aboutsummaryrefslogtreecommitdiff
path: root/drivers/edac/i3000_edac.c
blob: fa4c4d48756f99fa2da1a3d20af198bd91aedda1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * Intel 3000/3010 Memory Controller kernel module
 * Copyright (C) 2007 Akamai Technologies, Inc.
 * Shamelessly copied from:
 * 	Intel D82875P Memory Controller kernel module
 * 	(C) 2003 Linux Networx (http://lnxi.com)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include "edac_core.h"

#define I3000_REVISION		"1.1"

#define EDAC_MOD_STR		"i3000_edac"

#define I3000_RANKS		8
#define I3000_RANKS_PER_CHANNEL	4
#define I3000_CHANNELS		2

/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */

#define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
#define I3000_MCHBAR_MASK	0xffffc000
#define I3000_MMR_WINDOW_SIZE	16384

#define I3000_EDEAP		0x70	/* Extended DRAM Error Address Pointer (8b)
					 *
					 * 7:1   reserved
					 * 0     bit 32 of address
					 */
#define I3000_DEAP		0x58	/* DRAM Error Address Pointer (32b)
					 *
					 * 31:7  address
					 * 6:1   reserved
					 * 0     Error channel 0/1
					 */
#define I3000_DEAP_GRAIN	(1 << 7)
#define I3000_DEAP_PFN(edeap, deap)	((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
					((deap) >> PAGE_SHIFT))
#define I3000_DEAP_OFFSET(deap)		((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
#define I3000_DEAP_CHANNEL(deap)	((deap) & 1)

#define I3000_DERRSYN		0x5c	/* DRAM Error Syndrome (8b)
					 *
					 *  7:0  DRAM ECC Syndrome
					 */

#define I3000_ERRSTS		0xc8	/* Error Status Register (16b)
					 *
					 * 15:12 reserved
					 * 11    MCH Thermal Sensor Event for SMI/SCI/SERR
					 * 10    reserved
					 *  9    LOCK to non-DRAM Memory Flag (LCKF)
					 *  8    Received Refresh Timeout Flag (RRTOF)
					 *  7:2  reserved
					 *  1    Multiple-bit DRAM ECC Error Flag (DMERR)
					 *  0    Single-bit DRAM ECC Error Flag (DSERR)
					 */
#define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
#define I3000_ERRSTS_UE		0x0002
#define I3000_ERRSTS_CE		0x0001

#define I3000_ERRCMD		0xca	/* Error Command (16b)
					 *
					 * 15:12 reserved
					 * 11    SERR on MCH Thermal Sensor Event (TSESERR)
					 * 10    reserved
					 *  9    SERR on LOCK to non-DRAM Memory (LCKERR)
					 *  8    SERR on DRAM Refresh Timeout (DRTOERR)
					 *  7:2  reserved
					 *  1    SERR Multiple-Bit DRAM ECC Error (DMERR)
					 *  0    SERR on Single-Bit ECC Error (DSERR)
					 */

/* Intel  MMIO register space - device 0 function 0 - MMR space */

#define I3000_DRB_SHIFT 25	/* 32MiB grain */

#define I3000_C0DRB		0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
					 *
					 * 7:0   Channel 0 DRAM Rank Boundary Address
					 */
#define I3000_C1DRB		0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
					 *
					 * 7:0   Channel 1 DRAM Rank Boundary Address
					 */

#define I3000_C0DRA		0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
					 *
					 * 7     reserved
					 * 6:4   DRAM odd Rank Attribute
					 * 3     reserved
					 * 2:0   DRAM even Rank Attribute
					 *
					 * Each attribute defines the page
					 * size of the corresponding rank:
					 *     000: unpopulated
					 *     001: reserved
					 *     010: 4 KB
					 *     011: 8 KB
					 *     100: 16 KB
					 *     Others: reserved
					 */
#define I3000_C1DRA		0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
#define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
#define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)

#define I3000_C0DRC0		0x120	/* DRAM Controller Mode 0 (32b)
					 *
					 * 31:30 reserved
					 * 29    Initialization Complete (IC)
					 * 28:11 reserved
					 * 10:8  Refresh Mode Select (RMS)
					 * 7     reserved
					 * 6:4   Mode Select (SMS)
					 * 3:2   reserved
					 * 1:0   DRAM Type (DT)
					 */

#define I3000_C0DRC1		0x124	/* DRAM Controller Mode 1 (32b)
					 *
					 * 31    Enhanced Addressing Enable (ENHADE)
					 * 30:0  reserved
					 */

enum i3000p_chips {
	I3000 = 0,
};

struct i3000_dev_info {
	const char *ctl_name;
};

struct i3000_error_info {
	u16 errsts;
	u8 derrsyn;
	u8 edeap;
	u32 deap;
	u16 errsts2;
};

static const struct i3000_dev_info i3000_devs[] = {
	[I3000] = {
		   .ctl_name = "i3000"},
};

static struct pci_dev *mci_pdev = NULL;
static int i3000_registered = 1;
static struct edac_pci_ctl_info *i3000_pci;

static void i3000_get_error_info(struct mem_ctl_info *mci,
				 struct i3000_error_info *info)
{
	struct pci_dev *pdev;

	pdev = to_pci_dev(mci->dev);

	/*
	 * This is a mess because there is no atomic way to read all the
	 * registers at once and the registers can transition from CE being
	 * overwritten by UE.
	 */
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
	if (!(info->errsts & I3000_ERRSTS_BITS))
		return;
	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);

	/*
	 * If the error is the same for both reads then the first set
	 * of reads is valid.  If there is a change then there is a CE
	 * with no info and the second set of reads is valid and
	 * should be UE info.
	 */
	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
	}

	/* Clear any error bits.
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
			 I3000_ERRSTS_BITS);
}

static int i3000_process_error_info(struct mem_ctl_info *mci,
				    struct i3000_error_info *info,
				    int handle_errors)
{
	int row, multi_chan;
	int pfn, offset, channel;

	multi_chan = mci->csrows[0].nr_channels - 1;

	if (!(info->errsts & I3000_ERRSTS_BITS))
		return 0;

	if (!handle_errors)
		return 1;

	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
		info->errsts = info->errsts2;
	}

	pfn = I3000_DEAP_PFN(info->edeap, info->deap);
	offset = I3000_DEAP_OFFSET(info->deap);
	channel = I3000_DEAP_CHANNEL(info->deap);

	row = edac_mc_find_csrow_by_page(mci, pfn);

	if (info->errsts & I3000_ERRSTS_UE)
		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
	else
		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
				  multi_chan ? channel : 0, "i3000 CE");

	return 1;
}

static void i3000_check(struct mem_ctl_info *mci)
{
	struct i3000_error_info info;

	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
	i3000_get_error_info(mci, &info);
	i3000_process_error_info(mci, &info, 1);
}

static int i3000_is_interleaved(const unsigned char *c0dra,
				const unsigned char *c1dra,
				const unsigned char *c0drb,
				const unsigned char *c1drb)
{
	int i;

	/* If the channels aren't populated identically then
	 * we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
		if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
		    EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i]))
			return 0;

	/* If the rank boundaries for the two channels are different
	 * then we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
		if (c0drb[i] != c1drb[i])
			return 0;

	return 1;
}

static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
{
	int rc;
	int i;
	struct mem_ctl_info *mci = NULL;
	unsigned long last_cumul_size;
	int interleaved, nr_channels;
	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
	unsigned long mchbar;
	void *window;

	debugf0("MC: %s()\n", __func__);

	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
	mchbar &= I3000_MCHBAR_MASK;
	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
	if (!window) {
		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
		       mchbar);
		return -ENODEV;
	}

	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */

	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
		c0drb[i] = readb(window + I3000_C0DRB + i);
		c1drb[i] = readb(window + I3000_C1DRB + i);
	}

	iounmap(window);

	/* Figure out how many channels we have.
	 *
	 * If we have what the datasheet calls "asymmetric channels"
	 * (essentially the same as what was called "virtual single
	 * channel mode" in the i82875) then it's a single channel as
	 * far as EDAC is concerned.
	 */
	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
	nr_channels = interleaved ? 2 : 1;
	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels);
	if (!mci)
		return -ENOMEM;

	debugf3("MC: %s(): init mci\n", __func__);

	mci->dev = &pdev->dev;
	mci->mtype_cap = MEM_FLAG_DDR2;

	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
	mci->edac_cap = EDAC_FLAG_SECDED;

	mci->mod_name = EDAC_MOD_STR;
	mci->mod_ver = I3000_REVISION;
	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->edac_check = i3000_check;
	mci->ctl_page_to_phys = NULL;

	/*
	 * The dram rank boundary (DRB) reg values are boundary addresses
	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
	 * cumulative; the last one will contain the total memory
	 * contained in all ranks.
	 *
	 * If we're in interleaved mode then we're only walking through
	 * the ranks of controller 0, so we double all the values we see.
	 */
	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
		u8 value;
		u32 cumul_size;
		struct csrow_info *csrow = &mci->csrows[i];

		value = drb[i];
		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
		if (interleaved)
			cumul_size <<= 1;
		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
			__func__, i, cumul_size);
		if (cumul_size == last_cumul_size) {
			csrow->mtype = MEM_EMPTY;
			continue;
		}

		csrow->first_page = last_cumul_size;
		csrow->last_page = cumul_size - 1;
		csrow->nr_pages = cumul_size - last_cumul_size;
		last_cumul_size = cumul_size;
		csrow->grain = I3000_DEAP_GRAIN;
		csrow->mtype = MEM_DDR2;
		csrow->dtype = DEV_UNKNOWN;
		csrow->edac_mode = EDAC_UNKNOWN;
	}

	/* Clear any error bits.
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
			 I3000_ERRSTS_BITS);

	rc = -ENODEV;
	if (edac_mc_add_mc(mci, 0)) {
		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
		goto fail;
	}

	/* allocating generic PCI control info */
	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
	if (!i3000_pci) {
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

	/* get this far and it's successful */
	debugf3("MC: %s(): success\n", __func__);
	return 0;

      fail:
	if (mci)
		edac_mc_free(mci);

	return rc;
}

/* returns count (>= 0), or negative on error */
static int __devinit i3000_init_one(struct pci_dev *pdev,
				    const struct pci_device_id *ent)
{
	int rc;

	debugf0("MC: %s()\n", __func__);

	if (pci_enable_device(pdev) < 0)
		return -EIO;

	rc = i3000_probe1(pdev, ent->driver_data);
	if (mci_pdev == NULL)
		mci_pdev = pci_dev_get(pdev);

	return rc;
}

static void __devexit i3000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	debugf0("%s()\n", __func__);

	if (i3000_pci)
		edac_pci_release_generic_ctl(i3000_pci);

	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
		return;

	edac_mc_free(mci);
}

static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
	{
	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
	 I3000},
	{
	 0,
	 }			/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);

static struct pci_driver i3000_driver = {
	.name = EDAC_MOD_STR,
	.probe = i3000_init_one,
	.remove = __devexit_p(i3000_remove_one),
	.id_table = i3000_pci_tbl,
};

static int __init i3000_init(void)
{
	int pci_rc;

	debugf3("MC: %s()\n", __func__);
	pci_rc = pci_register_driver(&i3000_driver);
	if (pci_rc < 0)
		goto fail0;

	if (mci_pdev == NULL) {
		i3000_registered = 0;
		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
					  PCI_DEVICE_ID_INTEL_3000_HB, NULL);
		if (!mci_pdev) {
			debugf0("i3000 pci_get_device fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}

		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
		if (pci_rc < 0) {
			debugf0("i3000 init fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}
	}

	return 0;

      fail1:
	pci_unregister_driver(&i3000_driver);

      fail0:
	if (mci_pdev)
		pci_dev_put(mci_pdev);

	return pci_rc;
}

static void __exit i3000_exit(void)
{
	debugf3("MC: %s()\n", __func__);

	pci_unregister_driver(&i3000_driver);
	if (!i3000_registered) {
		i3000_remove_one(mci_pdev);
		pci_dev_put(mci_pdev);
	}
}

module_init(i3000_init);
module_exit(i3000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");