aboutsummaryrefslogtreecommitdiff
path: root/arch/tile/kernel/pci-dma.c
blob: 5ad5e13b0fa6accb1901985e11cfb65757ddaf16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <asm/tlbflush.h>
#include <asm/homecache.h>

/* Generic DMA mapping functions: */

/*
 * Allocate what Linux calls "coherent" memory, which for us just
 * means uncached.
 */
void *dma_alloc_coherent(struct device *dev,
			 size_t size,
			 dma_addr_t *dma_handle,
			 gfp_t gfp)
{
	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
	int node = dev_to_node(dev);
	int order = get_order(size);
	struct page *pg;
	dma_addr_t addr;

	gfp |= __GFP_ZERO;

	/*
	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
	 * high 32 bits of the resulting PA will be zero.  If the mask
	 * size is, e.g., 24, we may still not be able to guarantee a
	 * suitable memory address, in which case we will return NULL.
	 * But such devices are uncommon.
	 */
	if (dma_mask <= DMA_BIT_MASK(32))
		node = 0;

	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
	if (pg == NULL)
		return NULL;

	addr = page_to_phys(pg);
	if (addr + size > dma_mask) {
		homecache_free_pages(addr, order);
		return NULL;
	}

	*dma_handle = addr;
	return page_address(pg);
}
EXPORT_SYMBOL(dma_alloc_coherent);

/*
 * Free memory that was allocated with dma_alloc_coherent.
 */
void dma_free_coherent(struct device *dev, size_t size,
		  void *vaddr, dma_addr_t dma_handle)
{
	homecache_free_pages((unsigned long)vaddr, get_order(size));
}
EXPORT_SYMBOL(dma_free_coherent);

/*
 * The map routines "map" the specified address range for DMA
 * accesses.  The memory belongs to the device after this call is
 * issued, until it is unmapped with dma_unmap_single.
 *
 * We don't need to do any mapping, we just flush the address range
 * out of the cache and return a DMA address.
 *
 * The unmap routines do whatever is necessary before the processor
 * accesses the memory again, and must be called before the driver
 * touches the memory.  We can get away with a cache invalidate if we
 * can count on nothing having been touched.
 */


/*
 * dma_map_single can be passed any memory address, and there appear
 * to be no alignment constraints.
 *
 * There is a chance that the start of the buffer will share a cache
 * line with some other data that has been touched in the meantime.
 */
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
	       enum dma_data_direction direction)
{
	struct page *page;
	dma_addr_t dma_addr;
	int thispage;

	BUG_ON(!valid_dma_direction(direction));
	WARN_ON(size == 0);

	dma_addr = __pa(ptr);

	/* We might have been handed a buffer that wraps a page boundary */
	while ((int)size > 0) {
		/* The amount to flush that's on this page */
		thispage = PAGE_SIZE - ((unsigned long)ptr & (PAGE_SIZE - 1));
		thispage = min((int)thispage, (int)size);
		/* Is this valid for any page we could be handed? */
		page = pfn_to_page(kaddr_to_pfn(ptr));
		homecache_flush_cache(page, 0);
		ptr += thispage;
		size -= thispage;
	}

	return dma_addr;
}
EXPORT_SYMBOL(dma_map_single);

void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
		 enum dma_data_direction direction)
{
	BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_unmap_single);

int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
	   enum dma_data_direction direction)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(!valid_dma_direction(direction));

	WARN_ON(nents == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nents, i) {
		struct page *page;
		sg->dma_address = sg_phys(sg);
		page = pfn_to_page(sg->dma_address >> PAGE_SHIFT);
		homecache_flush_cache(page, 0);
	}

	return nents;
}
EXPORT_SYMBOL(dma_map_sg);

void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
	     enum dma_data_direction direction)
{
	BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_unmap_sg);

dma_addr_t dma_map_page(struct device *dev, struct page *page,
			unsigned long offset, size_t size,
			enum dma_data_direction direction)
{
	BUG_ON(!valid_dma_direction(direction));

	homecache_flush_cache(page, 0);

	return page_to_pa(page) + offset;
}
EXPORT_SYMBOL(dma_map_page);

void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
	       enum dma_data_direction direction)
{
	BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_unmap_page);

void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
			     size_t size, enum dma_data_direction direction)
{
	BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);

void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
				size_t size, enum dma_data_direction direction)
{
	unsigned long start = PFN_DOWN(dma_handle);
	unsigned long end = PFN_DOWN(dma_handle + size - 1);
	unsigned long i;

	BUG_ON(!valid_dma_direction(direction));
	for (i = start; i <= end; ++i)
		homecache_flush_cache(pfn_to_page(i), 0);
}
EXPORT_SYMBOL(dma_sync_single_for_device);

void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
		    enum dma_data_direction direction)
{
	BUG_ON(!valid_dma_direction(direction));
	WARN_ON(nelems == 0 || sg[0].length == 0);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

/*
 * Flush and invalidate cache for scatterlist.
 */
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
			    int nelems, enum dma_data_direction direction)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(!valid_dma_direction(direction));
	WARN_ON(nelems == 0 || sglist->length == 0);

	for_each_sg(sglist, sg, nelems, i) {
		dma_sync_single_for_device(dev, sg->dma_address,
					   sg_dma_len(sg), direction);
	}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);

void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
				   unsigned long offset, size_t size,
				   enum dma_data_direction direction)
{
	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);

void dma_sync_single_range_for_device(struct device *dev,
				      dma_addr_t dma_handle,
				      unsigned long offset, size_t size,
				      enum dma_data_direction direction)
{
	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_range_for_device);

/*
 * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
 * need to do any flushing here.
 */
void dma_cache_sync(void *vaddr, size_t size,
		    enum dma_data_direction direction)
{
}
EXPORT_SYMBOL(dma_cache_sync);