aboutsummaryrefslogtreecommitdiff
path: root/arch/tile/include/asm/spinlock_32.h
blob: c0a77b38d39a73c8b7064b4b92a340a92b7f83e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 * 32-bit SMP spinlocks.
 */

#ifndef _ASM_TILE_SPINLOCK_32_H
#define _ASM_TILE_SPINLOCK_32_H

#include <linux/atomic.h>
#include <asm/page.h>
#include <linux/compiler.h>

/*
 * We only use even ticket numbers so the '1' inserted by a tns is
 * an unambiguous "ticket is busy" flag.
 */
#define TICKET_QUANTUM 2


/*
 * SMP ticket spinlocks, allowing only a single CPU anywhere
 *
 * (the type definitions are in asm/spinlock_types.h)
 */
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
	/*
	 * Note that even if a new ticket is in the process of being
	 * acquired, so lock->next_ticket is 1, it's still reasonable
	 * to claim the lock is held, since it will be momentarily
	 * if not already.  There's no need to wait for a "valid"
	 * lock->next_ticket to become available.
	 */
	return lock->next_ticket != lock->current_ticket;
}

void arch_spin_lock(arch_spinlock_t *lock);

/* We cannot take an interrupt after getting a ticket, so don't enable them. */
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)

int arch_spin_trylock(arch_spinlock_t *lock);

static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
	/* For efficiency, overlap fetching the old ticket with the wmb(). */
	int old_ticket = lock->current_ticket;
	wmb();  /* guarantee anything modified under the lock is visible */
	lock->current_ticket = old_ticket + TICKET_QUANTUM;
}

void arch_spin_unlock_wait(arch_spinlock_t *lock);

/*
 * Read-write spinlocks, allowing multiple readers
 * but only one writer.
 *
 * We use a "tns/store-back" technique on a single word to manage
 * the lock state, looping around to retry if the tns returns 1.
 */

/* Internal layout of the word; do not use. */
#define _WR_NEXT_SHIFT	8
#define _WR_CURR_SHIFT  16
#define _WR_WIDTH       8
#define _RD_COUNT_SHIFT 24
#define _RD_COUNT_WIDTH 8

/**
 * arch_read_can_lock() - would read_trylock() succeed?
 */
static inline int arch_read_can_lock(arch_rwlock_t *rwlock)
{
	return (rwlock->lock << _RD_COUNT_WIDTH) == 0;
}

/**
 * arch_write_can_lock() - would write_trylock() succeed?
 */
static inline int arch_write_can_lock(arch_rwlock_t *rwlock)
{
	return rwlock->lock == 0;
}

/**
 * arch_read_lock() - acquire a read lock.
 */
void arch_read_lock(arch_rwlock_t *rwlock);

/**
 * arch_write_lock() - acquire a write lock.
 */
void arch_write_lock(arch_rwlock_t *rwlock);

/**
 * arch_read_trylock() - try to acquire a read lock.
 */
int arch_read_trylock(arch_rwlock_t *rwlock);

/**
 * arch_write_trylock() - try to acquire a write lock.
 */
int arch_write_trylock(arch_rwlock_t *rwlock);

/**
 * arch_read_unlock() - release a read lock.
 */
void arch_read_unlock(arch_rwlock_t *rwlock);

/**
 * arch_write_unlock() - release a write lock.
 */
void arch_write_unlock(arch_rwlock_t *rwlock);

#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)

#endif /* _ASM_TILE_SPINLOCK_32_H */