/*
* Intel & MS High Precision Event Timer Implementation.
*
* Copyright (C) 2003 Intel Corporation
* Venki Pallipadi
* (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
* Bob Picco <robert.picco@hp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/major.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/sysctl.h>
#include <linux/wait.h>
#include <linux/bcd.h>
#include <linux/seq_file.h>
#include <linux/bitops.h>
#include <asm/current.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <linux/acpi.h>
#include <acpi/acpi_bus.h>
#include <linux/hpet.h>
/*
* The High Precision Event Timer driver.
* This driver is closely modelled after the rtc.c driver.
* http://www.intel.com/hardwaredesign/hpetspec.htm
*/
#define HPET_USER_FREQ (64)
#define HPET_DRIFT (500)
static u32 hpet_ntimer, hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
/* A lock for concurrent access by app and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_lock);
/* A lock for concurrent intermodule access to hpet and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_task_lock);
#define HPET_DEV_NAME (7)
struct hpet_dev {
struct hpets *hd_hpets;
struct hpet __iomem *hd_hpet;
struct hpet_timer __iomem *hd_timer;
unsigned long hd_ireqfreq;
unsigned long hd_irqdata;
wait_queue_head_t hd_waitqueue;
struct fasync_struct *hd_async_queue;
struct hpet_task *hd_task;
unsigned int hd_flags;
unsigned int hd_irq;
unsigned int hd_hdwirq;
char hd_name[HPET_DEV_NAME];
};
struct hpets {
struct hpets *hp_next;
struct hpet __iomem *hp_hpet;
unsigned long hp_hpet_phys;
struct time_interpolator *hp_interpolator;
unsigned long hp_period;
unsigned long hp_delta;
unsigned int hp_ntimer;
unsigned int hp_which;
struct hpet_dev hp_dev[1];
};
static struct hpets *hpets;
#define HPET_OPEN 0x0001
#define HPET_IE 0x0002 /* interrupt enabled */
#define HPET_PERIODIC 0x0004
#if BITS_PER_LONG == 64
#define write_counter(V, MC) writeq(V, MC)
#define read_counter(MC) readq(MC)
#else
#define write_counter(V, MC) writel(V, MC)
#define read_counter(MC) readl(MC)
#endif
#ifndef readq
static inline unsigned long long readq(void __iomem *addr)
{
return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
}
#endif
#ifndef writeq
static inline void writeq(unsigned long long v, void __iomem *addr)
{
writel(v & 0xffffffff, addr);
writel(v >> 32, addr + 4);
}
#endif
static irqreturn_t hpet_interrupt(int irq, void *data, struct pt_regs *regs)
{
struct hpet_dev *devp;
unsigned long isr;
devp = data;
spin_lock(&hpet_lock);
devp->hd_irqdata++;
/*
* For non-periodic timers, increment the accumulator.
* This has the effect of treating non-periodic like periodic.
*/
if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
unsigned long m, t;
t = devp->hd_ireqfreq;
m = read_counter(&devp->hd_hpet->hpet_mc);
write_counter(t + m + devp->hd_hpets->hp_delta,
&devp->hd_timer->hpet_compare);
}
isr = (1 << (devp - devp->hd_hpets->hp_dev));
writeq(isr, &devp->hd_hpet->hpet_isr);
spin_unlock(&hpet_lock);
spin_lock(&hpet_task_lock);
if (devp->hd_task)
devp->hd_task->ht_func(devp->hd_task->ht_data);
spin_unlock(&hpet_task_lock);
wake_up_interruptible(&devp->hd_waitqueue);
kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
static int hpet_open(struct inode *inode, struct file *file)
{
struct hpet_dev *devp;
struct hpets *hpetp;
int i;
if (file->f_mode & FMODE_WRITE)
return -EINVAL;
spin_lock_irq(&hpet_lock);
for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
for (i = 0; i < hpetp->hp_ntimer; i++)
if (hpetp->