1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
#include "amd64_edac.h"
static struct edac_pci_ctl_info *amd64_ctl_pci;
static int report_gart_errors;
module_param(report_gart_errors, int, 0644);
/*
* Set by command line parameter. If BIOS has enabled the ECC, this override is
* cleared to prevent re-enabling the hardware by this driver.
*/
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);
/* Lookup table for all possible MC control instances */
struct amd64_pvt;
static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
/*
* Memory scrubber control interface. For K8, memory scrubbing is handled by
* hardware and can involve L2 cache, dcache as well as the main memory. With
* F10, this is extended to L3 cache scrubbing on CPU models sporting that
* functionality.
*
* This causes the "units" for the scrubbing speed to vary from 64 byte blocks
* (dram) over to cache lines. This is nasty, so we will use bandwidth in
* bytes/sec for the setting.
*
* Currently, we only do dram scrubbing. If the scrubbing is done in software on
* other archs, we might not have access to the caches directly.
*/
/*
* scan the scrub rate mapping table for a close or matching bandwidth value to
* issue. If requested is too big, then use last maximum value found.
*/
static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
u32 min_scrubrate)
{
u32 scrubval;
int i;
/*
* map the configured rate (new_bw) to a value specific to the AMD64
* memory controller and apply to register. Search for the first
* bandwidth entry that is greater or equal than the setting requested
* and program that. If at last entry, turn off DRAM scrubbing.
*/
for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
/*
* skip scrub rates which aren't recommended
* (see F10 BKDG, F3x58)
*/
if (scrubrates[i].scrubval < min_scrubrate)
continue;
if (scrubrates[i].bandwidth <= new_bw)
break;
/*
* if no suitable bandwidth found, turn off DRAM scrubbing
* entirely by falling back to the last element in the
* scrubrates array.
*/
}
scrubval = scrubrates[i].scrubval;
if (scrubval)
edac_printk(KERN_DEBUG, EDAC_MC,
"Setting scrub rate bandwidth: %u\n",
scrubrates[i].bandwidth);
else
edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
return 0;
}
static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 min_scrubrate = 0x0;
switch (boot_cpu_data.x86) {
case 0xf:
min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
break;
case 0x10:
min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
break;
case 0x11:
min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
break;
default:
amd64_printk(KERN_ERR, "Unsupported family!\n");
break;
}
return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
min_scrubrate);
}
static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
{
struct amd64_pvt *pvt = mci->pvt_info;
u32 scrubval = 0;
int status = -1, i, ret = 0;
ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
if (ret)
debugf0("Reading K8_SCRCTRL failed\n");
scrubval = scrubval & 0x001F;
edac_printk(KERN_DEBUG, EDAC_MC,
"pci-read, sdram scrub control value: %d \n", scrubval);
for (i = 0; ARRAY_SIZE(scrubrates); i++) {
if (scrubrates[i].scrubval == scrubval) {
*bw = scrubrates[i].bandwidth;
status = 0;
break;
}
}
return status;
}
/* Map from a CSROW entry to the mask entry that operates on it */
static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
{
return csrow >> (pvt->num_dcsm >> 3);
}
/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
{
if (dct == 0)
return pvt->dcsb0[csrow];
else
return pvt->dcsb1[csrow];
}
/*
* Return the 'mask' address the i'th CS entry. This function is needed because
* there number of DCSM registers on Rev E and prior vs Rev F and later is
* different.
*/
static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
{
if (dct == 0)
return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
else
return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
}
/*
* In *base and *limit, pass back the full 40-bit base and limit physical
* addresses for the node given by node_id. This information is obtained from
* DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
* base and limit addresses are of type SysAddr, as defined at the start of
* section 3.4.4 (p. 70). They are the lowest and highest physical addresses
* in the address range they represent.
*/
static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
u64 *base, u64 *limit)
{
*base = pvt->dram_base[node_id];
*limit = pvt->dram_limit[node_id];
}
/*
* Return 1 if the SysAddr given by sys_addr matches the base/limit associated
* with node_id
*/
static int amd64_base_limit_match(struct amd64_pvt *pvt,
u64 sys_addr, int node_id)
{
u64 base, limit, addr;
amd64_get_base_and_limit(pvt, node_id, &base, &limit);
/* The K8 treats this as a 40-bit value. However, bits 63-40 will be
* all ones if the most significant implemented address bit is 1.
* Here we discard bits 63-40. See section 3.4.2 of AMD publication
* 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
* Application Programming.
*/
addr = sys_addr & 0x000000ffffffffffull;
return (addr >= base) && (addr <= limit);
}
/*
* Attempt to map a SysAddr to a node. On success, return a pointer to the
* mem_ctl_info structure for the node that the SysAddr maps to.
*
* On failure, return NULL.
*/
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
u64 sys_addr)
{
struct amd64_pvt *pvt;
int node_id;
u32 intlv_en, bits;
/*
* Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
* 3.4.4.2) registers to map the SysAddr to a node ID.
*/
pvt = mci->pvt_info;
/*
* The value of this field should be the same for all DRAM Base
* registers. Therefore we arbitrarily choose to read it from the
* register for node 0.
*/
intlv_en = pvt->dram_IntlvEn[0];
if (intlv_en == 0) {
for (node_id = 0; ; ) {
if (amd64_base_limit_match(pvt, sys_addr, node_id))
break;
if (++node_id >= DRAM_REG_COUNT)
goto err_no_match;
}
goto found;
}
if (unlikely((intlv_en != (0x01 << 8)) &&
(intlv_en != (0x03 << 8)) &&
(intlv_en != (0x07 << 8)))) {
amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
"IntlvEn field of DRAM Base Register for node 0: "
"This probably indicates a BIOS bug.\n", intlv_en);
return NULL;
}
bits = (((u32) sys_addr) >> 12) & intlv_en;
for (node_id = 0; ; ) {
if ((pvt->dram_limit[node_id] & intlv_en) == bits)
break; /* intlv_sel field matches */
if (++node_id >= DRAM_REG_COUNT)
goto err_no_match;
}
/* sanity test for sys_addr */
if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
amd64_printk(KERN_WARNING,
"%s(): sys_addr 0x%lx falls outside base/limit "
"address range for node %d with node interleaving "
"enabled.\n", __func__, (unsigned long)sys_addr,
node_id);
return NULL;
}
found:
return edac_mc_find(node_id);
err_no_match:
debugf2("sys_addr 0x%lx doesn't match any node\n",
(unsigned long)sys_addr);
return NULL;
}
|