1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
/*
* Freescale LBC and UPM routines.
*
* Copyright © 2007-2008 MontaVista Software, Inc.
* Copyright © 2010 Freescale Semiconductor
*
* Author: Anton Vorontsov <avorontsov@ru.mvista.com>
* Author: Jack Lan <Jack.Lan@freescale.com>
* Author: Roy Zang <tie-fei.zang@freescale.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/mod_devicetable.h>
#include <asm/prom.h>
#include <asm/fsl_lbc.h>
static spinlock_t fsl_lbc_lock = __SPIN_LOCK_UNLOCKED(fsl_lbc_lock);
struct fsl_lbc_ctrl *fsl_lbc_ctrl_dev;
EXPORT_SYMBOL(fsl_lbc_ctrl_dev);
/**
* fsl_lbc_addr - convert the base address
* @addr_base: base address of the memory bank
*
* This function converts a base address of lbc into the right format for the
* BR register. If the SOC has eLBC then it returns 32bit physical address
* else it convers a 34bit local bus physical address to correct format of
* 32bit address for BR register (Example: MPC8641).
*/
u32 fsl_lbc_addr(phys_addr_t addr_base)
{
struct device_node *np = fsl_lbc_ctrl_dev->dev->of_node;
u32 addr = addr_base & 0xffff8000;
if (of_device_is_compatible(np, "fsl,elbc"))
return addr;
return addr | ((addr_base & 0x300000000ull) >> 19);
}
EXPORT_SYMBOL(fsl_lbc_addr);
/**
* fsl_lbc_find - find Localbus bank
* @addr_base: base address of the memory bank
*
* This function walks LBC banks comparing "Base address" field of the BR
* registers with the supplied addr_base argument. When bases match this
* function returns bank number (starting with 0), otherwise it returns
* appropriate errno value.
*/
int fsl_lbc_find(phys_addr_t addr_base)
{
int i;
struct fsl_lbc_regs __iomem *lbc;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
lbc = fsl_lbc_ctrl_dev->regs;
for (i = 0; i < ARRAY_SIZE(lbc->bank); i++) {
__be32 br = in_be32(&lbc->bank[i].br);
__be32 or = in_be32(&lbc->bank[i].or);
if (br & BR_V && (br & or & BR_BA) == fsl_lbc_addr(addr_base))
return i;
}
return -ENOENT;
}
EXPORT_SYMBOL(fsl_lbc_find);
/**
* fsl_upm_find - find pre-programmed UPM via base address
* @addr_base: base address of the memory bank controlled by the UPM
* @upm: pointer to the allocated fsl_upm structure
*
* This function fills fsl_upm structure so you can use it with the rest of
* UPM API. On success this function returns 0, otherwise it returns
* appropriate errno value.
*/
int fsl_upm_find(phys_addr_t addr_base, struct fsl_upm *upm)
{
int bank;
__be32 br;
struct fsl_lbc_regs __iomem *lbc;
bank = fsl_lbc_find(addr_base);
if (bank < 0)
return bank;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
lbc = fsl_lbc_ctrl_dev->regs;
br = in_be32(&lbc->bank[bank].br);
switch (br & BR_MSEL) {
case BR_MS_UPMA:
upm->mxmr = &lbc->mamr;
break;
case BR_MS_UPMB:
upm->mxmr = &lbc->mbmr;
break;
case BR_MS_UPMC:
upm->mxmr = &lbc->mcmr;
break;
default:
return -EINVAL;
}
switch (br & BR_PS) {
case BR_PS_8:
upm->width = 8;
break;
case BR_PS_16:
upm->width = 16;
break;
case BR_PS_32:
upm->width = 32;
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(fsl_upm_find);
/**
* fsl_upm_run_pattern - actually run an UPM pattern
* @upm: pointer to the fsl_upm structure obtained via fsl_upm_find
* @io_base: remapped pointer to where memory access should happen
* @mar: MAR register content during pattern execution
*
* This function triggers dummy write to the memory specified by the io_base,
* thus UPM pattern actually executed. Note that mar usage depends on the
* pre-programmed AMX bits in the UPM RAM.
*/
int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar)
{
int ret = 0;
unsigned long flags;
if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
return -ENODEV;
spin_lock_irqsave(&fsl_lbc_lock, flags);
out_be32(&fsl_lbc_ctrl_dev->regs->mar, mar);
switch (upm->width) {
case 8:
out_8(io_base, 0x0);
break;
case 16:
out_be16(io_base, 0x0);
break;
case 32:
out_be32(io_base, 0x0);
break;
default:
ret = -EINVAL;
break;
}
spin_unlock_irqrestore(&fsl_lbc_lock, flags);
return ret;
}
EXPORT_SYMBOL(fsl_upm_run_pattern);
static int __devinit fsl_lbc_ctrl_init(struct fsl_lbc_ctrl *ctrl,
struct device_node *node)
{
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
/* clear event registers */
setbits32(&lbc->ltesr, LTESR_CLEAR);
out_be32(&lbc->lteatr, 0);
out_be32(&lbc->ltear, 0);
out_be32(&lbc->lteccr, LTECCR_CLEAR);
out_be32(&lbc->ltedr, LTEDR_ENABLE);
/* Set the monitor timeout value to the maximum for erratum A001 */
if (of_device_is_compatible(node, "fsl,elbc"))
clrsetbits_be32(&lbc->lbcr, LBCR_BMT, LBCR_BMTPS);
return 0;
}
/*
* NOTE: This interrupt is used to report localbus events of various kinds,
* such as transaction errors on the chipselects.
*/
static irqreturn_t fsl_lbc_ctrl_irq(int irqno, void *data)
{
struct fsl_lbc_ctrl *ctrl = data;
struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
u32 status;
status = in_be32(&lbc->ltesr);
if (!status)
return IRQ_NONE;
out_be32(&lbc->ltesr, LTESR_CLEAR);
out_be32(&lbc->lteatr, 0);
out_be32(&lbc->ltear, 0);
ctrl->irq_status = status;
if (status & LTESR_BM)
dev_err(ctrl->dev, "Local bus monitor time-out: "
"LTESR 0x%08X\n", status);
if (status & LTESR_WP)
dev_err(ctrl->dev, "Write protect error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_ATMW)
dev_err(ctrl->dev, "Atomic write error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_ATMR)
dev_err(ctrl->dev, "Atomic read error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_CS)
dev_err(ctrl->dev, "Chip select error: "
"LTESR 0x%08X\n", status);
if (status & LTESR_UPM)
;
if (status & LTESR_FCT) {
dev_err(ctrl->dev, "FCM command time-out: "
"LTESR 0x%08X\n", status);
smp_wmb();
wake_up(&ctrl->irq_wait);
}
if (status & LTESR_PAR) {
dev_err(ctrl->dev, "Parity or Uncorrectable ECC error: "
"LTESR 0x%08X\n", status);
smp_wmb();
wake_up(&ctrl->irq_wait);
}
if (status & LTESR_CC) {
smp_wmb();
wake_up(&ctrl->irq_wait);
}
if (status & ~LTESR_MASK)
dev_err(ctrl->dev, "Unknown error: "
"LTESR 0x%08X\n", status);
return IRQ_HANDLED;
}
/*
* fsl_lbc_ctrl_probe
*
* called by device layer when it finds a device matching
* one our driver can handled. This code allocates all of
* the resources needed for the controller only. The
* resources for the NAND banks themselves are allocated
* in the chip probe function.
*/
static int __devinit fsl_lbc_ctrl_probe(struct platform_device *dev)
{
int ret;
if (!dev->dev.of_node) {
dev_err(&dev->dev, "Device OF-Node is NULL");
return -EFAULT;
}
fsl_lbc_ctrl_dev = kzalloc(sizeof(*fsl_lbc_ctrl_dev), GFP_KERNEL);
if (!fsl_lbc_ctrl_dev)
return -ENOMEM;
dev_set_drvdata(&dev->dev, fsl_lbc_ctrl_dev);
spin_lock_init(&fsl_lbc_ctrl_dev->lock);
init_waitqueue_head(&fsl_lbc_ctrl_dev->irq_wait);
fsl_lbc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
if (!fsl_lbc_ctrl_dev->regs) {
dev_err(&dev->dev, "failed to get memory region\n");
ret = -ENODEV;
goto err;
}
fsl_lbc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
if (fsl_lbc_ctrl_dev->irq == NO_IRQ) {
dev_err(&dev->dev, "failed to get irq resource\n");
ret = -ENODEV;
|