aboutsummaryrefslogtreecommitdiff
path: root/crypto/aes_generic.c
blob: df8df4d346d270aa23cb8ec65471153134374d86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/* 
 * Cryptographic API.
 *
 * AES Cipher Algorithm.
 *
 * Based on Brian Gladman's code.
 *
 * Linux developers:
 *  Alexander Kjeldaas <astor@fast.no>
 *  Herbert Valerio Riedel <hvr@hvrlab.org>
 *  Kyle McMartin <kyle@debian.org>
 *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * ---------------------------------------------------------------------------
 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
 * All rights reserved.
 *
 * LICENSE TERMS
 *
 * The free distribution and use of this software in both source and binary
 * form is allowed (with or without changes) provided that:
 *
 *   1. distributions of this source code include the above copyright
 *      notice, this list of conditions and the following disclaimer;
 *
 *   2. distributions in binary form include the above copyright
 *      notice, this list of conditions and the following disclaimer
 *      in the documentation and/or other associated materials;
 *
 *   3. the copyright holder's name is not used to endorse products
 *      built using this software without specific written permission.
 *
 * ALTERNATIVELY, provided that this notice is retained in full, this product
 * may be distributed under the terms of the GNU General Public License (GPL),
 * in which case the provisions of the GPL apply INSTEAD OF those given above.
 *
 * DISCLAIMER
 *
 * This software is provided 'as is' with no explicit or implied warranties
 * in respect of its properties, including, but not limited to, correctness
 * and/or fitness for purpose.
 * ---------------------------------------------------------------------------
 */

/* Some changes from the Gladman version:
    s/RIJNDAEL(e_key)/E_KEY/g
    s/RIJNDAEL(d_key)/D_KEY/g
*/

#include <crypto/aes.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <asm/byteorder.h>

/*
 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
 */
static inline u8 byte(const u32 x, const unsigned n)
{
	return x >> (n << 3);
}

struct aes_ctx {
	int key_length;
	u32 buf[120];
};

#define E_KEY (&ctx->buf[0])
#define D_KEY (&ctx->buf[60])

static u8 pow_tab[256] __initdata;
static u8 log_tab[256] __initdata;
static u8 sbx_tab[256] __initdata;
static u8 isb_tab[256] __initdata;
static u32 rco_tab[10];
static u32 ft_tab[4][256];
static u32 it_tab[4][256];

static u32 fl_tab[4][256];
static u32 il_tab[4][256];

static inline u8 __init f_mult(u8 a, u8 b)
{
	u8 aa = log_tab[a], cc = aa + log_tab[b];

	return pow_tab[cc + (cc < aa ? 1 : 0)];
}

#define ff_mult(a, b)	(a && b ? f_mult(a, b) : 0)

static void __init gen_tabs(void)
{
	u32 i, t;
	u8 p, q;

	/*
	 * log and power tables for GF(2**8) finite field with
	 * 0x011b as modular polynomial - the simplest primitive
	 * root is 0x03, used here to generate the tables
	 */

	for (i = 0, p = 1; i < 256; ++i) {
		pow_tab[i] = (u8) p;
		log_tab[p] = (u8) i;

		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
	}

	log_tab[1] = 0;

	for (i = 0, p = 1; i < 10; ++i) {
		rco_tab[i] = p;

		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
	}

	for (i = 0; i < 256; ++i) {
		p = (i ? pow_tab[255 - log_tab[i]] : 0);
		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
		sbx_tab[i] = p;
		isb_tab[p] = (u8) i;
	}

	for (i = 0; i < 256; ++i) {
		p = sbx_tab[i];

		t = p;
		fl_tab[0][i] = t;
		fl_tab[1][i] = rol32(t, 8);
		fl_tab[2][i] = rol32(t, 16);
		fl_tab[3][i] = rol32(t, 24);

		t = ((u32) ff_mult(2, p)) |
		    ((u32) p << 8) |
		    ((u32) p << 16) | ((u32) ff_mult(3, p) << 24);

		ft_tab[0][i] = t;
		ft_tab[1][i] = rol32(t, 8);
		ft_tab[2][i] = rol32(t, 16);
		ft_tab[3][i] = rol32(t, 24);

		p = isb_tab[i];

		t = p;
		il_tab[0][i] = t;
		il_tab[1][i] = rol32(t, 8);
		il_tab[2][i] = rol32(t, 16);
		il_tab[3][i] = rol32(t, 24);

		t = ((u32) ff_mult(14, p)) |
		    ((u32) ff_mult(9, p) << 8) |
		    ((u32) ff_mult(13, p) << 16) |
		    ((u32) ff_mult(11, p) << 24);

		it_tab[0][i] = t;
		it_tab[1][i] = rol32(t, 8);
		it_tab[2][i] = rol32(t, 16);
		it_tab[3][i] = rol32(t, 24);
	}
}

/* initialise the key schedule from the user supplied key */

#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)	do {		\
	u	= star_x(x);		\
	v	= star_x(u);		\
	w	= star_x(v);		\
	t	= w ^ (x);		\
	(y)	= u ^ v ^ w;		\
	(y)	^= ror32(u ^ t, 8) ^	\
		ror32(v ^ t, 16) ^	\
		ror32(t, 24);		\
} while (0)

#define ls_box(x)		\
	fl_tab[0][byte(x, 0)] ^	\
	fl_tab[1][byte(x, 1)] ^	\
	fl_tab[2][byte(x, 2)] ^	\
	fl_tab[3][byte(x, 3)]

#define loop4(i)	do {		\
	t = ror32(t, 8);		\
	t = ls_box(t) ^ rco_tab[i];	\
	t ^= E_KEY[4 * i];		\
	E_KEY[4 * i + 4] = t;		\
	t ^= E_KEY[4 * i + 1];		\
	E_KEY[4 * i + 5] = t;		\
	t ^= E_KEY[4 * i + 2];		\
	E_KEY[4 * i + 6] = t;		\
	t ^= E_KEY[4 * i + 3];		\
	E_KEY[4 * i + 7] = t;		\
} while (0)

#define loop6(i)	do {		\
	t = ror32(t, 8);		\
	t = ls_box(t) ^ rco_tab[i];	\
	t ^= E_KEY[6 * i];		\
	E_KEY[6 * i + 6] = t;		\
	t ^= E_KEY[6 * i + 1];		\
	E_KEY[6 * i + 7] = t;		\
	t ^= E_KEY[6 * i + 2];		\
	E_KEY[6 * i + 8] = t;		\
	t ^= E_KEY[6 * i + 3];		\
	E_KEY[6 * i + 9] = t;		\
	t ^= E_KEY[6 * i + 4];		\
	E_KEY[6 * i + 10] = t;		\
	t ^= E_KEY[6 * i + 5];		\
	E_KEY[6 * i + 11] = t;		\
} while (0)

#define loop8(i)	do {			\
	t = ror32(t, 8);			\
	t = ls_box(t) ^ rco_tab[i];		\
	t ^= E_KEY[8 * i];			\
	E_KEY[8 * i + 8] = t;			\
	t ^= E_KEY[8 * i + 1];			\
	E_KEY[8 * i + 9] = t;			\
	t ^= E_KEY[8 * i + 2];			\
	E_KEY[8 * i + 10] = t;			\
	t ^= E_KEY[8 * i + 3];			\
	E_KEY[8 * i + 11] = t;			\
	t  = E_KEY[8 * i + 4] ^ ls_box(t);	\
	E_KEY[8 * i + 12] = t;			\
	t ^= E_KEY[8 * i + 5];			\
	E_KEY[8 * i + 13] = t;			\
	t ^= E_KEY[8 * i + 6];			\
	E_KEY[8 * i + 14] = t;			\
	t ^= E_KEY[8 * i + 7];			\
	E_KEY[8 * i + 15] = t;			\
} while (0)

static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
		unsigned int key_len)
{
	struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
	const __le32 *key = (const __le32 *)in_key;
	u32 *flags = &tfm->crt_flags;
	u32 i, t, u, v, w;

	if (key_len % 8) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

	ctx->key_length = key_len;

	E_KEY[0] = le32_to_cpu(key[0]);
	E_KEY[1] = le32_to_cpu(key[1]);
	E_KEY[2] = le32_to_cpu(key[2]);
	E_KEY[3] = le32_to_cpu(key[3]);

	switch (key_len) {
	case 16:
		t = E_KEY[3];
		for (i = 0; i < 10; ++i)
			loop4(i);
		break;

	case 24:
		E_KEY[4] = le32_to_cpu(key[4]);
		t = E_KEY[5] = le32_to_cpu(key[5]);
		for (i = 0; i < 8; ++i)
			loop6(i);
		break;

	case 32:
		E_KEY[4] = le32_to_cpu(key[4]);
		E_KEY[5] = le32_to_cpu(key[5]);
		E_KEY[6] = le32_to_cpu(key[6]);
		t = E_KEY[7] = le32_to_cpu(key[7]);
		for (i = 0; i < 7; ++i)
			loop8(i);
		break;
	}

	D_KEY[0] = E_KEY[0];
	D_KEY[1] = E_KEY[1];
	D_KEY[2] = E_KEY[2];
	D_KEY[3] = E_KEY[3];

	for (i = 4; i < key_len + 24; ++i) {
		imix_col(D_KEY[i], E_KEY[i]);
	}

	return 0;
}

/* encrypt a block of text */

#define f_rn(bo, bi, n, k)	do {				\
	bo[n] = ft_tab[0][byte(bi[n], 0)] ^			\
		ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^		\
		ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
		ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n);	\
} while (0)

#define f_nround(bo, bi, k)	do {\
	f_rn(bo, bi, 0, k);	\
	f_rn(bo, bi, 1, k);	\
	f_rn(bo, bi, 2, k);	\
	f_rn(bo, bi, 3, k);	\
	k += 4;			\
} while (0)

#define f_rl(bo, bi, n, k)	do {				\
	bo[n] = fl_tab[0][byte(bi[n], 0)] ^			\
		fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^		\
		fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
		fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n);	\
} while (0)

#define f_lround(bo, bi, k)	do {\
	f_rl(bo, bi, 0, k);	\
	f_rl(bo, bi, 1, k);	\
	f_rl(bo, bi, 2, k);	\
	f_rl(bo, bi, 3, k);	\
} while (0)

static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
	const __le32 *src = (const __le32 *)in;
	__le32 *dst = (__le32 *)out;
	u32 b0[4], b1[4];
	const u32 *kp = E_KEY + 4;

	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];

	if (ctx->key_length > 24) {
		f_nround(b1, b0, kp);
		f_nround(b0, b1, kp);
	}

	if (ctx->key_length > 16) {
		f_nround(b1, b0, kp);
		f_nround(b0, b1, kp);
	}

	f_nround(b1, b0, kp);
	f_nround(b0, b1, kp);
	f_nround(b1, b0, kp);
	f_nround(b0, b1, kp);
	f_nround(b1, b0, kp);
	f_nround(b0, b1, kp);
	f_nround(b1, b0, kp);
	f_nround(b0, b1, kp);
	f_nround(b1, b0, kp);
	f_lround(b0, b1, kp);

	dst[0] = cpu_to_le32(b0[0]);
	dst[1] = cpu_to_le32(b0[1]);
	dst[2] = cpu_to_le32(b0[2]);
	dst[3] = cpu_to_le32(b0[3]);
}

/* decrypt a block of text */

#define i_rn(bo, bi, n, k)	do {				\
	bo[n] = it_tab[0][byte(bi[n], 0)] ^			\
		it_tab[1][byte(bi[(n + 3) & 3], 1)] ^		\
		it_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
		it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n);	\
} while (0)

#define i_nround(bo, bi, k)	do {\
	i_rn(bo, bi, 0, k);	\
	i_rn(bo, bi, 1, k);	\
	i_rn(bo, bi, 2, k);	\
	i_rn(bo, bi, 3, k);	\
	k -= 4;			\
} while (0)

#define i_rl(bo, bi, n, k)	do {			\
	bo[n] = il_tab[0][byte(bi[n], 0)] ^		\
	il_tab[1][byte(bi[(n + 3) & 3], 1)] ^		\
	il_tab[2][byte(bi[(n + 2) & 3], 2)] ^		\
	il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n);	\
} while (0)

#define i_lround(bo, bi, k)	do {\
	i_rl(bo, bi, 0, k);	\
	i_rl(bo, bi, 1, k);	\
	i_rl(bo, bi, 2, k);	\
	i_rl(bo, bi, 3, k);	\
} while (0)

static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
	const __le32 *src = (const __le32 *)in;
	__le32 *dst = (__le32 *)out;
	u32 b0[4], b1[4];
	const int key_len = ctx->key_length;
	const u32 *kp = D_KEY + key_len + 20;

	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];

	if (key_len > 24) {
		i_nround(b1, b0, kp);
		i_nround(b0, b1, kp);
	}

	if (key_len > 16) {
		i_nround(b1, b0, kp);
		i_nround(b0, b1, kp);
	}

	i_nround(b1, b0, kp);
	i_nround(b0, b1, kp);
	i_nround(b1, b0, kp);
	i_nround(b0, b1, kp);
	i_nround(b1, b0, kp);
	i_nround(b0, b1, kp);
	i_nround(b1, b0, kp);
	i_nround(b0, b1, kp);
	i_nround(b1, b0, kp);
	i_lround(b0, b1, kp);

	dst[0] = cpu_to_le32(b0[0]);
	dst[1] = cpu_to_le32(b0[1]);
	dst[2] = cpu_to_le32(b0[2]);
	dst[3] = cpu_to_le32(b0[3]);
}

static struct crypto_alg aes_alg = {
	.cra_name		=	"aes",
	.cra_driver_name	=	"aes-generic",
	.cra_priority		=	100,
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct aes_ctx),
	.cra_alignmask		=	3,
	.cra_module		=	THIS_MODULE,
	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
			.cia_setkey		=	aes_set_key,
			.cia_encrypt		=	aes_encrypt,
			.cia_decrypt		=	aes_decrypt
		}
	}
};

static int __init aes_init(void)
{
	gen_tabs();
	return crypto_register_alg(&aes_alg);
}

static void __exit aes_fini(void)
{
	crypto_unregister_alg(&aes_alg);
}

module_init(aes_init);
module_exit(aes_fini);

MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS("aes");