aboutsummaryrefslogtreecommitdiff
path: root/arch/mips/kernel/watch.c
blob: 7726f6157d9e7b0aa48c8d7e7b051c86de9aea95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2008 David Daney
 */

#include <linux/sched.h>

#include <asm/processor.h>
#include <asm/watch.h>

/*
 * Install the watch registers for the current thread.	A maximum of
 * four registers are installed although the machine may have more.
 */
void mips_install_watch_registers(void)
{
	struct mips3264_watch_reg_state *watches =
		&current->thread.watch.mips3264;
	switch (current_cpu_data.watch_reg_use_cnt) {
	default:
		BUG();
	case 4:
		write_c0_watchlo3(watches->watchlo[3]);
		/* Write 1 to the I, R, and W bits to clear them, and
		   1 to G so all ASIDs are trapped. */
		write_c0_watchhi3(0x40000007 | watches->watchhi[3]);
	case 3:
		write_c0_watchlo2(watches->watchlo[2]);
		write_c0_watchhi2(0x40000007 | watches->watchhi[2]);
	case 2:
		write_c0_watchlo1(watches->watchlo[1]);
		write_c0_watchhi1(0x40000007 | watches->watchhi[1]);
	case 1:
		write_c0_watchlo0(watches->watchlo[0]);
		write_c0_watchhi0(0x40000007 | watches->watchhi[0]);
	}
}

/*
 * Read back the watchhi registers so the user space debugger has
 * access to the I, R, and W bits.  A maximum of four registers are
 * read although the machine may have more.
 */
void mips_read_watch_registers(void)
{
	struct mips3264_watch_reg_state *watches =
		&current->thread.watch.mips3264;
	switch (current_cpu_data.watch_reg_use_cnt) {
	default:
		BUG();
	case 4:
		watches->watchhi[3] = (read_c0_watchhi3() & 0x0fff);
	case 3:
		watches->watchhi[2] = (read_c0_watchhi2() & 0x0fff);
	case 2:
		watches->watchhi[1] = (read_c0_watchhi1() & 0x0fff);
	case 1:
		watches->watchhi[0] = (read_c0_watchhi0() & 0x0fff);
	}
	if (current_cpu_data.watch_reg_use_cnt == 1 &&
	    (watches->watchhi[0] & 7) == 0) {
		/* Pathological case of release 1 architecture that
		 * doesn't set the condition bits.  We assume that
		 * since we got here, the watch condition was met and
		 * signal that the conditions requested in watchlo
		 * were met.  */
		watches->watchhi[0] |= (watches->watchlo[0] & 7);
	}
 }

/*
 * Disable all watch registers.	 Although only four registers are
 * installed, all are cleared to eliminate the possibility of endless
 * looping in the watch handler.
 */
void mips_clear_watch_registers(void)
{
	switch (current_cpu_data.watch_reg_count) {
	default:
		BUG();
	case 8:
		write_c0_watchlo7(0);
	case 7:
		write_c0_watchlo6(0);
	case 6:
		write_c0_watchlo5(0);
	case 5:
		write_c0_watchlo4(0);
	case 4:
		write_c0_watchlo3(0);
	case 3:
		write_c0_watchlo2(0);
	case 2:
		write_c0_watchlo1(0);
	case 1:
		write_c0_watchlo0(0);
	}
}

__cpuinit void mips_probe_watch_registers(struct cpuinfo_mips *c)
{
	unsigned int t;

	if ((c->options & MIPS_CPU_WATCH) == 0)
		return;
	/*
	 * Check which of the I,R and W bits are supported, then
	 * disable the register.
	 */
	write_c0_watchlo0(7);
	t = read_c0_watchlo0();
	write_c0_watchlo0(0);
	c->watch_reg_masks[0] = t & 7;

	/* Write the mask bits and read them back to determine which
	 * can be used. */
	c->watch_reg_count = 1;
	c->watch_reg_use_cnt = 1;
	t = read_c0_watchhi0();
	write_c0_watchhi0(t | 0xff8);
	t = read_c0_watchhi0();
	c->watch_reg_masks[0] |= (t & 0xff8);
	if ((t & 0x80000000) == 0)
		return;

	write_c0_watchlo1(7);
	t = read_c0_watchlo1();
	write_c0_watchlo1(0);
	c->watch_reg_masks[1] = t & 7;

	c->watch_reg_count = 2;
	c->watch_reg_use_cnt = 2;
	t = read_c0_watchhi1();
	write_c0_watchhi1(t | 0xff8);
	t = read_c0_watchhi1();
	c->watch_reg_masks[1] |= (t & 0xff8);
	if ((t & 0x80000000) == 0)
		return;

	write_c0_watchlo2(7);
	t = read_c0_watchlo2();
	write_c0_watchlo2(0);
	c->watch_reg_masks[2] = t & 7;

	c->watch_reg_count = 3;
	c->watch_reg_use_cnt = 3;
	t = read_c0_watchhi2();
	write_c0_watchhi2(t | 0xff8);
	t = read_c0_watchhi2();
	c->watch_reg_masks[2] |= (t & 0xff8);
	if ((t & 0x80000000) == 0)
		return;

	write_c0_watchlo3(7);
	t = read_c0_watchlo3();
	write_c0_watchlo3(0);
	c->watch_reg_masks[3] = t & 7;

	c->watch_reg_count = 4;
	c->watch_reg_use_cnt = 4;
	t = read_c0_watchhi3();
	write_c0_watchhi3(t | 0xff8);
	t = read_c0_watchhi3();
	c->watch_reg_masks[3] |= (t & 0xff8);
	if ((t & 0x80000000) == 0)
		return;

	/* We use at most 4, but probe and report up to 8. */
	c->watch_reg_count = 5;
	t = read_c0_watchhi4();
	if ((t & 0x80000000) == 0)
		return;

	c->watch_reg_count = 6;
	t = read_c0_watchhi5();
	if ((t & 0x80000000) == 0)
		return;

	c->watch_reg_count = 7;
	t = read_c0_watchhi6();
	if ((t & 0x80000000) == 0)
		return;

	c->watch_reg_count = 8;
}