1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/atmel_tc.h>
/*
* We're configured to use a specific TC block, one that's not hooked
* up to external hardware, to provide a time solution:
*
* - Two channels combine to create a free-running 32 bit counter
* with a base rate of 5+ MHz, packaged as a clocksource (with
* resolution better than 200 nsec).
*
* - The third channel may be used to provide a 16-bit clockevent
* source, used in either periodic or oneshot mode. This runs
* at 32 KiHZ, and can handle delays of up to two seconds.
*
* A boot clocksource and clockevent source are also currently needed,
* unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
* this code can be used when init_timers() is called, well before most
* devices are set up. (Some low end AT91 parts, which can run uClinux,
* have only the timers in one TC block... they currently don't support
* the tclib code, because of that initialization issue.)
*
* REVISIT behavior during system suspend states... we should disable
* all clocks and save the power. Easily done for clockevent devices,
* but clocksources won't necessarily get the needed notifications.
* For deeper system sleep states, this will be mandatory...
*/
static void __iomem *tcaddr;
static cycle_t tc_get_cycles(struct clocksource *cs)
{
unsigned long flags;
u32 lower, upper;
raw_local_irq_save(flags);
do {
upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
raw_local_irq_restore(flags);
return (upper << 16) | lower;
}
static struct clocksource clksrc = {
.name = "tcb_clksrc",
.rating = 200,
.read = tc_get_cycles,
.mask = CLOCKSOURCE_MASK(32),
.shift = 18,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#ifdef CONFIG_GENERIC_CLOCKEVENTS
struct tc_clkevt_device {
struct clock_event_device clkevt;
struct clk *clk;
void __iomem *regs;
};
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
{
return container_of(clkevt, struct tc_clkevt_device, clkevt);
}
/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
* because using one of the divided clocks would usually mean the
* tick rate can never be less than several dozen Hz (vs 0.5 Hz).
*
* A divided clock could be good for high resolution timers, since
* 30.5 usec resolution can seem "low".
*/
static u32 timer_clock;
static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
{
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
void __iomem *regs = tcd->regs;
if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
|| tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
clk_disable(tcd->clk);
}
switch (m) {
/* By not making the gentime core emulate periodic mode on top
* of oneshot, we get lower overhead and improved accuracy.
*/
case CLOCK_EVT_MODE_PERIODIC:
clk_enable(tcd->clk);
/* slow clock, count up to RC, then irq and restart */
__raw_writel(timer_clock
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
regs + ATMEL_TC_REG(2, CMR));
__raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
/* Enable clock and interrupts on RC compare */
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* go go gadget! */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
regs + ATMEL_TC_REG(2, CCR));
break;
case CLOCK_EVT_MODE_ONESHOT:
clk_enable(tcd->clk);
/* slow clock, count up to RC, then irq and stop */
__raw_writel(timer_clock | ATMEL_TC_CPCSTOP
| ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
regs + ATMEL_TC_REG(2, CMR));
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* set_next_event() configures and starts the timer */
break;
default:
break;
}
}
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
{
__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
/* go go gadget! */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
tcaddr + ATMEL_TC_REG(2, CCR));
return 0;
}
static struct tc_clkevt_device clkevt = {
.clkevt = {
.name = "tc_clkevt",
.features = CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT,
.shift = 32,
/* Should be lower than at91rm9200's system timer */
.rating = 125,
.set_next_event = tc_next_event,
.set_mode = tc_mode,
},
};
static irqreturn_t ch2_irq(int irq, void *handle)
{
struct tc_clkevt_device *dev = handle;
unsigned int sr;
sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
if (sr & ATMEL_TC_CPCS) {
dev->clkevt.event_handler(&dev->clkevt);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static struct irqaction tc_irqaction = {
.name = "tc_clkevt",
.flags = IRQF_TIMER | IRQF_DISABLED,
.handler = ch2_irq,
};
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
{
struct clk *t2_clk = tc->clk[2];
int irq = tc->irq[2];
clkevt.regs = tc->regs;
clkevt.clk = t2_clk;
tc_irqaction.dev_id = &clkevt;
timer_clock = clk32k_divisor_idx;
clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
clkevt.clkevt.max_delta_ns
= clockevent_delta2ns(0xffff, &clkevt.clkevt);
clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
clkevt.clkevt.cpumask = cpumask_of(0);
setup_irq(irq, &tc_irqaction);
clockevents_register_device(&clkevt.clkevt);
}
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
{
/* NOTHING */
}
#endif
static int __init tcb_clksrc_init(void)
{
static char bootinfo[] __initdata
= KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
struct platform_device *pdev;
struct atmel_tc *tc;
struct clk *t0_clk;
u32 rate, divided_rate = 0;
int best_divisor_idx = -1;
int clk32k_divisor_idx = -1;
int i;
tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
if (!tc) {
pr_debug("can't alloc TC for clocksource\n");
return -ENODEV;
}
tcaddr = tc->regs;
pdev = tc->pdev;
t0_clk = tc->clk[0];
clk_enable(t0_clk);
/* How fast will we be counting? Pick something over 5 MHz. */
rate = (u32) clk_get_rate(t0_clk);
for (i = 0; i < 5; i++) {
unsigned divisor = atmel_tc_divisors[i];
unsigned tmp;
/* remember 32 KiHz clock for later */
if (!divisor) {
clk32k_divisor_idx = i;
continue;
}
tmp = rate / divisor;
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
if (best_divisor_idx > 0) {
if (tmp < 5 * 1000 * 1000)
continue;
}
divided_rate = tmp;
best_divisor_idx = i;
}
clksrc.mult = clocksource_hz2mult(divided_rate, clksrc.shift);
printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
divided_rate / 1000000,
((divided_rate + 500000) % 1000000) / 1000);
/* tclib will give us three clocks no matter what the
* underlying platform supports.
*/
clk_enable(tc->clk[1]);
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
__raw_writel(best_divisor_idx /* likely divide-by-8 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP /* free-run */
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
tcaddr + ATMEL_TC_REG(0, CMR));
__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
/* channel 1: waveform mode, input TIOA0 */
__raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP, /* free-run */
tcaddr + ATMEL_TC_REG(1, CMR));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(
|