BANK(x)		(((x)>>12) & 0x7)
#define			NREC_RDWR(x)		(((x)>>11) & 1)
#define			NREC_RANK(x)		(((x)>>8) & 0x7)
#define		NRECMEMB		0xC0
#define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			NREC_RAS(x)		((x) & 0x7FFF)
#define		NRECFGLOG		0xC4
#define		NREEECFBDA		0xC8
#define		NREEECFBDB		0xCC
#define		NREEECFBDC		0xD0
#define		NREEECFBDD		0xD4
#define		NREEECFBDE		0xD8
#define		REDMEMA			0xDC
#define		RECMEMA			0xE2
#define			REC_BANK(x)		(((x)>>12) & 0x7)
#define			REC_RDWR(x)		(((x)>>11) & 1)
#define			REC_RANK(x)		(((x)>>8) & 0x7)
#define		RECMEMB			0xE4
#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
#define			REC_RAS(x)		((x) & 0x7FFF)
#define		RECFGLOG		0xE8
#define		RECFBDA			0xEC
#define		RECFBDB			0xF0
#define		RECFBDC			0xF4
#define		RECFBDD			0xF8
#define		RECFBDE			0xFC

/* OFFSETS for Function 2 */

/*
 * Device 21,
 * Function 0: Memory Map Branch 0
 *
 * Device 22,
 * Function 0: Memory Map Branch 1
 */
#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6

#define AMB_PRESENT_0	0x64
#define AMB_PRESENT_1	0x66
#define MTR0		0x80
#define MTR1		0x84
#define MTR2		0x88
#define MTR3		0x8C

#define NUM_MTRS		4
#define CHANNELS_PER_BRANCH	2
#define MAX_BRANCHES		2

/* Defines to extract the various fields from the
 *	MTRx - Memory Technology Registers
 */
#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)

/* enables the report of miscellaneous messages as CE errors - default off */
static int misc_messages;

/* Enumeration of supported devices */
enum i5000_chips {
	I5000P = 0,
	I5000V = 1,		/* future */
	I5000X = 2		/* future */
};

/* Device name and register DID (Device ID) */
struct i5000_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

/* Table of devices attributes supported by this driver */
static const struct i5000_dev_info i5000_devs[] = {
	[I5000P] = {
		.ctl_name = "I5000",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
	},
};

struct i5000_dimm_info {
	int megabytes;		/* size, 0 means not present  */
	int dual_rank;
};

#define	MAX_CHANNELS	6	/* max possible channels */
#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */

/* driver private data structure */
struct i5000_pvt {
	struct pci_dev *system_address;	/* 16.0 */
	struct pci_dev *branchmap_werrors;	/* 16.1 */
	struct pci_dev *fsb_error_regs;	/* 16.2 */
	struct pci_dev *branch_0;	/* 21.0 */
	struct pci_dev *branch_1;	/* 22.0 */

	u16 tolm;		/* top of low memory */
	union {
		u64 ambase;		/* AMB BAR */
		struct {
			u32 ambase_bottom;
			u32 ambase_top;
		} u __packed;
	};

	u16 mir0, mir1, mir2;

	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */

	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */

	/* DIMM information matrix, allocating architecture maximums */
	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];

	/* Actual values for this controller */
	int maxch;		/* Max channels */
	int maxdimmperch;	/* Max DIMMs per channel */
};

/* I5000 MCH error information retrieved from Hardware */
struct i5000_error_info {

	/* These registers are always read from the MC */
	u32 ferr_fat_fbd;	/* First Errors Fatal */
	u32 nerr_fat_fbd;	/* Next Errors Fatal */
	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */

	/* These registers are input ONLY if there was a Recoverable  Error */
	u32 redmemb;		/* Recoverable Mem Data Error log B */
	u16 recmema;		/* Recoverable Mem Error log A */
	u32 recmemb;		/* Recoverable Mem Error log B */

	/* These registers are input ONLY if there was a
	 * Non-Recoverable Error */
	u16 nrecmema;		/* Non-Recoverable Mem log A */
	u16 nrecmemb;		/* Non-Recoverable Mem log B */

};

static struct edac_pci_ctl_info *i5000_pci;

/*
 *	i5000_get_error_info	Retrieve the hardware error information from
 *				the hardware and cache it in the 'info'
 *				structure
 */
static void i5000_get_error_info(struct mem_ctl_info *mci,
				 struct i5000_error_info *info)
{
	struct i5000_pvt *pvt;
	u32 value;

	pvt = mci->pvt_info;

	/* read in the 1st FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);

	/* Mask only the bits that the doc says are valid
	 */
	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);

	/* If there is an error, then read in the */
	/* NEXT FATAL error register and the Memory Error Log Register A */
	if (value & FERR_FAT_MASK) {
		info->ferr_fat_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
				NERR_FAT_FBD, &info->nerr_fat_fbd);
		pci_read_config_word(pvt->branchmap_werrors,
				NRECMEMA, &info->nrecmema);
		pci_read_config_word(pvt->branchmap_werrors,
				NRECMEMB, &info->nrecmemb);

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
				FERR_FAT_FBD, value);
	} else {
		info->ferr_fat_fbd = 0;
		info->nerr_fat_fbd = 0;
		info->nrecmema = 0;
		info->nrecmemb = 0;
	}

	/* read in the 1st NON-FATAL error register */
	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);

	/* If there is an error, then read in the 1st NON-FATAL error
	 * register as well */
	if (value & FERR_NF_MASK) {
		info->ferr_nf_fbd = value;

		/* harvest the various error data we need */
		pci_read_config_dword(pvt->branchmap_werrors,
				NERR_NF_FBD, &info->nerr_nf_fbd);
		pci_read_config_word(pvt->branchmap_werrors,
				RECMEMA, &info->recmema);
		pci_read_config_dword(pvt->branchmap_werrors,
				RECMEMB, &info->recmemb);
		pci_read_config_dword(pvt->branchmap_werrors,
				REDMEMB, &info->redmemb);

		/* Clear the error bits, by writing them back */
		pci_write_config_dword(pvt->branchmap_werrors,
				FERR_NF_FBD, value);
	} else {
		info->ferr_nf_fbd = 0;
		info->nerr_nf_fbd = 0;
		info->recmema = 0;
		info->recmemb = 0;
		info->redmemb = 0;
	}
}

/*
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 * 					struct i5000_error_info *info,
 * 					int handle_errors);
 *
 *	handle the Intel FATAL errors, if any
 */
static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
					struct i5000_error_info *info,
					int handle_errors)
{
	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
	char *specific = NULL;
	u32 allErrors;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);

	/* Use the NON-Recoverable macros to extract data */
	bank = NREC_BANK(info->nrecmema);
	rank = NREC_RANK(info->nrecmema);
	rdwr = NREC_RDWR(info->nrecmema);
	ras = NREC_RAS(info->nrecmemb);
	cas = NREC_CAS(info->nrecmemb);

	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
		 rank, channel, bank,
		 rdwr ? "Write" : "Read", ras, cas);

	/* Only 1 bit will be on */
	switch (allErrors) {
	case FERR_FAT_M1ERR:
		specific = "Alert on non-redundant retry or fast "
				"reset timeout";
		break;
	case FERR_FAT_M2ERR:
		specific = "Northbound CRC error on non-redundant "
				"retry";
		break;
	case FERR_FAT_M3ERR:
		{
		static int done;

		/*
		 * This error is generated to inform that the intelligent
		 * throttling is disabled and the temperature passed the
		 * specified middle point. Since this is something the BIOS
		 * should take care of, we'll warn only once to avoid
		 * worthlessly flooding the log.
		 */
		if (done)
			return;
		done++;

		specific = ">Tmid Thermal event with intelligent "
			   "throttling disabled";
		}
		break;
	}

	/* Form out message */
	snprintf(msg, sizeof(msg),
		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
		 bank, ras, cas, allErrors, specific);

	/* Call the helper to output message */
	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
			     channel >> 1, channel & 1, rank,
			     rdwr ? "Write error" : "Read error",
			     msg);
}

/*
 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 * 				struct i5000_error_info *info,
 * 				int handle_errors);
 *
 *	handle the Intel NON-FATAL errors, if any
 */
static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
					struct i5000_error_info *info,
					int handle_errors)
{
	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
	char *specific = NULL;
	u32 allErrors;
	u32 ue_errors;
	u32 ce_errors;
	u32 misc_errors;
	int branch;
	int channel;
	int bank;
	int rank;
	int rdwr;
	int ras, cas;

	/* mask off the Error bits that are possible */
	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
	if (!allErrors)
		return;		/* if no error, return now */

	/* ONLY ONE of the possible error bits will be set, as per the docs */
	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
	if (ue_errors) {
		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);

		/*
		 * According with i5000 datasheet, bit 28 has no significance
		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
		 */
		channel = branch & 2;

		bank = NREC_BANK(info->nrecmema);
		rank = NREC_RANK(info->nrecmema);
		rdwr = NREC_RDWR(info->nrecmema);
		ras = NREC_RAS(info->nrecmemb);
		cas = NREC_CAS(info->nrecmemb);

		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			 rank, channel, channel + 1, branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas);

		switch (ue_errors) {
		case FERR_NF_M12ERR:
			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M11ERR:
			specific = "Non-Aliased Uncorrectable Spare-Copy "
					"Data ECC";
			break;
		case FERR_NF_M10ERR:
			specific = "Non-Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M9ERR:
			specific = "Non-Aliased Uncorrectable Non-Mirrored "
					"Demand Data ECC";
			break;
		case FERR_NF_M8ERR:
			specific = "Aliased Uncorrectable Patrol Data ECC";
			break;
		case FERR_NF_M7ERR:
			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
			break;
		case FERR_NF_M6ERR:
			specific = "Aliased Uncorrectable Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M5ERR:
			specific = "Aliased Uncorrectable Non-Mirrored Demand "
					"Data ECC";
			break;
		case FERR_NF_M4ERR:
			specific = "Uncorrectable Data ECC on Replay";
			break;
		}

		/* Form out message */
		snprintf(msg, sizeof(msg),
			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
			 rank, bank, ras, cas, ue_errors, specific);

		/* Call the helper to output message */
		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
				channel >> 1, -1, rank,
				rdwr ? "Write error" : "Read error",
				msg);
	}

	/* Check correctable errors */
	ce_errors = allErrors & FERR_NF_CORRECTABLE;
	if (ce_errors) {
		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);

		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);

		channel = 0;
		if (REC_ECC_LOCATOR_ODD(info->redmemb))
			channel = 1;

		/* Convert channel to be based from zero, instead of
		 * from branch base of 0 */
		channel += branch;

		bank = REC_BANK(info->recmema);
		rank = REC_RANK(info->recmema);
		rdwr = REC_RDWR(info->recmema);
		ras = REC_RAS(info->recmemb);
		cas = REC_CAS(info->recmemb);

		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
			 rank, channel, branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas);

		switch (ce_errors) {
		case FERR_NF_M17ERR:
			specific = "Correctable Non-Mirrored Demand Data ECC";
			break;
		case FERR_NF_M18ERR:
			specific = "Correctable Mirrored Demand Data ECC";
			break;
		case FERR_NF_M19ERR:
			specific = "Correctable Spare-Copy Data ECC";
			break;
		case FERR_NF_M20ERR:
			specific = "Correctable Patrol Data ECC";
			break;
		}

		/* Form out message */
		snprintf(msg, sizeof(msg),
			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
			 specific);

		/* Call the helper to output message */
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
				channel >> 1, channel % 2, rank,
				rdwr ? "Write error" : "Read error",
				msg);
	}

	if (!misc_messages)
		return;

	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
	if (misc_errors) {
		switch (misc_errors) {
		case FERR_NF_M13ERR:
			specific = "Non-Retry or Redundant Retry FBD Memory "
					"Alert or Redundant Fast Reset Timeout";
			break;
		case FERR_NF_M14ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Configuration Alert";
			break;
		case FERR_NF_M15ERR:
			specific = "Non-Retry or Redundant Retry FBD "
					"Northbound CRC error on read data";
			break;
		case FERR_NF_M21ERR:
			specific = "FBD Northbound CRC error on "
					"FBD Sync Status";
			break;
		case FERR_NF_M22ERR:
			specific = "SPD protocol error";
			break;
		case FERR_NF_M27ERR:
			specific = "DIMM-spare copy started";
			break;
		case FERR_NF_M28ERR:
			specific = "DIMM-spare copy completed";
			break;
		}
		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);

		/* Form out message */
		snprintf(msg, sizeof(msg),
			 "Err=%#x (%s)", misc_errors, specific);

		/* Call the helper to output message */
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
				branch >> 1, -1, -1,
				"Misc error", msg);
	}
}

/*
 *	i5000_process_error_info	Process the error info that is
 *	in the 'info' structure, previously retrieved from hardware
 */
static void i5000_process_error_info(struct mem_ctl_info *mci,
				struct i5000_error_info *info,
				int handle_errors)
{
	/* First handle any fatal errors that occurred */
	i5000_process_fatal_error_info(mci, info, handle_errors);

	/* now handle any non-fatal errors that occurred */
	i5000_process_nonfatal_error_info(mci, info, handle_errors);
}

/*
 *	i5000_clear_error	Retrieve any error from the hardware
 *				but do NOT process that error.
 *				Used for 'clearing' out of previous errors
 *				Called by the Core module.
 */
static void i5000_clear_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;

	i5000_get_error_info(mci, &info);
}

/*
 *	i5000_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i5000_check_error(struct mem_ctl_info *mci)
{
	struct i5000_error_info info;
	edac_dbg(4, "MC%d\n", mci->mc_idx);
	i5000_get_error_info(mci, &info);
	i5000_process_error_info(mci, &info, 1);
}

/*
 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
{
	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
	struct i5000_pvt *pvt;
	struct pci_dev *pdev;

	pvt = mci->pvt_info;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);

		/* End of list, leave */
		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
				"'system address,Process Bus' "
				"device not found:"
				"vendor 0x%x device 0x%x FUNC 1 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);

			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 1)
			break;
	}

	pvt->branchmap_werrors = pdev;

	/* Attempt to 'get' the MCH register we want */
	pdev = NULL;
	while (1) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
				"MC: 'branchmap,control,errors' "
				"device not found:"
				"vendor 0x%x device 0x%x Func 2 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_INTEL_I5000_DEV16);

			pci_dev_put(pvt->branchmap_werrors);
			return 1;
		}

		/* Scan for device 16 func 1 */
		if (PCI_FUNC(pdev->devfn) == 2)
			break;
	}

	pvt->fsb_error_regs = pdev;

	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->system_address),
		 pvt->system_address->vendor, pvt->system_address->device);
	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->branchmap_werrors),
		 pvt->branchmap_werrors->vendor,
		 pvt->branchmap_werrors->device);
	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
		 pci_name(pvt->fsb_error_regs),
		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);

	pdev = NULL;
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);

	if (pdev == NULL) {
		i5000_printk(KERN_ERR,
			"MC: 'BRANCH 0' device not found:"
			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);

		pci_dev_put(pvt->branchmap_werrors);
		pci_dev_put(pvt->fsb_error_regs);
		return 1;
	}

	pvt->branch_0 = pdev;

	/* If this device claims to have more than 2 channels then
	 * fetch Branch 1's information
	 */
	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
		pdev = NULL;
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);

		if (pdev == NULL) {
			i5000_printk(KERN_ERR,
				"MC: 'BRANCH 1' device not found:"
				"vendor 0x%x device 0x%x Func 0 "
				"(broken BIOS?)\n",
				PCI_VENDOR_ID_INTEL,
				PCI_DEVICE_ID_I5000_BRANCH_1);

			pci_dev_put(pvt->branchmap_werrors);
			pci_dev_put(pvt->fsb_error_regs);
			pci_dev_put(pvt->branch_0);
			return 1;
		}

		pvt->branch_1 = pdev;
	}

	return 0;
}

/*
 *	i5000_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
static void i5000_put_devices(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;

	pvt = mci->pvt_info;

	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
	pci_dev_put(pvt->branch_0);	/* DEV 21 */

	/* Only if more than 2 channels do we release the second branch */
	if (pvt->maxch >= CHANNELS_PER_BRANCH)
		pci_dev_put(pvt->branch_1);	/* DEV 22 */
}

/*
 *	determine_amb_resent
 *
 *		the information is contained in NUM_MTRS different registers
 *		determineing which of the NUM_MTRS requires knowing
 *		which channel is in question
 *
 *	2 branches, each with 2 channels
 *		b0_ambpresent0 for channel '0'
 *		b0_ambpresent1 for channel '1'
 *		b1_ambpresent0 for channel '2'
 *		b1_ambpresent1 for channel '3'
 */
static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
{
	int amb_present;

	if (channel < CHANNELS_PER_BRANCH) {
		if (channel & 0x1)
			amb_present = pvt->b0_ambpresent1;
		else
			amb_present = pvt->b0_ambpresent0;
	} else {
		if (channel & 0x1)
			amb_present = pvt->b1_ambpresent1;
		else
			amb_present = pvt->b1_ambpresent0;
	}

	return amb_present;
}

/*
 * determine_mtr(pvt, csrow, channel)
 *
 *	return the proper MTR register as determine by the csrow and channel desired
 */
static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
{
	int mtr;

	if (channel < CHANNELS_PER_BRANCH)
		mtr = pvt->b0_mtr[slot];
	else
		mtr = pvt->b1_mtr[slot];

	return mtr;
}

/*
 */
static void decode_mtr(int slot_row, u16 mtr)
{
	int ans;

	ans = MTR_DIMMS_PRESENT(mtr);

	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
		 slot_row, mtr, ans ? "" : "NOT ");
	if (!ans)
		return;

	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
	edac_dbg(2, "\t\tNUMRANK: %s\n",
		 MTR_DIMM_RANK(mtr) ? "double" : "single");
	edac_dbg(2, "\t\tNUMROW: %s\n",
		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
		 "reserved");
	edac_dbg(2, "\t\tNUMCOL: %s\n",
		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
		 "reserved");
}

static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
			struct i5000_dimm_info *dinfo)
{
	int mtr;
	int amb_present_reg;
	int addrBits;

	mtr = determine_mtr(pvt, slot, channel);
	if (MTR_DIMMS_PRESENT(mtr)) {
		amb_present_reg = determine_amb_present_reg(pvt, channel);

		/* Determine if there is a DIMM present in this DIMM slot */
		if (amb_present_reg) {
			dinfo->dual_rank = MTR_DIMM_RANK(mtr);

			/* Start with the number of bits for a Bank
				* on the DRAM */
			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
			/* Add the number of ROW bits */
			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
			/* add the number of COLUMN bits */
			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);

			/* Dual-rank memories have twice the size */
			if (dinfo->dual_rank)
				addrBits++;

			addrBits += 6;	/* add 64 bits per DIMM */
			addrBits -= 20;	/* divide by 2^^20 */
			addrBits -= 3;	/* 8 bits per bytes */

			dinfo->megabytes = 1 << addrBits;
		}
	}
}

/*
 *	calculate_dimm_size
 *
 *	also will output a DIMM matrix map, if debug is enabled, for viewing
 *	how the DIMMs are populated
 */
static void calculate_dimm_size(struct i5000_pvt *pvt)
{
	struct i5000_dimm_info *dinfo;
	int slot, channel, branch;
	char *p, *mem_buffer;
	int space, n;

	/* ================= Generate some debug output ================= */
	space = PAGE_SIZE;
	mem_buffer = p = kmalloc(space, GFP_KERNEL);
	if (p == NULL) {
		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
			__FILE__, __func__);
		return;
	}

	/* Scan all the actual slots
	 * and calculate the information for each DIMM
	 * Start with the highest slot first, to display it first
	 * and work toward the 0th slot
	 */
	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {

		/* on an odd slot, first output a 'boundary' marker,
		 * then reset the message buffer  */
		if (slot & 0x1) {
			n = snprintf(p, space, "--------------------------"
				"--------------------------------");
			p += n;
			space -= n;
			edac_dbg(2, "%s\n", mem_buffer);
			p = mem_buffer;
			space = PAGE_SIZE;
		}
		n = snprintf(p, space, "slot %2d    ", slot);
		p += n;
		space -= n;

		for (channel = 0; channel < pvt->maxch; channel++) {
			dinfo = &pvt->dimm_info[slot][channel];
			handle_channel(pvt, slot, channel, dinfo);
			if (dinfo->megabytes)
				n = snprintf(p, space, "%4d MB %dR| ",
					     dinfo->megabytes, dinfo->dual_rank + 1);
			else
				n = snprintf(p, space, "%4d MB   | ", 0);
			p += n;
			space -= n;
		}
		p += n;
		space -= n;
		edac_dbg(2, "%s\n", mem_buffer);
		p = mem_buffer;
		space = PAGE_SIZE;
	}

	/* Output the last bottom 'boundary' marker */
	n = snprintf(p, space, "--------------------------"
		"--------------------------------");
	p += n;
	space -= n;
	edac_dbg(2, "%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;

	/* now output the 'channel' labels */
	n = snprintf(p, space, "           ");
	p += n;
	space -= n;
	for (channel = 0; channel < pvt->maxch; channel++) {
		n = snprintf(p, space, "channel %d | ", channel);
		p += n;
		space -= n;
	}
	edac_dbg(2, "%s\n", mem_buffer);
	p = mem_buffer;
	space = PAGE_SIZE;

	n = snprintf(p, space, "           ");
	p += n;
	for (branch = 0; branch < MAX_BRANCHES; branch++) {
		n = snprintf(p, space, "       branch %d       | ", branch);
		p += n;
		space -= n;
	}

	/* output the last message and free buffer */
	edac_dbg(2, "%s\n", mem_buffer);
	kfree(mem_buffer);
}

/*
 *	i5000_get_mc_regs	read in the necessary registers and
 *				cache locally
 *
 *			Fills in the private data members
 */
static void i5000_get_mc_regs(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 actual_tolm;
	u16 limit;
	int slot_row;
	int maxch;
	int maxdimmperch;
	int way0, way1;

	pvt = mci->pvt_info;

	pci_read_config_dword(pvt->system_address, AMBASE,
			&pvt->u.ambase_bottom);
	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
			&pvt->u.ambase_top);

	maxdimmperch = pvt->maxdimmperch;
	maxch = pvt->maxch;

	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);

	/* Get the Branch Map regs */
	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
	pvt->tolm >>= 12;
	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
		 pvt->tolm, pvt->tolm);

	actual_tolm = pvt->tolm << 28;
	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
		 actual_tolm, actual_tolm);

	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);

	/* Get the MIR[0-2] regs */
	limit = (pvt->mir0 >> 4) & 0x0FFF;
	way0 = pvt->mir0 & 0x1;
	way1 = pvt->mir0 & 0x2;
	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
	limit = (pvt->mir1 >> 4) & 0x0FFF;
	way0 = pvt->mir1 & 0x1;
	way1 = pvt->mir1 & 0x2;
	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);
	limit = (pvt->mir2 >> 4) & 0x0FFF;
	way0 = pvt->mir2 & 0x1;
	way1 = pvt->mir2 & 0x2;
	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
		 limit, way1, way0);

	/* Get the MTR[0-3] regs */
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		int where = MTR0 + (slot_row * sizeof(u32));

		pci_read_config_word(pvt->branch_0, where,
				&pvt->b0_mtr[slot_row]);

		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
			 slot_row, where, pvt->b0_mtr[slot_row]);

		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
			pci_read_config_word(pvt->branch_1, where,
					&pvt->b1_mtr[slot_row]);
			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
				 slot_row, where, pvt->b1_mtr[slot_row]);
		} else {
			pvt->b1_mtr[slot_row] = 0;
		}
	}

	/* Read and dump branch 0's MTRs */
	edac_dbg(2, "Memory Technology Registers:\n");
	edac_dbg(2, "   Branch 0:\n");
	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
	}
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
			&pvt->b0_ambpresent0);
	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
			&pvt->b0_ambpresent1);
	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);

	/* Only if we have 2 branchs (4 channels) */
	if (pvt->maxch < CHANNELS_PER_BRANCH) {
		pvt->b1_ambpresent0 = 0;
		pvt->b1_ambpresent1 = 0;
	} else {
		/* Read and dump  branch 1's MTRs */
		edac_dbg(2, "   Branch 1:\n");
		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
		}
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
				&pvt->b1_ambpresent0);
		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
			 pvt->b1_ambpresent0);
		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
				&pvt->b1_ambpresent1);
		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
			 pvt->b1_ambpresent1);
	}

	/* Go and determine the size of each DIMM and place in an
	 * orderly matrix */
	calculate_dimm_size(pvt);
}

/*
 *	i5000_init_csrows	Initialize the 'csrows' table within
 *				the mci control	structure with the
 *				addressing of memory.
 *
 *	return:
 *		0	success
 *		1	no actual memory found on this MC
 */
static int i5000_init_csrows(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	struct dimm_info *dimm;
	int empty, channel_count;
	int max_csrows;
	int mtr;
	int csrow_megs;
	int channel;
	int slot;

	pvt = mci->pvt_info;

	channel_count = pvt->maxch;
	max_csrows = pvt->maxdimmperch * 2;

	empty = 1;		/* Assume NO memory */

	/*
	 * FIXME: The memory layout used to map slot/channel into the
	 * real memory architecture is weird: branch+slot are "csrows"
	 * and channel is channel. That required an extra array (dimm_info)
	 * to map the dimms. A good cleanup would be to remove this array,
	 * and do a loop here with branch, channel, slot
	 */
	for (slot = 0; slot < max_csrows; slot++) {
		for (channel = 0; channel < pvt->maxch; channel++) {

			mtr = determine_mtr(pvt, slot, channel);

			if (!MTR_DIMMS_PRESENT(mtr))
				continue;

			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       channel / MAX_BRANCHES,
				       channel % MAX_BRANCHES, slot);

			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
			dimm->grain = 8;

			/* Assume DDR2 for now */
			dimm->mtype = MEM_FB_DDR2;

			/* ask what device type on this row */
			if (MTR_DRAM_WIDTH(mtr))
				dimm->dtype = DEV_X8;
			else
				dimm->dtype = DEV_X4;

			dimm->edac_mode = EDAC_S8ECD8ED;
			dimm->nr_pages = csrow_megs << 8;
		}

		empty = 0;
	}

	return empty;
}

/*
 *	i5000_enable_error_reporting
 *			Turn on the memory reporting features of the hardware
 */
static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
{
	struct i5000_pvt *pvt;
	u32 fbd_error_mask;

	pvt = mci->pvt_info;

	/* Read the FBD Error Mask Register */
	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
			&fbd_error_mask);

	/* Enable with a '0' */
	fbd_error_mask &= ~(ENABLE_EMASK_ALL);

	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
			fbd_error_mask);
}

/*
 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
 *
 *	ask the device how many channels are present and how many CSROWS
 *	 as well
 */
static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
					int *num_dimms_per_channel,
					int *num_channels)
{
	u8 value;

	/* Need to retrieve just how many channels and dimms per channel are
	 * supported on this memory controller
	 */
	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
	*num_dimms_per_channel = (int)value;

	pci_read_config_byte(pdev, MAXCH, &value);
	*num_channels = (int)value;
}

/*
 *	i5000_probe1	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
{
	struct mem_ctl_info *mci;
	struct edac_mc_layer layers[3];
	struct i5000_pvt *pvt;
	int num_channels;
	int num_dimms_per_channel;

	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
		 pdev->bus->number,
		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));

	/* We only are looking for func 0 of the set */
	if (PCI_FUNC(pdev->devfn) != 0)
		return -ENODEV;

	/* Ask the devices for the number of CSROWS and CHANNELS so
	 * that we can calculate the memory resources, etc
	 *
	 * The Chipset will report what it can handle which will be greater
	 * or equal to what the motherboard manufacturer will implement.
	 *
	 * As we don't have a motherboard identification routine to determine
	 * actual number of slots/dimms per channel, we thus utilize the
	 * resource as specified by the chipset. Thus, we might have
	 * have more DIMMs per channel than actually on the mobo, but this
	 * allows the driver to support up to the chipset max, without
	 * some fancy mobo determination.
	 */
	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
					&num_channels);

	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
		 num_channels, num_dimms_per_channel);

	/* allocate a new MC control structure */

	layers[0].type = EDAC_MC_LAYER_BRANCH;
	layers[0].size = MAX_BRANCHES;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
	layers[1].size = num_channels / MAX_BRANCHES;
	layers[1].is_virt_csrow = false;
	layers[2].type = EDAC_MC_LAYER_SLOT;
	layers[2].size = num_dimms_per_channel;
	layers[2].is_virt_csrow = true;
	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
	if (mci == NULL)
		return -ENOMEM;

	edac_dbg(0, "MC: mci = %p\n", mci);

	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */

	pvt = mci->pvt_info;
	pvt->system_address = pdev;	/* Record this device in our private */
	pvt->maxch = num_channels;
	pvt->maxdimmperch = num_dimms_per_channel;

	/* 'get' the pci devices we want to reserve for our use */
	if (i5000_get_devices(mci, dev_idx))
		goto fail0;

	/* Time to get serious */
	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */

	mci->mc_idx = 0;
	mci->mtype_cap = MEM_FLAG_FB_DDR2;
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i5000_edac.c";
	mci->mod_ver = I5000_REVISION;
	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;

	/* Set the function pointer to an actual operation function */
	mci->edac_check = i5000_check_error;

	/* initialize the MC control structure 'csrows' table
	 * with the mapping and control information */
	if (i5000_init_csrows(mci)) {
		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
	} else {
		edac_dbg(1, "MC: Enable error reporting now\n");
		i5000_enable_error_reporting(mci);
	}

	/* add this new MC control structure to EDAC's list of MCs */
	if (edac_mc_add_mc(mci)) {
		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
		goto fail1;
	}

	i5000_clear_error(mci);

	/* allocating generic PCI control info */
	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i5000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

	return 0;

	/* Error exit unwinding stack */
fail1:

	i5000_put_devices(mci);

fail0:
	edac_mc_free(mci);
	return -ENODEV;
}

/*
 *	i5000_init_one	constructor for one instance of device
 *
 * 	returns:
 *		negative on error
 *		count (>= 0)
 */
static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int rc;

	edac_dbg(0, "MC:\n");

	/* wake up device */
	rc = pci_enable_device(pdev);
	if (rc)
		return rc;

	/* now probe and enable the device */
	return i5000_probe1(pdev, id->driver_data);
}

/*
 *	i5000_remove_one	destructor for one instance of device
 *
 */
static void i5000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	edac_dbg(0, "\n");

	if (i5000_pci)
		edac_pci_release_generic_ctl(i5000_pci);

	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
		return;

	/* retrieve references to resources, and free those resources */
	i5000_put_devices(mci);
	edac_mc_free(mci);
}

/*
 *	pci_device_id	table for which devices we are looking for
 *
 *	The "E500P" device is the first device supported.
 */
static const struct pci_device_id i5000_pci_tbl[] = {
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
	 .driver_data = I5000P},

	{0,}			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);

/*
 *	i5000_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i5000_driver = {
	.name = KBUILD_BASENAME,
	.probe = i5000_init_one,
	.remove = i5000_remove_one,
	.id_table = i5000_pci_tbl,
};

/*
 *	i5000_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i5000_init(void)
{
	int pci_rc;

	edac_dbg(2, "MC:\n");

       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
       opstate_init();

	pci_rc = pci_register_driver(&i5000_driver);

	return (pci_rc < 0) ? pci_rc : 0;
}

/*
 *	i5000_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i5000_exit(void)
{
	edac_dbg(2, "MC:\n");
	pci_unregister_driver(&i5000_driver);
}

module_init(i5000_init);
module_exit(i5000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR
    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
		I5000_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
module_param(misc_messages, int, 0444);
MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");