aboutsummaryrefslogtreecommitdiff
path: root/drivers/base/dma-mapping.c
blob: 3fbedc75e7c56219d1f0eafeabdebe9e058edc27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
 *
 * Copyright (c) 2006  SUSE Linux Products GmbH
 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
 *
 * This file is released under the GPLv2.
 */

#include <linux/dma-mapping.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <asm-generic/dma-coherent.h>

/*
 * Managed DMA API
 */
struct dma_devres {
	size_t		size;
	void		*vaddr;
	dma_addr_t	dma_handle;
};

static void dmam_coherent_release(struct device *dev, void *res)
{
	struct dma_devres *this = res;

	dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
}

static void dmam_noncoherent_release(struct device *dev, void *res)
{
	struct dma_devres *this = res;

	dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
}

static int dmam_match(struct device *dev, void *res, void *match_data)
{
	struct dma_devres *this = res, *match = match_data;

	if (this->vaddr == match->vaddr) {
		WARN_ON(this->size != match->size ||
			this->dma_handle != match->dma_handle);
		return 1;
	}
	return 0;
}

/**
 * dmam_alloc_coherent - Managed dma_alloc_coherent()
 * @dev: Device to allocate coherent memory for
 * @size: Size of allocation
 * @dma_handle: Out argument for allocated DMA handle
 * @gfp: Allocation flags
 *
 * Managed dma_alloc_coherent().  Memory allocated using this function
 * will be automatically released on driver detach.
 *
 * RETURNS:
 * Pointer to allocated memory on success, NULL on failure.
 */
void * dmam_alloc_coherent(struct device *dev, size_t size,
			   dma_addr_t *dma_handle, gfp_t gfp)
{
	struct dma_devres *dr;
	void *vaddr;

	dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
	if (!dr)
		return NULL;

	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
	if (!vaddr) {
		devres_free(dr);
		return NULL;
	}

	dr->vaddr = vaddr;
	dr->dma_handle = *dma_handle;
	dr->size = size;

	devres_add(dev, dr);

	return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_coherent);

/**
 * dmam_free_coherent - Managed dma_free_coherent()
 * @dev: Device to free coherent memory for
 * @size: Size of allocation
 * @vaddr: Virtual address of the memory to free
 * @dma_handle: DMA handle of the memory to free
 *
 * Managed dma_free_coherent().
 */
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
			dma_addr_t dma_handle)
{
	struct dma_devres match_data = { size, vaddr, dma_handle };

	dma_free_coherent(dev, size, vaddr, dma_handle);
	WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
			       &match_data));
}
EXPORT_SYMBOL(dmam_free_coherent);

/**
 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
 * @dev: Device to allocate non_coherent memory for
 * @size: Size of allocation
 * @dma_handle: Out argument for allocated DMA handle
 * @gfp: Allocation flags
 *
 * Managed dma_alloc_non_coherent().  Memory allocated using this
 * function will be automatically released on driver detach.
 *
 * RETURNS:
 * Pointer to allocated memory on success, NULL on failure.
 */
void *dmam_alloc_noncoherent(struct device *dev, size_t size,
			     dma_addr_t *dma_handle, gfp_t gfp)
{
	struct dma_devres *dr;
	void *vaddr;

	dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
	if (!dr)
		return NULL;

	vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
	if (!vaddr) {
		devres_free(dr);
		return NULL;
	}

	dr->vaddr = vaddr;
	dr->dma_handle = *dma_handle;
	dr->size = size;

	devres_add(dev, dr);

	return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_noncoherent);

/**
 * dmam_free_coherent - Managed dma_free_noncoherent()
 * @dev: Device to free noncoherent memory for
 * @size: Size of allocation
 * @vaddr: Virtual address of the memory to free
 * @dma_handle: DMA handle of the memory to free
 *
 * Managed dma_free_noncoherent().
 */
void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
			   dma_addr_t dma_handle)
{
	struct dma_devres match_data = { size, vaddr, dma_handle };

	dma_free_noncoherent(dev, size, vaddr, dma_handle);
	WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
				&match_data));
}
EXPORT_SYMBOL(dmam_free_noncoherent);

#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY

static void dmam_coherent_decl_release(struct device *dev, void *res)
{
	dma_release_declared_memory(dev);
}

/**
 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
 * @dev: Device to declare coherent memory for
 * @bus_addr: Bus address of coherent memory to be declared
 * @device_addr: Device address of coherent memory to be declared
 * @size: Size of coherent memory to be declared
 * @flags: Flags
 *
 * Managed dma_declare_coherent_memory().
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
int dmam_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
				 dma_addr_t device_addr, size_t size, int flags)
{
	void *res;
	int rc;

	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
	if (!res)
		return -ENOMEM;

	rc = dma_declare_coherent_memory(dev, bus_addr, device_addr, size,
					 flags);
	if (rc == 0)
		devres_add(dev, res);
	else
		devres_free(res);

	return rc;
}
EXPORT_SYMBOL(dmam_declare_coherent_memory);

/**
 * dmam_release_declared_memory - Managed dma_release_declared_memory().
 * @dev: Device to release declared coherent memory for
 *
 * Managed dmam_release_declared_memory().
 */
void dmam_release_declared_memory(struct device *dev)
{
	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
}
EXPORT_SYMBOL(dmam_release_declared_memory);

/*
 * Create scatter-list for the already allocated DMA buffer.
 */
int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size)
{
	struct page *page = virt_to_page(cpu_addr);
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}
EXPORT_SYMBOL(dma_common_get_sgtable);

#endif

/*
 * Create userspace mapping for the DMA-coherent memory.
 */
int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
{
	int ret = -ENXIO;
#ifdef CONFIG_MMU
	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
	unsigned long off = vma->vm_pgoff;

	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

	if (off < count && user_count <= (count - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      user_count << PAGE_SHIFT,
				      vma->vm_page_prot);
	}
#endif	/* CONFIG_MMU */

	return ret;
}
EXPORT_SYMBOL(dma_common_mmap);