aboutsummaryrefslogtreecommitdiff
path: root/arch/tile/mm/fault.c
blob: 704f3e8a43850c5d32a0eda83bb33190b72d07b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 * From i386 code copyright (C) 1995  Linus Torvalds
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h>		/* For unblank_screen() */
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <linux/hugetlb.h>
#include <linux/syscalls.h>
#include <linux/uaccess.h>

#include <asm/system.h>
#include <asm/pgalloc.h>
#include <asm/sections.h>
#include <asm/traps.h>
#include <asm/syscalls.h>

#include <arch/interrupts.h>

static noinline void force_sig_info_fault(int si_signo, int si_code,
	unsigned long address, int fault_num, struct task_struct *tsk)
{
	siginfo_t info;

	if (unlikely(tsk->pid < 2)) {
		panic("Signal %d (code %d) at %#lx sent to %s!",
		      si_signo, si_code & 0xffff, address,
		      tsk->pid ? "init" : "the idle task");
	}

	info.si_signo = si_signo;
	info.si_errno = 0;
	info.si_code = si_code;
	info.si_addr = (void __user *)address;
	info.si_trapno = fault_num;
	force_sig_info(si_signo, &info, tsk);
}

#ifndef __tilegx__
/*
 * Synthesize the fault a PL0 process would get by doing a word-load of
 * an unaligned address or a high kernel address.  Called indirectly
 * from sys_cmpxchg() in kernel/intvec.S.
 */
int _sys_cmpxchg_badaddr(unsigned long address, struct pt_regs *regs)
{
	if (address >= PAGE_OFFSET)
		force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address,
				     INT_DTLB_MISS, current);
	else
		force_sig_info_fault(SIGBUS, BUS_ADRALN, address,
				     INT_UNALIGN_DATA, current);

	/*
	 * Adjust pc to point at the actual instruction, which is unusual
	 * for syscalls normally, but is appropriate when we are claiming
	 * that a syscall swint1 caused a page fault or bus error.
	 */
	regs->pc -= 8;

	/*
	 * Mark this as a caller-save interrupt, like a normal page fault,
	 * so that when we go through the signal handler path we will
	 * properly restore r0, r1, and r2 for the signal handler arguments.
	 */
	regs->flags |= PT_FLAGS_CALLER_SAVES;

	return 0;
}
#endif

static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
{
	unsigned index = pgd_index(address);
	pgd_t *pgd_k;
	pud_t *pud, *pud_k;
	pmd_t *pmd, *pmd_k;

	pgd += index;
	pgd_k = init_mm.pgd + index;

	if (!pgd_present(*pgd_k))
		return NULL;

	pud = pud_offset(pgd, address);
	pud_k = pud_offset(pgd_k, address);
	if (!pud_present(*pud_k))
		return NULL;

	pmd = pmd_offset(pud, address);
	pmd_k = pmd_offset(pud_k, address);
	if (!pmd_present(*pmd_k))
		return NULL;
	if (!pmd_present(*pmd)) {
		set_pmd(pmd, *pmd_k);
		arch_flush_lazy_mmu_mode();
	} else
		BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
	return pmd_k;
}

/*
 * Handle a fault on the vmalloc or module mapping area
 */
static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
{
	pmd_t *pmd_k;
	pte_t *pte_k;

	/* Make sure we are in vmalloc area */
	if (!(address >= VMALLOC_START && address < VMALLOC_END))
		return -1;

	/*
	 * Synchronize this task's top level page-table
	 * with the 'reference' page table.
	 */
	pmd_k = vmalloc_sync_one(pgd, address);
	if (!pmd_k)
		return -1;
	if (pmd_huge(*pmd_k))
		return 0;   /* support TILE huge_vmap() API */
	pte_k = pte_offset_kernel(pmd_k, address);
	if (!pte_present(*pte_k))
		return -1;
	return 0;
}

/* Wait until this PTE has completed migration. */
static void wait_for_migration(pte_t *pte)
{
	if (pte_migrating(*pte)) {
		/*
		 * Wait until the migrater fixes up this pte.
		 * We scale the loop count by the clock rate so we'll wait for
		 * a few seconds here.
		 */
		int retries = 0;
		int bound = get_clock_rate();
		while (pte_migrating(*pte)) {
			barrier();
			if (++retries > bound)
				panic("Hit migrating PTE (%#llx) and"
				      " page PFN %#lx still migrating",
				      pte->val, pte_pfn(*pte));
		}
	}
}

/*
 * It's not generally safe to use "current" to get the page table pointer,
 * since we might be running an oprofile interrupt in the middle of a
 * task switch.
 */
static pgd_t *get_current_pgd(void)
{
	HV_Context ctx = hv_inquire_context();
	unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
	struct page *pgd_page = pfn_to_page(pgd_pfn);
	BUG_ON(PageHighMem(pgd_page));   /* oops, HIGHPTE? */
	return (pgd_t *) __va(ctx.page_table);
}

/*
 * We can receive a page fault from a migrating PTE at any time.
 * Handle it by just waiting until the fault resolves.
 *
 * It's also possible to get a migrating kernel PTE that resolves
 * itself during the downcall from hypervisor to Linux.  We just check
 * here to see if the PTE seems valid, and if so we retry it.
 *
 * NOTE! We MUST NOT take any locks for this case.  We may be in an
 * interrupt or a critical region, and must do as little as possible.
 * Similarly, we can't use atomic ops here, since we may be handling a
 * fault caused by an atomic op access.
 */
static int handle_migrating_pte(pgd_t *pgd, int fault_num,
				unsigned long address,
				int is_kernel_mode, int write)
{
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	pte_t pteval;

	if (pgd_addr_invalid(address))
		return 0;

	pgd += pgd_index(address);
	pud = pud_offset(pgd, address);
	if (!pud || !pud_present(*pud))
		return 0;
	pmd = pmd_offset(pud, address);
	if (!pmd || !pmd_present(*pmd))
		return 0;
	pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
		pte_offset_kernel(pmd, address);
	pteval = *pte;
	if (pte_migrating(pteval)) {
		wait_for_migration(pte);
		return 1;
	}

	if (!is_kernel_mode || !pte_present(pteval))
		return 0;
	if (fault_num == INT_ITLB_MISS) {
		if (pte_exec(pteval))
			return 1;
	} else if (write) {
		if (pte_write(pteval))
			return 1;
	} else {
		if (pte_read(pteval))
			return 1;
	}

	return 0;
}

/*
 * This routine is responsible for faulting in user pages.
 * It passes the work off to one of the appropriate routines.
 * It returns true if the fault was successfully handled.
 */
static int handle_page_fault(struct pt_regs *regs,
			     int fault_num,
			     int is_page_fault,
			     unsigned long address,
			     int write)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
	struct vm_area_struct *vma;
	unsigned long stack_offset;
	int fault;
	int si_code;
	int is_kernel_mode;
	pgd_t *pgd;

	/* on TILE, protection faults are always writes */
	if (!is_page_fault)
		write = 1;

	is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);

	tsk = validate_current();

	/*
	 * Check to see if we might be overwriting the stack, and bail
	 * out if so.  The page fault code is a relatively likely
	 * place to get trapped in an infinite regress, and once we
	 * overwrite the whole stack, it becomes very hard to recover.
	 */
	stack_offset = stack_pointer & (THREAD_SIZE-1);
	if (stack_offset < THREAD_SIZE / 8) {
		pr_alert("Potential stack overrun: sp %#lx\n",
		       stack_pointer);
		show_regs(regs);
		pr_alert("Killing current process %d/%s\n",
		       tsk->pid, tsk->comm);
		do_group_exit(SIGKILL);
	}

	/*
	 * Early on, we need to check for migrating PTE entries;
	 * see homecache.c.  If we find a migrating PTE, we wait until
	 * the backing page claims to be done migrating, then we procede.
	 * For kernel PTEs, we rewrite the PTE and return and retry.
	 * Otherwise, we treat the fault like a normal "no PTE" fault,
	 * rather than trying to patch up the existing PTE.
	 */
	pgd = get_current_pgd();
	if (handle_migrating_pte(pgd, fault_num, address,
				 is_kernel_mode, write))
		return 1;

	si_code = SEGV_MAPERR;

	/*
	 * We fault-in kernel-space virtual memory on-demand. The
	 * 'reference' page table is init_mm.pgd.
	 *
	 * NOTE! We MUST NOT take any locks for this case. We may
	 * be in an interrupt or a critical region, and should
	 * only copy the information from the master page table,
	 * nothing more.
	 *
	 * This verifies that the fault happens in kernel space
	 * and that the fault was not a protection fault.
	 */
	if (unlikely(address >= TASK_SIZE &&
		     !is_arch_mappable_range(address, 0))) {
		if (is_kernel_mode && is_page_fault &&
		    vmalloc_fault(pgd, address) >= 0)
			return 1;
		/*
		 * Don't take the mm semaphore here. If we fixup a prefetch
		 * fault we could otherwise deadlock.
		 */
		mm = NULL;  /* happy compiler */
		vma = NULL;
		goto bad_area_nosemaphore;
	}

	/*
	 * If we're trying to touch user-space addresses, we must
	 * be either at PL0, or else with interrupts enabled in the
	 * kernel, so either way we can re-enable interrupts here.
	 */
	local_irq_enable();

	mm = tsk->mm;

	/*
	 * If we're in an interrupt, have no user context or are running in an
	 * atomic region then we must not take the fault.
	 */
	if (in_atomic() || !mm) {
		vma = NULL;  /* happy compiler */
		goto bad_area_nosemaphore;
	}

	/*
	 * When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
	 * the source reference check when there is a possibility of a deadlock.
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (is_kernel_mode &&
		    !search_exception_tables(regs->pc)) {
			vma = NULL;  /* happy compiler */
			goto bad_area_nosemaphore;
		}
		down_read(&mm->mmap_sem);
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;
	if (regs->sp < PAGE_OFFSET) {
		/*
		 * accessing the stack below sp is always a bug.
		 */
		if (address < regs->sp)
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;

/*
 * Ok, we have a good vm_area for this memory access, so
 * we can handle it..
 */
good_area:
	si_code = SEGV_ACCERR;
	if (fault_num == INT_ITLB_MISS) {
		if (!(vma->vm_flags & VM_EXEC))
			goto bad_area;
	} else if (write) {
#ifdef TEST_VERIFY_AREA
		if (!is_page_fault && regs->cs == KERNEL_CS)
			pr_err("WP fault at "REGFMT"\n", regs->eip);
#endif
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
	} else {
		if (!is_page_fault || !(vma->vm_flags & VM_READ))
			goto bad_area;
	}

 survive:
	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
	fault = handle_mm_fault(mm, vma, address, write);
	if (unlikely(fault & VM_FAULT_ERROR)) {
		if (fault & VM_FAULT_OOM)
			goto out_of_memory;
		else if (fault & VM_FAULT_SIGBUS)
			goto do_sigbus;
		BUG();
	}
	if (fault & VM_FAULT_MAJOR)
		tsk->maj_flt++;
	else
		tsk->min_flt++;

#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
	/*
	 * If this was an asynchronous fault,
	 * restart the appropriate engine.
	 */
	switch (fault_num) {
#if CHIP_HAS_TILE_DMA()
	case INT_DMATLB_MISS:
	case INT_DMATLB_MISS_DWNCL:
	case INT_DMATLB_ACCESS:
	case INT_DMATLB_ACCESS_DWNCL:
		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
		break;
#endif
#if CHIP_HAS_SN_PROC()
	case INT_SNITLB_MISS:
	case INT_SNITLB_MISS_DWNCL:
		__insn_mtspr(SPR_SNCTL,
			     __insn_mfspr(SPR_SNCTL) &
			     ~SPR_SNCTL__FRZPROC_MASK);
		break;
#endif
	}
#endif

	up_read(&mm->mmap_sem);
	return 1;

/*
 * Something tried to access memory that isn't in our memory map..
 * Fix it, but check if it's kernel or user first..
 */
bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses just cause a SIGSEGV */
	if (!is_kernel_mode) {
		/*
		 * It's possible to have interrupts off here.
		 */
		local_irq_enable();

		force_sig_info_fault(SIGSEGV, si_code, address,
				     fault_num, tsk);
		return 0;
	}

no_context:
	/* Are we prepared to handle this kernel fault?  */
	if (fixup_exception(regs))
		return 0;

/*
 * Oops. The kernel tried to access some bad page. We'll have to
 * terminate things with extreme prejudice.
 */

	bust_spinlocks(1);

	/* FIXME: no lookup_address() yet */
#ifdef SUPPORT_LOOKUP_ADDRESS
	if (fault_num == INT_ITLB_MISS) {
		pte_t *pte = lookup_address(address);

		if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
			pr_crit("kernel tried to execute"
			       " non-executable page - exploit attempt?"
			       " (uid: %d)\n", current->uid);
	}
#endif
	if (address < PAGE_SIZE)
		pr_alert("Unable to handle kernel NULL pointer dereference\n");
	else
		pr_alert("Unable to handle kernel paging request\n");
	pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
		 address, regs->pc);

	show_regs(regs);

	if (unlikely(tsk->pid < 2)) {
		panic("Kernel page fault running %s!",
		      tsk->pid ? "init" : "the idle task");
	}

	/*
	 * More FIXME: we should probably copy the i386 here and
	 * implement a generic die() routine.  Not today.
	 */
#ifdef SUPPORT_DIE
	die("Oops", regs);
#endif
	bust_spinlocks(1);

	do_group_exit(SIGKILL);

/*
 * We ran out of memory, or some other thing happened to us that made
 * us unable to handle the page fault gracefully.
 */
out_of_memory:
	up_read(&mm->mmap_sem);
	if (is_global_init(tsk)) {
		yield();
		down_read(&mm->mmap_sem);
		goto survive;
	}
	pr_alert("VM: killing process %s\n", tsk->comm);
	if (!is_kernel_mode)
		do_group_exit(SIGKILL);
	goto no_context;

do_sigbus:
	up_read(&mm->mmap_sem);

	/* Kernel mode? Handle exceptions or die */
	if (is_kernel_mode)
		goto no_context;

	force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk);
	return 0;
}

#ifndef __tilegx__

/* We must release ICS before panicking or we won't get anywhere. */
#define ics_panic(fmt, ...) do { \
	__insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
	panic(fmt, __VA_ARGS__); \
} while (0)

/*
 * When we take an ITLB or DTLB fault or access violation in the
 * supervisor while the critical section bit is set, the hypervisor is
 * reluctant to write new values into the EX_CONTEXT_1_x registers,
 * since that might indicate we have not yet squirreled the SPR
 * contents away and can thus safely take a recursive interrupt.
 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_1_2.
 *
 * Note that this routine is called before homecache_tlb_defer_enter(),
 * which means that we can properly unlock any atomics that might
 * be used there (good), but also means we must be very sensitive
 * to not touch any data structures that might be located in memory
 * that could migrate, as we could be entering the kernel on a dataplane
 * cpu that has been deferring kernel TLB updates.  This means, for
 * example, that we can't migrate init_mm or its pgd.
 */
struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
				      unsigned long address,
				      unsigned long info)
{
	unsigned long pc = info & ~1;
	int write = info & 1;
	pgd_t *pgd = get_current_pgd();

	/* Retval is 1 at first since we will handle the fault fully. */
	struct intvec_state state = {
		do_page_fault, fault_num, address, write, 1
	};

	/* Validate that we are plausibly in the right routine. */
	if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
	    (fault_num != INT_DTLB_MISS &&
	     fault_num != INT_DTLB_ACCESS)) {
		unsigned long old_pc = regs->pc;
		regs->pc = pc;
		ics_panic("Bad ICS page fault args:"
			  " old PC %#lx, fault %d/%d at %#lx\n",
			  old_pc, fault_num, write, address);
	}

	/* We might be faulting on a vmalloc page, so check that first. */
	if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
		return state;

	/*
	 * If we faulted with ICS set in sys_cmpxchg, we are providing
	 * a user syscall service that should generate a signal on
	 * fault.  We didn't set up a kernel stack on initial entry to
	 * sys_cmpxchg, but instead had one set up by the fault, which
	 * (because sys_cmpxchg never releases ICS) came to us via the
	 * SYSTEM_SAVE_1_2 mechanism, and thus EX_CONTEXT_1_[01] are
	 * still referencing the original user code.  We release the
	 * atomic lock and rewrite pt_regs so that it appears that we
	 * came from user-space directly, and after we finish the
	 * fault we'll go back to user space and re-issue the swint.
	 * This way the backtrace information is correct if we need to
	 * emit a stack dump at any point while handling this.
	 *
	 * Must match register use in sys_cmpxchg().
	 */
	if (pc >= (unsigned long) sys_cmpxchg &&
	    pc < (unsigned long) __sys_cmpxchg_end) {
#ifdef CONFIG_SMP
		/* Don't unlock before we could have locked. */
		if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
			int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
			__atomic_fault_unlock(lock_ptr);
		}
#endif
		regs->sp = regs->regs[27];
	}

	/*
	 * We can also fault in the atomic assembly, in which
	 * case we use the exception table to do the first-level fixup.
	 * We may re-fixup again in the real fault handler if it
	 * turns out the faulting address is just bad, and not,
	 * for example, migrating.
	 */
	else if (pc >= (unsigned long) __start_atomic_asm_code &&
		   pc < (unsigned long) __end_atomic_asm_code) {
		const struct exception_table_entry *fixup;
#ifdef CONFIG_SMP
		/* Unlock the atomic lock. */
		int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
		__atomic_fault_unlock(lock_ptr);
#endif
		fixup = search_exception_tables(pc);
		if (!fixup)
			ics_panic("ICS atomic fault not in table:"
				  " PC %#lx, fault %d", pc, fault_num);
		regs->pc = fixup->fixup;
		regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
	}

	/*
	 * NOTE: the one other type of access that might bring us here
	 * are the memory ops in __tns_atomic_acquire/__tns_atomic_release,
	 * but we don't have to check specially for them since we can
	 * always safely return to the address of the fault and retry,
	 * since no separate atomic locks are involved.
	 */

	/*
	 * Now that we have released the atomic lock (if necessary),
	 * it's safe to spin if the PTE that caused the fault was migrating.
	 */
	if (fault_num == INT_DTLB_ACCESS)
		write = 1;
	if (handle_migrating_pte(pgd, fault_num, address, 1, write))
		return state;

	/* Return zero so that we continue on with normal fault handling. */
	state.retval = 0;
	return state;
}

#endif /* !__tilegx__ */

/*
 * This routine handles page faults.  It determines the address, and the
 * problem, and then passes it handle_page_fault() for normal DTLB and
 * ITLB issues, and for DMA or SN processor faults when we are in user
 * space.  For the latter, if we're in kernel mode, we just save the
 * interrupt away appropriately and return immediately.  We can't do
 * page faults for user code while in kernel mode.
 */
void do_page_fault(struct pt_regs *regs, int fault_num,
		   unsigned long address, unsigned long write)
{
	int is_page_fault;

	/* This case should have been handled by do_page_fault_ics(). */
	BUG_ON(write & ~1);

#if CHIP_HAS_TILE_DMA()
	/*
	 * If it's a DMA fault, suspend the transfer while we're
	 * handling the miss; we'll restart after it's handled.  If we
	 * don't suspend, it's possible that this process could swap
	 * out and back in, and restart the engine since the DMA is
	 * still 'running'.
	 */
	if (fault_num == INT_DMATLB_MISS ||
	    fault_num == INT_DMATLB_ACCESS ||
	    fault_num == INT_DMATLB_MISS_DWNCL ||
	    fault_num == INT_DMATLB_ACCESS_DWNCL) {
		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
		       SPR_DMA_STATUS__BUSY_MASK)
			;
	}
#endif

	/* Validate fault num and decide if this is a first-time page fault. */
	switch (fault_num) {
	case INT_ITLB_MISS:
	case INT_DTLB_MISS:
#if CHIP_HAS_TILE_DMA()
	case INT_DMATLB_MISS:
	case INT_DMATLB_MISS_DWNCL:
#endif
#if CHIP_HAS_SN_PROC()
	case INT_SNITLB_MISS:
	case INT_SNITLB_MISS_DWNCL:
#endif
		is_page_fault = 1;
		break;

	case INT_DTLB_ACCESS:
#if CHIP_HAS_TILE_DMA()
	case INT_DMATLB_ACCESS:
	case INT_DMATLB_ACCESS_DWNCL:
#endif
		is_page_fault = 0;
		break;

	default:
		panic("Bad fault number %d in do_page_fault", fault_num);
	}

	if (EX1_PL(regs->ex1) != USER_PL) {
		struct async_tlb *async;
		switch (fault_num) {
#if CHIP_HAS_TILE_DMA()
		case INT_DMATLB_MISS:
		case INT_DMATLB_ACCESS:
		case INT_DMATLB_MISS_DWNCL:
		case INT_DMATLB_ACCESS_DWNCL:
			async = &current->thread.dma_async_tlb;
			break;
#endif
#if CHIP_HAS_SN_PROC()
		case INT_SNITLB_MISS:
		case INT_SNITLB_MISS_DWNCL:
			async = &current->thread.sn_async_tlb;
			break;
#endif
		default:
			async = NULL;
		}
		if (async) {

			/*
			 * No vmalloc check required, so we can allow
			 * interrupts immediately at this point.
			 */
			local_irq_enable();

			set_thread_flag(TIF_ASYNC_TLB);
			if (async->fault_num != 0) {
				panic("Second async fault %d;"
				      " old fault was %d (%#lx/%ld)",
				      fault_num, async->fault_num,
				      address, write);
			}
			BUG_ON(fault_num == 0);
			async->fault_num = fault_num;
			async->is_fault = is_page_fault;
			async->is_write = write;
			async->address = address;
			return;
		}
	}

	handle_page_fault(regs, fault_num, is_page_fault, address, write);
}


#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
/*
 * Check an async_tlb structure to see if a deferred fault is waiting,
 * and if so pass it to the page-fault code.
 */
static void handle_async_page_fault(struct pt_regs *regs,
				    struct async_tlb *async)
{
	if (async->fault_num) {
		/*
		 * Clear async->fault_num before calling the page-fault
		 * handler so that if we re-interrupt before returning
		 * from the function we have somewhere to put the
		 * information from the new interrupt.
		 */
		int fault_num = async->fault_num;
		async->fault_num = 0;
		handle_page_fault(regs, fault_num, async->is_fault,
				  async->address, async->is_write);
	}
}
#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */


/*
 * This routine effectively re-issues asynchronous page faults
 * when we are returning to user space.
 */
void do_async_page_fault(struct pt_regs *regs)
{
	/*
	 * Clear thread flag early.  If we re-interrupt while processing
	 * code here, we will reset it and recall this routine before
	 * returning to user space.
	 */
	clear_thread_flag(TIF_ASYNC_TLB);

#if CHIP_HAS_TILE_DMA()
	handle_async_page_fault(regs, &current->thread.dma_async_tlb);
#endif
#if CHIP_HAS_SN_PROC()
	handle_async_page_fault(regs, &current->thread.sn_async_tlb);
#endif
}

void vmalloc_sync_all(void)
{
#ifdef __tilegx__
	/* Currently all L1 kernel pmd's are static and shared. */
	BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
#else
	/*
	 * Note that races in the updates of insync and start aren't
	 * problematic: insync can only get set bits added, and updates to
	 * start are only improving performance (without affecting correctness
	 * if undone).
	 */
	static DECLARE_BITMAP(insync, PTRS_PER_PGD);
	static unsigned long start = PAGE_OFFSET;
	unsigned long address;

	BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
	for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
		if (!test_bit(pgd_index(address), insync)) {
			unsigned long flags;
			struct list_head *pos;

			spin_lock_irqsave(&pgd_lock, flags);
			list_for_each(pos, &pgd_list)
				if (!vmalloc_sync_one(list_to_pgd(pos),
								address)) {
					/* Must be at first entry in list. */
					BUG_ON(pos != pgd_list.next);
					break;
				}
			spin_unlock_irqrestore(&pgd_lock, flags);
			if (pos != pgd_list.next)
				set_bit(pgd_index(address), insync);
		}
		if (address == start && test_bit(pgd_index(address), insync))
			start = address + PGDIR_SIZE;
	}
#endif
}