aboutsummaryrefslogtreecommitdiff
path: root/arch/parisc/lib/milli/mulI.S
blob: 4c7e0c36d15e02bd2d4b9cd9fc7c621d58e96b68 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/* 32 and 64-bit millicode, original author Hewlett-Packard
   adapted for gcc by Paul Bame <bame@debian.org>
   and Alan Modra <alan@linuxcare.com.au>.

   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GCC and is released under the terms of
   of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.
   See the file COPYING in the top-level GCC source directory for a copy
   of the license.  */

#include "milli.h"

#ifdef L_mulI
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
/******************************************************************************
This routine is used on PA2.0 processors when gcc -mno-fpregs is used

ROUTINE:	$$mulI


DESCRIPTION:	

	$$mulI multiplies two single word integers, giving a single 
	word result.  


INPUT REGISTERS:

	arg0 = Operand 1
	arg1 = Operand 2
	r31  == return pc
	sr0  == return space when called externally 


OUTPUT REGISTERS:

	arg0 = undefined
	arg1 = undefined
	ret1 = result 

OTHER REGISTERS AFFECTED:

	r1   = undefined

SIDE EFFECTS:

	Causes a trap under the following conditions:  NONE
	Changes memory at the following places:  NONE

PERMISSIBLE CONTEXT:

	Unwindable
	Does not create a stack frame
	Is usable for internal or external microcode

DISCUSSION:

	Calls other millicode routines via mrp:  NONE
	Calls other millicode routines:  NONE

***************************************************************************/


#define	a0	%arg0
#define	a1	%arg1
#define	t0	%r1
#define	r	%ret1

#define	a0__128a0	zdep	a0,24,25,a0
#define	a0__256a0	zdep	a0,23,24,a0
#define	a1_ne_0_b_l0	comb,<>	a1,0,LREF(l0)
#define	a1_ne_0_b_l1	comb,<>	a1,0,LREF(l1)
#define	a1_ne_0_b_l2	comb,<>	a1,0,LREF(l2)
#define	b_n_ret_t0	b,n	LREF(ret_t0)
#define	b_e_shift	b	LREF(e_shift)
#define	b_e_t0ma0	b	LREF(e_t0ma0)
#define	b_e_t0		b	LREF(e_t0)
#define	b_e_t0a0	b	LREF(e_t0a0)
#define	b_e_t02a0	b	LREF(e_t02a0)
#define	b_e_t04a0	b	LREF(e_t04a0)
#define	b_e_2t0		b	LREF(e_2t0)
#define	b_e_2t0a0	b	LREF(e_2t0a0)
#define	b_e_2t04a0	b	LREF(e2t04a0)
#define	b_e_3t0		b	LREF(e_3t0)
#define	b_e_4t0		b	LREF(e_4t0)
#define	b_e_4t0a0	b	LREF(e_4t0a0)
#define	b_e_4t08a0	b	LREF(e4t08a0)
#define	b_e_5t0		b	LREF(e_5t0)
#define	b_e_8t0		b	LREF(e_8t0)
#define	b_e_8t0a0	b	LREF(e_8t0a0)
#define	r__r_a0		add	r,a0,r
#define	r__r_2a0	sh1add	a0,r,r
#define	r__r_4a0	sh2add	a0,r,r
#define	r__r_8a0	sh3add	a0,r,r
#define	r__r_t0		add	r,t0,r
#define	r__r_2t0	sh1add	t0,r,r
#define	r__r_4t0	sh2add	t0,r,r
#define	r__r_8t0	sh3add	t0,r,r
#define	t0__3a0		sh1add	a0,a0,t0
#define	t0__4a0		sh2add	a0,0,t0
#define	t0__5a0		sh2add	a0,a0,t0
#define	t0__8a0		sh3add	a0,0,t0
#define	t0__9a0		sh3add	a0,a0,t0
#define	t0__16a0	zdep	a0,27,28,t0
#define	t0__32a0	zdep	a0,26,27,t0
#define	t0__64a0	zdep	a0,25,26,t0
#define	t0__128a0	zdep	a0,24,25,t0
#define	t0__t0ma0	sub	t0,a0,t0
#define	t0__t0_a0	add	t0,a0,t0
#define	t0__t0_2a0	sh1add	a0,t0,t0
#define	t0__t0_4a0	sh2add	a0,t0,t0
#define	t0__t0_8a0	sh3add	a0,t0,t0
#define	t0__2t0_a0	sh1add	t0,a0,t0
#define	t0__3t0		sh1add	t0,t0,t0
#define	t0__4t0		sh2add	t0,0,t0
#define	t0__4t0_a0	sh2add	t0,a0,t0
#define	t0__5t0		sh2add	t0,t0,t0
#define	t0__8t0		sh3add	t0,0,t0
#define	t0__8t0_a0	sh3add	t0,a0,t0
#define	t0__9t0		sh3add	t0,t0,t0
#define	t0__16t0	zdep	t0,27,28,t0
#define	t0__32t0	zdep	t0,26,27,t0
#define	t0__256a0	zdep	a0,23,24,t0


	SUBSPA_MILLI
	ATTR_MILLI
	.align 16
	.proc
	.callinfo millicode
	.export $$mulI,millicode
GSYM($$mulI)	
	combt,<<=	a1,a0,LREF(l4)	/* swap args if unsigned a1>a0 */
	copy		0,r		/* zero out the result */
	xor		a0,a1,a0	/* swap a0 & a1 using the */
	xor		a0,a1,a1	/*  old xor trick */
	xor		a0,a1,a0
LSYM(l4)
	combt,<=	0,a0,LREF(l3)		/* if a0>=0 then proceed like unsigned */
	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
	sub,>		0,a1,t0		/* otherwise negate both and */
	combt,<=,n	a0,t0,LREF(l2)	/*  swap back if |a0|<|a1| */
	sub		0,a0,a1
	movb,tr,n	t0,a0,LREF(l2)	/* 10th inst.  */

LSYM(l0)	r__r_t0				/* add in this partial product */
LSYM(l1)	a0__256a0			/* a0 <<= 8 ****************** */
LSYM(l2)	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
LSYM(l3)	blr		t0,0		/* case on these 8 bits ****** */
		extru		a1,23,24,a1	/* a1 >>= 8 ****************** */

/*16 insts before this.  */
/*			  a0 <<= 8 ************************** */
LSYM(x0)	a1_ne_0_b_l2	! a0__256a0	! MILLIRETN	! nop
LSYM(x1)	a1_ne_0_b_l1	! r__r_a0	! MILLIRETN	! nop
LSYM(x2)	a1_ne_0_b_l1	! r__r_2a0	! MILLIRETN	! nop
LSYM(x3)	a1_ne_0_b_l0	! t0__3a0	! MILLIRET	! r__r_t0
LSYM(x4)	a1_ne_0_b_l1	! r__r_4a0	! MILLIRETN	! nop
LSYM(x5)	a1_ne_0_b_l0	! t0__5a0	! MILLIRET	! r__r_t0
LSYM(x6)	t0__3a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x7)	t0__3a0		! a1_ne_0_b_l0	! r__r_4a0	! b_n_ret_t0
LSYM(x8)	a1_ne_0_b_l1	! r__r_8a0	! MILLIRETN	! nop
LSYM(x9)	a1_ne_0_b_l0	! t0__9a0	! MILLIRET	! r__r_t0
LSYM(x10)	t0__5a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x11)	t0__3a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
LSYM(x12)	t0__3a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x13)	t0__5a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
LSYM(x14)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x15)	t0__5a0		! a1_ne_0_b_l0	! t0__3t0	! b_n_ret_t0
LSYM(x16)	t0__16a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x17)	t0__9a0		! a1_ne_0_b_l0	! t0__t0_8a0	! b_n_ret_t0
LSYM(x18)	t0__9a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x19)	t0__9a0		! a1_ne_0_b_l0	! t0__2t0_a0	! b_n_ret_t0
LSYM(x20)	t0__5a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x21)	t0__5a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x22)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x23)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x24)	t0__3a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x25)	t0__5a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
LSYM(x26)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x27)	t0__3a0		! a1_ne_0_b_l0	! t0__9t0	! b_n_ret_t0
LSYM(x28)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x29)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x30)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_2t0
LSYM(x31)	t0__32a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x32)	t0__32a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x33)	t0__8a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x34)	t0__16a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x35)	t0__9a0		! t0__3t0	! b_e_t0	! t0__t0_8a0
LSYM(x36)	t0__9a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x37)	t0__9a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x38)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x39)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x40)	t0__5a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x41)	t0__5a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
LSYM(x42)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x43)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x44)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x45)	t0__9a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
LSYM(x46)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_a0
LSYM(x47)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_2a0
LSYM(x48)	t0__3a0		! a1_ne_0_b_l0	! t0__16t0	! b_n_ret_t0
LSYM(x49)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_4a0
LSYM(x50)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_2t0
LSYM(x51)	t0__9a0		! t0__t0_8a0	! b_e_t0	! t0__3t0
LSYM(x52)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x53)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x54)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_2t0
LSYM(x55)	t0__9a0		! t0__3t0	! b_e_t0	! t0__2t0_a0
LSYM(x56)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x57)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__3t0
LSYM(x58)	t0__3a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x59)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__3t0
LSYM(x60)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x61)	t0__5a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x62)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x63)	t0__64a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x64)	t0__64a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x65)	t0__8a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
LSYM(x66)	t0__32a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x67)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x68)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x69)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x70)	t0__64a0	! t0__t0_4a0	! b_e_t0	! t0__t0_2a0
LSYM(x71)	t0__9a0		! t0__8t0	! b_e_t0	! t0__t0ma0
LSYM(x72)	t0__9a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x73)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_t0
LSYM(x74)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x75)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x76)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x77)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x78)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x79)	t0__16a0	! t0__5t0	! b_e_t0	! t0__t0ma0
LSYM(x80)	t0__16a0	! t0__5t0	! b_e_shift	! r__r_t0
LSYM(x81)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_t0
LSYM(x82)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
LSYM(x83)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x84)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x85)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
LSYM(x86)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x87)	t0__9a0		! t0__9t0	! b_e_t02a0	! t0__t0_4a0
LSYM(x88)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x89)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x90)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_2t0
LSYM(x91)	t0__9a0		! t0__5t0	! b_e_t0	! t0__2t0_a0
LSYM(x92)	t0__5a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x93)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__3t0
LSYM(x94)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__t0_2a0
LSYM(x95)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
LSYM(x96)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x97)	t0__8a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x98)	t0__32a0	! t0__3t0	! b_e_t0	! t0__t0_2a0
LSYM(x99)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
LSYM(x100)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_4t0
LSYM(x101)	t0__5a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x102)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
LSYM(x103)	t0__5a0		! t0__5t0	! b_e_t02a0	! t0__4t0_a0
LSYM(x104)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
LSYM(x105)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x106)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x107)	t0__9a0		! t0__t0_4a0	! b_e_t02a0	! t0__8t0_a0
LSYM(x108)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x109)	t0__9a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x110)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__2t0_a0
LSYM(x111)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
LSYM(x112)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__16t0
LSYM(x113)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__3t0
LSYM(x114)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__3t0
LSYM(x115)	t0__9a0		! t0__2t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x116)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__4t0_a0
LSYM(x117)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
LSYM(x118)	t0__3a0		! t0__4t0_a0	! b_e_t0a0	! t0__9t0
LSYM(x119)	t0__3a0		! t0__4t0_a0	! b_e_t02a0	! t0__9t0
LSYM(x120)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x121)	t0__5a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x122)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x123)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x124)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
LSYM(x125)	t0__5a0		! t0__5t0	! b_e_t0	! t0__5t0
LSYM(x126)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x127)	t0__128a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x128)	t0__128a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x129)	t0__128a0	! a1_ne_0_b_l0	! t0__t0_a0	! b_n_ret_t0
LSYM(x130)	t0__64a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x131)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x132)	t0__8a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x133)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x134)	t0__8a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x135)	t0__9a0		! t0__5t0	! b_e_t0	! t0__3t0
LSYM(x136)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x137)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x138)	t0__8a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x139)	t0__8a0		! t0__2t0_a0	! b_e_2t0a0	! t0__4t0_a0
LSYM(x140)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__5t0
LSYM(x141)	t0__8a0		! t0__2t0_a0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x142)	t0__9a0		! t0__8t0	! b_e_2t0	! t0__t0ma0
LSYM(x143)	t0__16a0	! t0__9t0	! b_e_t0	! t0__t0ma0
LSYM(x144)	t0__9a0		! t0__8t0	! b_e_shift	! r__r_2t0
LSYM(x145)	t0__9a0		! t0__8t0	! b_e_t0	! t0__2t0_a0
LSYM(x146)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
LSYM(x147)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x148)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x149)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x150)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x151)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x152)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x153)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x154)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x155)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__5t0
LSYM(x156)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x157)	t0__32a0	! t0__t0ma0	! b_e_t02a0	! t0__5t0
LSYM(x158)	t0__16a0	! t0__5t0	! b_e_2t0	! t0__t0ma0
LSYM(x159)	t0__32a0	! t0__5t0	! b_e_t0	! t0__t0ma0
LSYM(x160)	t0__5a0		! t0__4t0	! b_e_shift	! r__r_8t0
LSYM(x161)	t0__8a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x162)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_2t0
LSYM(x163)	t0__9a0		! t0__9t0	! b_e_t0	! t0__2t0_a0
LSYM(x164)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_4t0
LSYM(x165)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x166)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x167)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x168)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
LSYM(x169)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x170)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__5t0
LSYM(x171)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__9t0
LSYM(x172)	t0__5a0		! t0__4t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x173)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__9t0
LSYM(x174)	t0__32a0	! t0__t0_2a0	! b_e_t04a0	! t0__5t0
LSYM(x175)	t0__8a0		! t0__2t0_a0	! b_e_5t0	! t0__2t0_a0
LSYM(x176)	t0__5a0		! t0__4t0_a0	! b_e_8t0	! t0__t0_a0
LSYM(x177)	t0__5a0		! t0__4t0_a0	! b_e_8t0a0	! t0__t0_a0
LSYM(x178)	t0__5a0		! t0__2t0_a0	! b_e_2t0	! t0__8t0_a0
LSYM(x179)	t0__5a0		! t0__2t0_a0	! b_e_2t0a0	! t0__8t0_a0
LSYM(x180)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_4t0
LSYM(x181)	t0__9a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x182)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__2t0_a0
LSYM(x183)	t0__9a0		! t0__5t0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x184)	t0__5a0		! t0__9t0	! b_e_4t0	! t0__t0_a0
LSYM(x185)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x186)	t0__32a0	! t0__t0ma0	! b_e_2t0	! t0__3t0
LSYM(x187)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__5t0
LSYM(x188)	t0__9a0		! t0__5t0	! b_e_4t0	! t0__t0_2a0
LSYM(x189)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
LSYM(x190)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__5t0
LSYM(x191)	t0__64a0	! t0__3t0	! b_e_t0	! t0__t0ma0
LSYM(x192)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x193)	t0__8a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x194)	t0__8a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x195)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x196)	t0__8a0		! t0__3t0	! b_e_4t0	! t0__2t0_a0
LSYM(x197)	t0__8a0		! t0__3t0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x198)	t0__64a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
LSYM(x199)	t0__8a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x200)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_8t0
LSYM(x201)	t0__5a0		! t0__5t0	! b_e_t0	! t0__8t0_a0
LSYM(x202)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__4t0_a0
LSYM(x203)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__4t0_a0
LSYM(x204)	t0__8a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
LSYM(x205)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__5t0
LSYM(x206)	t0__64a0	! t0__t0_4a0	! b_e_t02a0	! t0__3t0
LSYM(x207)	t0__8a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
LSYM(x208)	t0__5a0		! t0__5t0	! b_e_8t0	! t0__t0_a0
LSYM(x209)	t0__5a0		! t0__5t0	! b_e_8t0a0	! t0__t0_a0
LSYM(x210)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__5t0
LSYM(x211)	t0__5a0		! t0__4t0_a0	! b_e_2t0a0	! t0__5t0
LSYM(x212)	t0__3a0		! t0__4t0_a0	! b_e_4t0	! t0__4t0_a0
LSYM(x213)	t0__3a0		! t0__4t0_a0	! b_e_4t0a0	! t0__4t0_a0
LSYM(x214)	t0__9a0		! t0__t0_4a0	! b_e_2t04a0	! t0__8t0_a0
LSYM(x215)	t0__5a0		! t0__4t0_a0	! b_e_5t0	! t0__2t0_a0
LSYM(x216)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x217)	t0__9a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x218)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x219)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x220)	t0__3a0		! t0__9t0	! b_e_4t0	! t0__2t0_a0
LSYM(x221)	t0__3a0		! t0__9t0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x222)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__3t0
LSYM(x223)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x224)	t0__9a0		! t0__3t0	! b_e_8t0	! t0__t0_a0
LSYM(x225)	t0__9a0		! t0__5t0	! b_e_t0	! t0__5t0
LSYM(x226)	t0__3a0		! t0__2t0_a0	! b_e_t02a0	! t0__32t0
LSYM(x227)	t0__9a0		! t0__5t0	! b_e_t02a0	! t0__5t0
LSYM(x228)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
LSYM(x229)	t0__9a0		! t0__2t0_a0	! b_e_4t0a0	! t0__3t0
LSYM(x230)	t0__9a0		! t0__5t0	! b_e_5t0	! t0__t0_a0
LSYM(x231)	t0__9a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
LSYM(x232)	t0__3a0		! t0__2t0_a0	! b_e_8t0	! t0__4t0_a0
LSYM(x233)	t0__3a0		! t0__2t0_a0	! b_e_8t0a0	! t0__4t0_a0
LSYM(x234)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__9t0
LSYM(x235)	t0__3a0		! t0__4t0_a0	! b_e_2t0a0	! t0__9t0
LSYM(x236)	t0__9a0		! t0__2t0_a0	! b_e_4t08a0	! t0__3t0
LSYM(x237)	t0__16a0	! t0__5t0	! b_e_3t0	! t0__t0ma0
LSYM(x238)	t0__3a0		! t0__4t0_a0	! b_e_2t04a0	! t0__9t0
LSYM(x239)	t0__16a0	! t0__5t0	! b_e_t0ma0	! t0__3t0
LSYM(x240)	t0__9a0		! t0__t0_a0	! b_e_8t0	! t0__3t0
LSYM(x241)	t0__9a0		! t0__t0_a0	! b_e_8t0a0	! t0__3t0
LSYM(x242)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__8t0_a0
LSYM(x243)	t0__9a0		! t0__9t0	! b_e_t0	! t0__3t0
LSYM(x244)	t0__5a0		! t0__3t0	! b_e_4t0	! t0__4t0_a0
LSYM(x245)	t0__8a0		! t0__3t0	! b_e_5t0	! t0__2t0_a0
LSYM(x246)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__3t0
LSYM(x247)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x248)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_8t0
LSYM(x249)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__8t0_a0
LSYM(x250)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__5t0
LSYM(x251)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__5t0
LSYM(x252)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
LSYM(x253)	t0__64a0	! t0__t0ma0	! b_e_t0	! t0__4t0_a0
LSYM(x254)	t0__128a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x255)	t0__256a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
/*1040 insts before this.  */
LSYM(ret_t0)	MILLIRET
LSYM(e_t0)	r__r_t0
LSYM(e_shift)	a1_ne_0_b_l2
	a0__256a0	/* a0 <<= 8 *********** */
	MILLIRETN
LSYM(e_t0ma0)	a1_ne_0_b_l0
	t0__t0ma0
	MILLIRET
	r__r_t0
LSYM(e_t0a0)	a1_ne_0_b_l0
	t0__t0_a0
	MILLIRET
	r__r_t0
LSYM(e_t02a0)	a1_ne_0_b_l0
	t0__t0_2a0
	MILLIRET
	r__r_t0
LSYM(e_t04a0)	a1_ne_0_b_l0
	t0__t0_4a0
	MILLIRET
	r__r_t0
LSYM(e_2t0)	a1_ne_0_b_l1
	r__r_2t0
	MILLIRETN
LSYM(e_2t0a0)	a1_ne_0_b_l0
	t0__2t0_a0
	MILLIRET
	r__r_t0
LSYM(e2t04a0)	t0__t0_2a0
	a1_ne_0_b_l1
	r__r_2t0
	MILLIRETN
LSYM(e_3t0)	a1_ne_0_b_l0
	t0__3t0
	MILLIRET
	r__r_t0
LSYM(e_4t0)	a1_ne_0_b_l1
	r__r_4t0
	MILLIRETN
LSYM(e_4t0a0)	a1_ne_0_b_l0
	t0__4t0_a0
	MILLIRET
	r__r_t0
LSYM(e4t08a0)	t0__t0_2a0
	a1_ne_0_b_l1
	r__r_4t0
	MILLIRETN
LSYM(e_5t0)	a1_ne_0_b_l0
	t0__5t0
	MILLIRET
	r__r_t0
LSYM(e_8t0)	a1_ne_0_b_l1
	r__r_8t0
	MILLIRETN
LSYM(e_8t0a0)	a1_ne_0_b_l0
	t0__8t0_a0
	MILLIRET
	r__r_t0

	.procend
	.end
#endif