aboutsummaryrefslogtreecommitdiff
path: root/drivers/crypto/padlock-aes.c
blob: c33334ac987e8053b96a00f431d2ce0c86e9e398 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/* 
 * Cryptographic API.
 *
 * Support for VIA PadLock hardware crypto engine.
 *
 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
 *
 * Key expansion routine taken from crypto/aes_generic.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ---------------------------------------------------------------------------
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * All rights reserved.
 *
 * LICENSE TERMS
 *
 * The free distribution and use of this software in both source and binary
 * form is allowed (with or without changes) provided that:
 *
 *   1. distributions of this source code include the above copyright
 *      notice, this list of conditions and the following disclaimer;
 *
 *   2. distributions in binary form include the above copyright
 *      notice, this list of conditions and the following disclaimer
 *      in the documentation and/or other associated materials;
 *
 *   3. the copyright holder's name is not used to endorse products
 *      built using this software without specific written permission.
 *
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 * may be distributed under the terms of the GNU General Public License (GPL),
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 *
 * DISCLAIMER
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 */

#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <asm/byteorder.h>
#include "padlock.h"

#define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
#define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))

/* Control word. */
struct cword {
	unsigned int __attribute__ ((__packed__))
		rounds:4,
		algo:3,
		keygen:1,
		interm:1,
		encdec:1,
		ksize:2;
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));

/* Whenever making any changes to the following
 * structure *make sure* you keep E, d_data
 * and cword aligned on 16 Bytes boundaries!!! */
struct aes_ctx {
	struct {
		struct cword encrypt;
		struct cword decrypt;
	} cword;
	u32 *D;
	int key_length;
	u32 E[AES_EXTENDED_KEY_SIZE]
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
	u32 d_data[AES_EXTENDED_KEY_SIZE]
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
};

/* ====== Key management routines ====== */

static inline uint32_t
generic_rotr32 (const uint32_t x, const unsigned bits)
{
	const unsigned n = bits % 32;
	return (x >> n) | (x << (32 - n));
}

static inline uint32_t
generic_rotl32 (const uint32_t x, const unsigned bits)
{
	const unsigned n = bits % 32;
	return (x << n) | (x >> (32 - n));
}

#define rotl generic_rotl32
#define rotr generic_rotr32

/*
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
 */
static inline uint8_t
byte(const uint32_t x, const unsigned n)
{
	return x >> (n << 3);
}

#define E_KEY ctx->E
#define D_KEY ctx->D

static uint8_t pow_tab[256];
static uint8_t log_tab[256];
static uint8_t sbx_tab[256];
static uint8_t isb_tab[256];
static uint32_t rco_tab[10];
static uint32_t ft_tab[4][256];
static uint32_t it_tab[4][256];

static uint32_t fl_tab[4][256];
static uint32_t il_tab[4][256];

static inline uint8_t
f_mult (uint8_t a, uint8_t b)
{
	uint8_t aa = log_tab[a], cc = aa + log_tab[b];

	return pow_tab[cc + (cc < aa ? 1 : 0)];
}

#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)

#define f_rn(bo, bi, n, k)					\
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rn(bo, bi, n, k)					\
    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#define ls_box(x)				\
    ( fl_tab[0][byte(x, 0)] ^			\
      fl_tab[1][byte(x, 1)] ^			\
      fl_tab[2][byte(x, 2)] ^			\
      fl_tab[3][byte(x, 3)] )

#define f_rl(bo, bi, n, k)					\
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rl(bo, bi, n, k)					\
    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

static void
gen_tabs (void)
{
	uint32_t i, t;
	uint8_t p, q;

	/* log and power tables for GF(2**8) finite field with
	   0x011b as modular polynomial - the simplest prmitive
	   root is 0x03, used here to generate the tables */

	for (i = 0, p = 1; i < 256; ++i) {
		pow_tab[i] = (uint8_t) p;
		log_tab[p] = (uint8_t) i;

		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
	}

	log_tab[1] = 0;

	for (i = 0, p = 1; i < 10; ++i) {
		rco_tab[i] = p;

		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
	}

	for (i = 0; i < 256; ++i) {
		p = (i ? pow_tab[255 - log_tab[i]] : 0);
		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
		sbx_tab[i] = p;
		isb_tab[p] = (uint8_t) i;
	}

	for (i = 0; i < 256; ++i) {
		p = sbx_tab[i];

		t = p;
		fl_tab[0][i] = t;
		fl_tab[1][i] = rotl (t, 8);
		fl_tab[2][i] = rotl (t, 16);
		fl_tab[3][i] = rotl (t, 24);

		t = ((uint32_t) ff_mult (2, p)) |
		    ((uint32_t) p << 8) |
		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);

		ft_tab[0][i] = t;
		ft_tab[1][i] = rotl (t, 8);
		ft_tab[2][i] = rotl (t, 16);
		ft_tab[3][i] = rotl (t, 24);

		p = isb_tab[i];

		t = p;
		il_tab[0][i] = t;
		il_tab[1][i] = rotl (t, 8);
		il_tab[2][i] = rotl (t, 16);
		il_tab[3][i] = rotl (t, 24);

		t = ((uint32_t) ff_mult (14, p)) |
		    ((uint32_t) ff_mult (9, p) << 8) |
		    ((uint32_t) ff_mult (13, p) << 16) |
		    ((uint32_t) ff_mult (11, p) << 24);

		it_tab[0][i] = t;
		it_tab[1][i] = rotl (t, 8);
		it_tab[2][i] = rotl (t, 16);
		it_tab[3][i] = rotl (t, 24);
	}
}

#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)       \
    u   = star_x(x);        \
    v   = star_x(u);        \
    w   = star_x(v);        \
    t   = w ^ (x);          \
   (y)  = u ^ v ^ w;        \
   (y) ^= rotr(u ^ t,  8) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(t,24)

/* initialise the key schedule from the user supplied key */

#define loop4(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
}

#define loop6(i)                                    \
{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
}

#define loop8(i)                                    \
{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
    E_KEY[8 * i + 12] = t;                \
    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
}

/* Tells whether the ACE is capable to generate
   the extended key for a given key_len. */
static inline int
aes_hw_extkey_available(uint8_t key_len)
{
	/* TODO: We should check the actual CPU model/stepping
	         as it's possible that the capability will be
	         added in the next CPU revisions. */
	if (key_len == 16)
		return 1;
	return 0;
}

static inline struct aes_ctx *aes_ctx_common(void *ctx)
{
	unsigned long addr = (unsigned long)ctx;
	unsigned long align = PADLOCK_ALIGNMENT;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
	return (struct aes_ctx *)ALIGN(addr, align);
}

static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
{
	return aes_ctx_common(crypto_tfm_ctx(tfm));
}

static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
{
	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
}

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		       unsigned int key_len)
{
	struct aes_ctx *ctx = aes_ctx(tfm);
	const __le32 *key = (const __le32 *)in_key;
	u32 *flags = &tfm->crt_flags;
	uint32_t i, t, u, v, w;
	uint32_t P[AES_EXTENDED_KEY_SIZE];
	uint32_t rounds;

	if (key_len % 8) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	ctx->key_length = key_len;

	/*
	 * If the hardware is capable of generating the extended key
	 * itself we must supply the plain key for both encryption
	 * and decryption.
	 */
	ctx->D = ctx->E;

	E_KEY[0] = le32_to_cpu(key[0]);
	E_KEY[1] = le32_to_cpu(key[1]);
	E_KEY[2] = le32_to_cpu(key[2]);
	E_KEY[3] = le32_to_cpu(key[3]);

	/* Prepare control words. */
	memset(&ctx->cword, 0, sizeof(ctx->cword));

	ctx->cword.decrypt.encdec = 1;
	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;

	/* Don't generate extended keys if the hardware can do it. */
	if (aes_hw_extkey_available(key_len))
		return 0;

	ctx->D = ctx->d_data;
	ctx->cword.encrypt.keygen = 1;
	ctx->cword.decrypt.keygen = 1;

	switch (key_len) {
	case 16:
		t = E_KEY[3];
		for (i = 0; i < 10; ++i)
			loop4 (i);
		break;

	case 24:
		E_KEY[4] = le32_to_cpu(key[4]);
		t = E_KEY[5] = le32_to_cpu(key[5]);
		for (i = 0; i < 8; ++i)
			loop6 (i);
		break;

	case 32:
		E_KEY[4] = le32_to_cpu(key[4]);
		E_KEY[5] = le32_to_cpu(key[5]);
		E_KEY[6] = le32_to_cpu(key[6]);
		t = E_KEY[7] = le32_to_cpu(key[7]);
		for (i = 0; i < 7; ++i)
			loop8 (i);
		break;
	}

	D_KEY[0] = E_KEY[0];
	D_KEY[1] = E_KEY[1];
	D_KEY[2] = E_KEY[2];
	D_KEY[3] = E_KEY[3];

	for (i = 4; i < key_len + 24; ++i) {
		imix_col (D_KEY[i], E_KEY[i]);
	}

	/* PadLock needs a different format of the decryption key. */
	rounds = 10 + (key_len - 16) / 4;

	for (i = 0; i < rounds; i++) {
		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
	}

	P[0] = E_KEY[(rounds * 4) + 0];
	P[1] = E_KEY[(rounds * 4) + 1];
	P[2] = E_KEY[(rounds * 4) + 2];
	P[3] = E_KEY[(rounds * 4) + 3];

	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);

	return 0;
}

/* ====== Encryption/decryption routines ====== */

/* These are the real call to PadLock. */
static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
				  void *control_word)
{
	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
		      : "+S"(input), "+D"(output)
		      : "d"(control_word), "b"(key), "c"(1));
}

static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
{
	u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);

	memcpy(tmp, in, AES_BLOCK_SIZE);
	padlock_xcrypt(tmp, out, key, cword);
}

static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
			     struct cword *cword)
{
	asm volatile ("pushfl; popfl");

	/* padlock_xcrypt requires at least two blocks of data. */
	if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
		       (PAGE_SIZE - 1)))) {
		aes_crypt_copy(in, out, key, cword);
		return;
	}

	padlock_xcrypt(in, out, key, cword);
}

static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
				      void *control_word, u32 count)
{
	if (count == 1) {
		aes_crypt(input, output, key, control_word);
		return;
	}

	asm volatile ("pushfl; popfl");		/* enforce key reload. */
	asm volatile ("test $1, %%cl;"
		      "je 1f;"
		      "lea -1(%%ecx), %%eax;"
		      "mov $1, %%ecx;"
		      ".byte 0xf3,0x0f,0xa7,0xc8;"	/* rep xcryptecb */
		      "mov %%eax, %%ecx;"
		      "1:"
		      ".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
		      : "+S"(input), "+D"(output)
		      : "d"(control_word), "b"(key), "c"(count)
		      : "ax");
}

static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
				     u8 *iv, void *control_word, u32 count)
{
	/* Enforce key reload. */
	asm volatile ("pushfl; popfl");
	/* rep xcryptcbc */
	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
		      : "+S" (input), "+D" (output), "+a" (iv)
		      : "d" (control_word), "b" (key), "c" (count));
	return iv;
}

static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	struct aes_ctx *ctx = aes_ctx(tfm);
	aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
}

static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	struct aes_ctx *ctx = aes_ctx(tfm);
	aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
}

static struct crypto_alg aes_alg = {
	.cra_name		=	"aes",
	.cra_driver_name	=	"aes-padlock",
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct aes_ctx),
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
			.cia_setkey	   	= 	aes_set_key,
			.cia_encrypt	 	=	aes_encrypt,
			.cia_decrypt	  	=	aes_decrypt,
		}
	}
};

static int ecb_aes_encrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
				   ctx->E, &ctx->cword.encrypt,
				   nbytes / AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}

	return err;
}

static int ecb_aes_decrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
				   ctx->D, &ctx->cword.decrypt,
				   nbytes / AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}

	return err;
}

static struct crypto_alg ecb_aes_alg = {
	.cra_name		=	"ecb(aes)",
	.cra_driver_name	=	"ecb-aes-padlock",
	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct aes_ctx),
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
	.cra_u			=	{
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.setkey	   		= 	aes_set_key,
			.encrypt		=	ecb_aes_encrypt,
			.decrypt		=	ecb_aes_decrypt,
		}
	}
};

static int cbc_aes_encrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
					    walk.dst.virt.addr, ctx->E,
					    walk.iv, &ctx->cword.encrypt,
					    nbytes / AES_BLOCK_SIZE);
		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}

	return err;
}

static int cbc_aes_decrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;

	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

	while ((nbytes = walk.nbytes)) {
		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
				   ctx->D, walk.iv, &ctx->cword.decrypt,
				   nbytes / AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}

	return err;
}

static struct crypto_alg cbc_aes_alg = {
	.cra_name		=	"cbc(aes)",
	.cra_driver_name	=	"cbc-aes-padlock",
	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct aes_ctx),
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
	.cra_u			=	{
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.ivsize			=	AES_BLOCK_SIZE,
			.setkey	   		= 	aes_set_key,
			.encrypt		=	cbc_aes_encrypt,
			.decrypt		=	cbc_aes_decrypt,
		}
	}
};

static int __init padlock_init(void)
{
	int ret;

	if (!cpu_has_xcrypt) {
		printk(KERN_ERR PFX "VIA PadLock not detected.\n");
		return -ENODEV;
	}

	if (!cpu_has_xcrypt_enabled) {
		printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
		return -ENODEV;
	}

	gen_tabs();
	if ((ret = crypto_register_alg(&aes_alg)))
		goto aes_err;

	if ((ret = crypto_register_alg(&ecb_aes_alg)))
		goto ecb_aes_err;

	if ((ret = crypto_register_alg(&cbc_aes_alg)))
		goto cbc_aes_err;

	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");

out:
	return ret;

cbc_aes_err:
	crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err:
	crypto_unregister_alg(&aes_alg);
aes_err:
	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
	goto out;
}

static void __exit padlock_fini(void)
{
	crypto_unregister_alg(&cbc_aes_alg);
	crypto_unregister_alg(&ecb_aes_alg);
	crypto_unregister_alg(&aes_alg);
}

module_init(padlock_init);
module_exit(padlock_fini);

MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");

MODULE_ALIAS("aes");