aboutsummaryrefslogtreecommitdiff
path: root/drivers/edac/amd64_edac.h
blob: 4ece4f4ea581caa9069fec9415e8e63dfdd9334e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
 * AMD64 class Memory Controller kernel module
 *
 * Copyright (c) 2009 SoftwareBitMaker.
 * Copyright (c) 2009 Advanced Micro Devices, Inc.
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 *
 *	Originally Written by Thayne Harbaugh
 *
 *      Changes by Douglas "norsk" Thompson  <dougthompson@xmission.com>:
 *		- K8 CPU Revision D and greater support
 *
 *      Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
 *		- Module largely rewritten, with new (and hopefully correct)
 *		code for dealing with node and chip select interleaving,
 *		various code cleanup, and bug fixes
 *		- Added support for memory hoisting using DRAM hole address
 *		register
 *
 *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
 *		-K8 Rev (1207) revision support added, required Revision
 *		specific mini-driver code to support Rev F as well as
 *		prior revisions
 *
 *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
 *		-Family 10h revision support added. New PCI Device IDs,
 *		indicating new changes. Actual registers modified
 *		were slight, less than the Rev E to Rev F transition
 *		but changing the PCI Device ID was the proper thing to
 *		do, as it provides for almost automactic family
 *		detection. The mods to Rev F required more family
 *		information detection.
 *
 *	Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
 *		- misc fixes and code cleanups
 *
 * This module is based on the following documents
 * (available from http://www.amd.com/):
 *
 *	Title:	BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
 *		Opteron Processors
 *	AMD publication #: 26094
 *`	Revision: 3.26
 *
 *	Title:	BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
 *		Processors
 *	AMD publication #: 32559
 *	Revision: 3.00
 *	Issue Date: May 2006
 *
 *	Title:	BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
 *		Processors
 *	AMD publication #: 31116
 *	Revision: 3.00
 *	Issue Date: September 07, 2007
 *
 * Sections in the first 2 documents are no longer in sync with each other.
 * The Family 10h BKDG was totally re-written from scratch with a new
 * presentation model.
 * Therefore, comments that refer to a Document section might be off.
 */

#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/edac.h>
#include <asm/msr.h>
#include "edac_core.h"
#include "mce_amd.h"

#define amd64_debug(fmt, arg...) \
	edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)

#define amd64_info(fmt, arg...) \
	edac_printk(KERN_INFO, "amd64", fmt, ##arg)

#define amd64_notice(fmt, arg...) \
	edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)

#define amd64_warn(fmt, arg...) \
	edac_printk(KERN_WARNING, "amd64", fmt, ##arg)

#define amd64_err(fmt, arg...) \
	edac_printk(KERN_ERR, "amd64", fmt, ##arg)

#define amd64_mc_warn(mci, fmt, arg...) \
	edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)

#define amd64_mc_err(mci, fmt, arg...) \
	edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)

/*
 * Throughout the comments in this code, the following terms are used:
 *
 *	SysAddr, DramAddr, and InputAddr
 *
 *  These terms come directly from the amd64 documentation
 * (AMD publication #26094).  They are defined as follows:
 *
 *     SysAddr:
 *         This is a physical address generated by a CPU core or a device
 *         doing DMA.  If generated by a CPU core, a SysAddr is the result of
 *         a virtual to physical address translation by the CPU core's address
 *         translation mechanism (MMU).
 *
 *     DramAddr:
 *         A DramAddr is derived from a SysAddr by subtracting an offset that
 *         depends on which node the SysAddr maps to and whether the SysAddr
 *         is within a range affected by memory hoisting.  The DRAM Base
 *         (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
 *         determine which node a SysAddr maps to.
 *
 *         If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
 *         is within the range of addresses specified by this register, then
 *         a value x from the DHAR is subtracted from the SysAddr to produce a
 *         DramAddr.  Here, x represents the base address for the node that
 *         the SysAddr maps to plus an offset due to memory hoisting.  See
 *         section 3.4.8 and the comments in amd64_get_dram_hole_info() and
 *         sys_addr_to_dram_addr() below for more information.
 *
 *         If the SysAddr is not affected by the DHAR then a value y is
 *         subtracted from the SysAddr to produce a DramAddr.  Here, y is the
 *         base address for the node that the SysAddr maps to.  See section
 *         3.4.4 and the comments in sys_addr_to_dram_addr() below for more
 *         information.
 *
 *     InputAddr:
 *         A DramAddr is translated to an InputAddr before being passed to the
 *         memory controller for the node that the DramAddr is associated
 *         with.  The memory controller then maps the InputAddr to a csrow.
 *         If node interleaving is not in use, then the InputAddr has the same
 *         value as the DramAddr.  Otherwise, the InputAddr is produced by
 *         discarding the bits used for node interleaving from the DramAddr.
 *         See section 3.4.4 for more information.
 *
 *         The memory controller for a given node uses its DRAM CS Base and
 *         DRAM CS Mask registers to map an InputAddr to a csrow.  See
 *         sections 3.5.4 and 3.5.5 for more information.
 */

#define EDAC_AMD64_VERSION		"3.4.0"
#define EDAC_MOD_STR			"amd64_edac"

/* Extended Model from CPUID, for CPU Revision numbers */
#define K8_REV_D			1
#define K8_REV_E			2
#define K8_REV_F			4

/* Hardware limit on ChipSelect rows per MC and processors per system */
#define NUM_CHIPSELECTS			8
#define DRAM_RANGES			8

#define ON true
#define OFF false

/*
 * Create a contiguous bitmask starting at bit position @lo and ending at
 * position @hi. For example
 *
 * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000.
 */
#define GENMASK(lo, hi)			(((1ULL << ((hi) - (lo) + 1)) - 1) << (lo))

/*
 * PCI-defined configuration space registers
 */
#define PCI_DEVICE_ID_AMD_15H_NB_F1	0x1601
#define PCI_DEVICE_ID_AMD_15H_NB_F2	0x1602


/*
 * Function 1 - Address Map
 */
#define DRAM_BASE_LO			0x40
#define DRAM_LIMIT_LO			0x44

#define dram_intlv_en(pvt, i)		((pvt->ranges[i].base.lo >> 8) & 0x7)
#define dram_rw(pvt, i)			(pvt->ranges[i].base.lo & 0x3)
#define dram_intlv_sel(pvt, i)		((pvt->ranges[i].lim.lo >> 8) & 0x7)
#define dram_dst_node(pvt, i)		(pvt->ranges[i].lim.lo & 0x7)

#define DHAR				0xf0
#define dhar_valid(pvt)			((pvt)->dhar & BIT(0))
#define dhar_mem_hoist_valid(pvt)	((pvt)->dhar & BIT(1))
#define dhar_base(pvt)			((pvt)->dhar & 0xff000000)
#define k8_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff00) << 16)

					/* NOTE: Extra mask bit vs K8 */
#define f10_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff80) << 16)

#define DCT_CFG_SEL			0x10C

#define DRAM_BASE_HI			0x140
#define DRAM_LIMIT_HI			0x144


/*
 * Function 2 - DRAM controller
 */
#define DCSB0				0x40
#define DCSB1				0x140
#define DCSB_CS_ENABLE			BIT(0)

#define DCSM0				0x60
#define DCSM1				0x160

#define csrow_enabled(i, dct, pvt)	((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)

#define DBAM0				0x80
#define DBAM1				0x180

/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
#define DBAM_DIMM(i, reg)		((((reg) >> (4*i))) & 0xF)

#define DBAM_MAX_VALUE			11

#define DCLR0				0x90
#define DCLR1				0x190
#define REVE_WIDTH_128			BIT(16)
#define WIDTH_128			BIT(11)

#define DCHR0				0x94
#define DCHR1				0x194
#define DDR3_MODE			BIT(8)

#define DCT_SEL_LO			0x110
#define dct_sel_baseaddr(pvt)		((pvt)->dct_sel_lo & 0xFFFFF800)
#define dct_sel_interleave_addr(pvt)	(((pvt)->dct_sel_lo >> 6) & 0x3)
#define dct_high_range_enabled(pvt)	((pvt)->dct_sel_lo & BIT(0))
#define dct_interleave_enabled(pvt)	((pvt)->dct_sel_lo & BIT(2))

#define dct_ganging_enabled(pvt)	((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))

#define dct_data_intlv_enabled(pvt)	((pvt)->dct_sel_lo & BIT(5))
#define dct_memory_cleared(pvt)		((pvt)->dct_sel_lo & BIT(10))

#define SWAP_INTLV_REG			0x10c

#define DCT_SEL_HI			0x114

/*
 * Function 3 - Misc Control
 */
#define NBCTL				0x40

#define NBCFG				0x44
#define NBCFG_CHIPKILL			BIT(23)
#define NBCFG_ECC_ENABLE		BIT(22)

/* F3x48: NBSL */
#define F10_NBSL_EXT_ERR_ECC		0x8
#define NBSL_PP_OBS			0x2

#define SCRCTRL				0x58

#define F10_ONLINE_SPARE		0xB0
#define online_spare_swap_done(pvt, c)	(((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
#define online_spare_bad_dramcs(pvt, c)	(((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)

#define F10_NB_ARRAY_ADDR		0xB8
#define F10_NB_ARRAY_DRAM_ECC		BIT(31)

/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline  */
#define SET_NB_ARRAY_ADDRESS(section)	(((section) & 0x3) << 1)

#define F10_NB_ARRAY_DATA		0xBC
#define SET_NB_DRAM_INJECTION_WRITE(word, bits)  \
					(BIT(((word) & 0xF) + 20) | \
					BIT(17) | bits)
#define SET_NB_DRAM_INJECTION_READ(word, bits)  \
					(BIT(((word) & 0xF) + 20) | \
					BIT(16) |  bits)

#define NBCAP				0xE8
#define NBCAP_CHIPKILL			BIT(4)
#define NBCAP_SECDED			BIT(3)
#define NBCAP_DCT_DUAL			BIT(0)

#define EXT_NB_MCA_CFG			0x180

/* MSRs */
#define MSR_MCGCTL_NBE			BIT(4)

/* AMD sets the first MC device at device ID 0x18. */
static inline int get_node_id(struct pci_dev *pdev)
{
	return PCI_SLOT(pdev->devfn) - 0x18;
}

enum amd_families {
	K8_CPUS = 0,
	F10_CPUS,
	F15_CPUS,
	NUM_FAMILIES,
};

/* Error injection control structure */
struct error_injection {
	u32	section;
	u32	word;
	u32	bit_map;
};

/* low and high part of PCI config space regs */
struct reg_pair {
	u32 lo, hi;
};

/*
 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
 */
struct dram_range {
	struct reg_pair base;
	struct reg_pair lim;
};

/* A DCT chip selects collection */
struct chip_select {
	u32 csbases[NUM_CHIPSELECTS];
	u8 b_cnt;

	u32 csmasks[NUM_CHIPSELECTS];
	u8 m_cnt;
};

struct amd64_pvt {
	struct low_ops *ops;

	/* pci_device handles which we utilize */
	struct pci_dev *F1, *F2, *F3;

	int mc_node_id;		/* MC index of this MC node */
	int ext_model;		/* extended model value of this node */
	int channel_count;

	/* Raw registers */
	u32 dclr0;		/* DRAM Configuration Low DCT0 reg */
	u32 dclr1;		/* DRAM Configuration Low DCT1 reg */
	u32 dchr0;		/* DRAM Configuration High DCT0 reg */
	u32 dchr1;		/* DRAM Configuration High DCT1 reg */
	u32 nbcap;		/* North Bridge Capabilities */
	u32 nbcfg;		/* F10 North Bridge Configuration */
	u32 ext_nbcfg;		/* Extended F10 North Bridge Configuration */
	u32 dhar;		/* DRAM Hoist reg */
	u32 dbam0;		/* DRAM Base Address Mapping reg for DCT0 */
	u32 dbam1;		/* DRAM Base Address Mapping reg for DCT1 */

	/* one for each DCT */
	struct chip_select csels[2];

	/* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
	struct dram_range ranges[DRAM_RANGES];

	u64 top_mem;		/* top of memory below 4GB */
	u64 top_mem2;		/* top of memory above 4GB */

	u32 dct_sel_lo;		/* DRAM Controller Select Low */
	u32 dct_sel_hi;		/* DRAM Controller Select High */
	u32 online_spare;	/* On-Line spare Reg */

	/* x4 or x8 syndromes in use */
	u8 ecc_sym_sz;

	/* place to store error injection parameters prior to issue */
	struct error_injection injection;
};

static inline u64 get_dram_base(struct amd64_pvt *pvt, unsigned i)
{
	u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;

	if (boot_cpu_data.x86 == 0xf)
		return addr;

	return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
}

static inline u64 get_dram_limit(struct amd64_pvt *pvt, unsigned i)
{
	u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;

	if (boot_cpu_data.x86 == 0xf)
		return lim;

	return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
}

static inline u16 extract_syndrome(u64 status)
{
	return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
}

/*
 * per-node ECC settings descriptor
 */
struct ecc_settings {
	u32 old_nbctl;
	bool nbctl_valid;

	struct flags {
		unsigned long nb_mce_enable:1;
		unsigned long nb_ecc_prev:1;
	} flags;
};

extern const char *tt_msgs[4];
extern const char *ll_msgs[4];
extern const char *rrrr_msgs[16];
extern const char *to_msgs[2];
extern const char *pp_msgs[4];
extern const char *ii_msgs[4];
extern const char *htlink_msgs[8];

#ifdef CONFIG_EDAC_DEBUG
#define NUM_DBG_ATTRS 5
#else
#define NUM_DBG_ATTRS 0
#endif

#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
#define NUM_INJ_ATTRS 5
#else
#define NUM_INJ_ATTRS 0
#endif

extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
				     amd64_inj_attrs[NUM_INJ_ATTRS];

/*
 * Each of the PCI Device IDs types have their own set of hardware accessor
 * functions and per device encoding/decoding logic.
 */
struct low_ops {
	int (*early_channel_count)	(struct amd64_pvt *pvt);
	void (*map_sysaddr_to_csrow)	(struct mem_ctl_info *mci, u64 sys_addr,
					 u16 syndrome);
	int (*dbam_to_cs)		(struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
	int (*read_dct_pci_cfg)		(struct amd64_pvt *pvt, int offset,
					 u32 *val, const char *func);
};

struct amd64_family_type {
	const char *ctl_name;
	u16 f1_id, f3_id;
	struct low_ops ops;
};

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func);

#define amd64_read_pci_cfg(pdev, offset, val)	\
	__amd64_read_pci_cfg_dword(pdev, offset, val, __func__)

#define amd64_write_pci_cfg(pdev, offset, val)	\
	__amd64_write_pci_cfg_dword(pdev, offset, val, __func__)

#define amd64_read_dct_pci_cfg(pvt, offset, val) \
	pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)

int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size);