aboutsummaryrefslogtreecommitdiff
path: root/arch/sparc/include/asm/tsb.h
blob: cc0432f158171f541602bbb5333a7e349ddef2c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#ifndef _SPARC64_TSB_H
#define _SPARC64_TSB_H

/* The sparc64 TSB is similar to the powerpc hashtables.  It's a
 * power-of-2 sized table of TAG/PTE pairs.  The cpu precomputes
 * pointers into this table for 8K and 64K page sizes, and also a
 * comparison TAG based upon the virtual address and context which
 * faults.
 *
 * TLB miss trap handler software does the actual lookup via something
 * of the form:
 *
 * 	ldxa		[%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
 * 	ldxa		[%g0] ASI_{D,I}MMU, %g6
 *	sllx		%g6, 22, %g6
 *	srlx		%g6, 22, %g6
 * 	ldda		[%g1] ASI_NUCLEUS_QUAD_LDD, %g4
 * 	cmp		%g4, %g6
 * 	bne,pn	%xcc, tsb_miss_{d,i}tlb
 * 	 mov		FAULT_CODE_{D,I}TLB, %g3
 * 	stxa		%g5, [%g0] ASI_{D,I}TLB_DATA_IN
 * 	retry
 *
 *
 * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
 * PTE.  The TAG is of the same layout as the TLB TAG TARGET mmu
 * register which is:
 *
 * -------------------------------------------------
 * |  -  |  CONTEXT |  -  |    VADDR bits 63:22    |
 * -------------------------------------------------
 *  63 61 60      48 47 42 41                     0
 *
 * But actually, since we use per-mm TSB's, we zero out the CONTEXT
 * field.
 *
 * Like the powerpc hashtables we need to use locking in order to
 * synchronize while we update the entries.  PTE updates need locking
 * as well.
 *
 * We need to carefully choose a lock bits for the TSB entry.  We
 * choose to use bit 47 in the tag.  Also, since we never map anything
 * at page zero in context zero, we use zero as an invalid tag entry.
 * When the lock bit is set, this forces a tag comparison failure.
 */

#define TSB_TAG_LOCK_BIT	47
#define TSB_TAG_LOCK_HIGH	(1 << (TSB_TAG_LOCK_BIT - 32))

#define TSB_TAG_INVALID_BIT	46
#define TSB_TAG_INVALID_HIGH	(1 << (TSB_TAG_INVALID_BIT - 32))

/* Some cpus support physical address quad loads.  We want to use
 * those if possible so we don't need to hard-lock the TSB mapping
 * into the TLB.  We encode some instruction patching in order to
 * support this.
 *
 * The kernel TSB is locked into the TLB by virtue of being in the
 * kernel image, so we don't play these games for swapper_tsb access.
 */
#ifndef __ASSEMBLY__
struct tsb_ldquad_phys_patch_entry {
	unsigned int	addr;
	unsigned int	sun4u_insn;
	unsigned int	sun4v_insn;
};
extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
	__tsb_ldquad_phys_patch_end;

struct tsb_phys_patch_entry {
	unsigned int	addr;
	unsigned int	insn;
};
extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
#endif
#define TSB_LOAD_QUAD(TSB, REG)	\
661:	ldda		[TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	ldda		[TSB] ASI_QUAD_LDD_PHYS, REG; \
	ldda		[TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
	.previous

#define TSB_LOAD_TAG_HIGH(TSB, REG) \
661:	lduwa		[TSB] ASI_N, REG; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	lduwa		[TSB] ASI_PHYS_USE_EC, REG; \
	.previous

#define TSB_LOAD_TAG(TSB, REG) \
661:	ldxa		[TSB] ASI_N, REG; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	ldxa		[TSB] ASI_PHYS_USE_EC, REG; \
	.previous

#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
661:	casa		[TSB] ASI_N, REG1, REG2; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	casa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
	.previous

#define TSB_CAS_TAG(TSB, REG1, REG2) \
661:	casxa		[TSB] ASI_N, REG1, REG2; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	casxa		[TSB] ASI_PHYS_USE_EC, REG1, REG2; \
	.previous

#define TSB_STORE(ADDR, VAL) \
661:	stxa		VAL, [ADDR] ASI_N; \
	.section	.tsb_phys_patch, "ax"; \
	.word		661b; \
	stxa		VAL, [ADDR] ASI_PHYS_USE_EC; \
	.previous

#define TSB_LOCK_TAG(TSB, REG1, REG2)	\
99:	TSB_LOAD_TAG_HIGH(TSB, REG1);	\
	sethi	%hi(TSB_TAG_LOCK_HIGH), REG2;\
	andcc	REG1, REG2, %g0;	\
	bne,pn	%icc, 99b;		\
	 nop;				\
	TSB_CAS_TAG_HIGH(TSB, REG1, REG2);	\
	cmp	REG1, REG2;		\
	bne,pn	%icc, 99b;		\
	 nop;				\

#define TSB_WRITE(TSB, TTE, TAG) \
	add	TSB, 0x8, TSB;   \
	TSB_STORE(TSB, TTE);     \
	sub	TSB, 0x8, TSB;   \
	TSB_STORE(TSB, TAG);

	/* Do a kernel page table walk.  Leaves physical PTE pointer in
	 * REG1.  Jumps to FAIL_LABEL on early page table walk termination.
	 * VADDR will not be clobbered, but REG2 will.
	 */
#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL)	\
	sethi		%hi(swapper_pg_dir), REG1; \
	or		REG1, %lo(swapper_pg_dir), REG1; \
	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	andn		REG2, 0x7, REG2; \
	ldx		[REG1 + REG2], REG1; \
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	sllx		REG1, PGD_PADDR_SHIFT, REG1; \
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - PMD_SHIFT, REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	sllx		REG1, PMD_PADDR_SHIFT, REG1; \
	andn		REG2, 0x7, REG2; \
	add		REG1, REG2, REG1;

	/* These macros exists only to make the PMD translator below
	 * easier to read.  It hides the ELF section switch for the
	 * sun4v code patching.
	 */
#define OR_PTE_BIT_1INSN(REG, NAME)			\
661:	or		REG, _PAGE_##NAME##_4U, REG;	\
	.section	.sun4v_1insn_patch, "ax";	\
	.word		661b;				\
	or		REG, _PAGE_##NAME##_4V, REG;	\
	.previous;

#define OR_PTE_BIT_2INSN(REG, TMP, NAME)		\
661:	sethi		%hi(_PAGE_##NAME##_4U), TMP;	\
	or		REG, TMP, REG;			\
	.section	.sun4v_2insn_patch, "ax";	\
	.word		661b;				\
	mov		-1, TMP;			\
	or		REG, _PAGE_##NAME##_4V, REG;	\
	.previous;

	/* Load into REG the PTE value for VALID, CACHE, and SZHUGE.
	 *
	 * We are fabricating an 8MB page using 2 4MB HW pages here.
	 */
#define BUILD_PTE_VALID_SZHUGE_CACHE(VADDR, PADDR_BITS, REG)		   \
	sethi		%hi(4 * 1024 * 1024), REG;			   \
	andn		PADDR_BITS, REG, PADDR_BITS;			   \
	and		VADDR, REG, REG;				   \
	or		PADDR_BITS, REG, PADDR_BITS;			   \
661:	sethi		%uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG;		   \
	.section	.sun4v_1insn_patch, "ax";			   \
	.word		661b;						   \
	sethi		%uhi(_PAGE_VALID), REG;				   \
	.previous;							   \
	sllx		REG, 32, REG;					   \
661:	or		REG, _PAGE_CP_4U|_PAGE_CV_4U, REG;		   \
	.section	.sun4v_1insn_patch, "ax";			   \
	.word		661b;						   \
	or		REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
	.previous;

	/* PMD has been loaded into REG1, interpret the value, seeing
	 * if it is a HUGE PMD or a normal one.  If it is not valid
	 * then jump to FAIL_LABEL.  If it is a HUGE PMD, and it
	 * translates to a valid PTE, branch to PTE_LABEL.
	 *
	 * We translate the PMD by hand, one bit at a time,
	 * constructing the huge PTE.
	 *
	 * So we construct the PTE in REG2 as follows:
	 *
	 * 1) Extract the PMD PFN from REG1 and place it into REG2.
	 *
	 * 2) Translate PMD protection bits in REG1 into REG2, one bit
	 *    at a time using andcc tests on REG1 and OR's into REG2.
	 *
	 *    Only two bits to be concerned with here, EXEC and WRITE.
	 *    Now REG1 is freed up and we can use it as a temporary.
	 *
	 * 3) Construct the VALID, CACHE, and page size PTE bits in
	 *    REG1, OR with REG2 to form final PTE.
	 */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn		REG1, FAIL_LABEL;				      \
	 andcc		REG1, PMD_ISHUGE, %g0;				      \
	be,pt		%xcc, 700f;					      \
	 and		REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2;	      \
	cmp		REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED;	      \
	bne,pn		%xcc, FAIL_LABEL;				      \
	 andn		REG1, PMD_HUGE_PROTBITS, REG2;			      \
	sllx		REG2, PMD_PADDR_SHIFT, REG2;			      \
	/* REG2 now holds PFN << PAGE_SHIFT */				      \
	andcc		REG1, PMD_HUGE_WRITE, %g0;			      \
	bne,a,pt	%xcc, 1f;					      \
	 OR_PTE_BIT_1INSN(REG2, W);					      \
1:	andcc		REG1, PMD_HUGE_EXEC, %g0;			      \
	be,pt		%xcc, 1f;					      \
	 nop;								      \
	OR_PTE_BIT_2INSN(REG2, REG1, EXEC);				      \
	/* REG1 can now be clobbered, build final PTE */		      \
1:	BUILD_PTE_VALID_SZHUGE_CACHE(VADDR, REG2, REG1);		      \
	ba,pt		%xcc, PTE_LABEL;				      \
	 or		REG1, REG2, REG1;				      \
700:
#else
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
	brz,pn		REG1, FAIL_LABEL; \
	 nop;
#endif

	/* Do a user page table walk in MMU globals.  Leaves final,
	 * valid, PTE value in REG1.  Jumps to FAIL_LABEL on early
	 * page table walk termination or if the PTE is not valid.
	 *
	 * Physical base of page tables is in PHYS_PGD which will not
	 * be modified.
	 *
	 * VADDR will not be clobbered, but REG1 and REG2 will.
	 */
#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL)	\
	sllx		VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	andn		REG2, 0x7, REG2; \
	ldxa		[PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
	brz,pn		REG1, FAIL_LABEL; \
	 sllx		VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	sllx		REG1, PGD_PADDR_SHIFT, REG1; \
	andn		REG2, 0x7, REG2; \
	ldxa		[REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
	USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
	sllx		VADDR, 64 - PMD_SHIFT, REG2; \
	srlx		REG2, 64 - PAGE_SHIFT, REG2; \
	sllx		REG1, PMD_PADDR_SHIFT, REG1; \
	andn		REG2, 0x7, REG2; \
	add		REG1, REG2, REG1; \
	ldxa		[REG1] ASI_PHYS_USE_EC, REG1; \
	brgez,pn	REG1, FAIL_LABEL; \
	 nop; \
800:

/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
 * If no entry is found, FAIL_LABEL will be branched to.  On success
 * the resulting PTE value will be left in REG1.  VADDR is preserved
 * by this routine.
 */
#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
	sethi		%hi(prom_trans), REG1; \
	or		REG1, %lo(prom_trans), REG1; \
97:	ldx		[REG1 + 0x00], REG2; \
	brz,pn		REG2, FAIL_LABEL; \
	 nop; \
	ldx		[REG1 + 0x08], REG3; \
	add		REG2, REG3, REG3; \
	cmp		REG2, VADDR; \
	bgu,pt		%xcc, 98f; \
	 cmp		VADDR, REG3; \
	bgeu,pt		%xcc, 98f; \
	 ldx		[REG1 + 0x10], REG3; \
	sub		VADDR, REG2, REG2; \
	ba,pt		%xcc, 99f; \
	 add		REG3, REG2, REG1; \
98:	ba,pt		%xcc, 97b; \
	 add		REG1, (3 * 8), REG1; \
99:

	/* We use a 32K TSB for the whole kernel, this allows to
	 * handle about 16MB of modules and vmalloc mappings without
	 * incurring many hash conflicts.
	 */
#define KERNEL_TSB_SIZE_BYTES	(32 * 1024)
#define KERNEL_TSB_NENTRIES	\
	(KERNEL_TSB_SIZE_BYTES / 16)
#define KERNEL_TSB4M_NENTRIES	4096

#define KTSB_PHYS_SHIFT		15

	/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
	 * on TSB hit.  REG1, REG2, REG3, and REG4 are used as temporaries
	 * and the found TTE will be left in REG1.  REG3 and REG4 must
	 * be an even/odd pair of registers.
	 *
	 * VADDR and TAG will be preserved and not clobbered by this macro.
	 */
#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
661:	sethi		%hi(swapper_tsb), REG1;			\
	or		REG1, %lo(swapper_tsb), REG1; \
	.section	.swapper_tsb_phys_patch, "ax"; \
	.word		661b; \
	.previous; \
661:	nop; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	.previous; \
	srlx		VADDR, PAGE_SHIFT, REG2; \
	and		REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
	sllx		REG2, 4, REG2; \
	add		REG1, REG2, REG2; \
	TSB_LOAD_QUAD(REG2, REG3); \
	cmp		REG3, TAG; \
	be,a,pt		%xcc, OK_LABEL; \
	 mov		REG4, REG1;

#ifndef CONFIG_DEBUG_PAGEALLOC
	/* This version uses a trick, the TAG is already (VADDR >> 22) so
	 * we can make use of that for the index computation.
	 */
#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
661:	sethi		%hi(swapper_4m_tsb), REG1;	     \
	or		REG1, %lo(swapper_4m_tsb), REG1; \
	.section	.swapper_4m_tsb_phys_patch, "ax"; \
	.word		661b; \
	.previous; \
661:	nop; \
	.section	.tsb_ldquad_phys_patch, "ax"; \
	.word		661b; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	sllx		REG1, KTSB_PHYS_SHIFT, REG1; \
	.previous; \
	and		TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
	sllx		REG2, 4, REG2; \
	add		REG1, REG2, REG2; \
	TSB_LOAD_QUAD(REG2, REG3); \
	cmp		REG3, TAG; \
	be,a,pt		%xcc, OK_LABEL; \
	 mov		REG4, REG1;
#endif

#endif /* !(_SPARC64_TSB_H) */