1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
|
| slogn.sa 3.1 12/10/90
|
| slogn computes the natural logarithm of an
| input value. slognd does the same except the input value is a
| denormalized number. slognp1 computes log(1+X), and slognp1d
| computes log(1+X) for denormalized X.
|
| Input: Double-extended value in memory location pointed to by address
| register a0.
|
| Output: log(X) or log(1+X) returned in floating-point register Fp0.
|
| Accuracy and Monotonicity: The returned result is within 2 ulps in
| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
| result is subsequently rounded to double precision. The
| result is provably monotonic in double precision.
|
| Speed: The program slogn takes approximately 190 cycles for input
| argument X such that |X-1| >= 1/16, which is the usual
| situation. For those arguments, slognp1 takes approximately
| 210 cycles. For the less common arguments, the program will
| run no worse than 10% slower.
|
| Algorithm:
| LOGN:
| Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in
| u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2.
|
| Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven
| significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base
| 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7).
|
| Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u,
| log(1+u) = poly.
|
| Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u)
| by k*log(2) + (log(F) + poly). The values of log(F) are calculated
| beforehand and stored in the program.
|
| lognp1:
| Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in
| u where u = 2X/(2+X). Otherwise, move on to Step 2.
|
| Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2
| of the algorithm for LOGN and compute log(1+X) as
| k*log(2) + log(F) + poly where poly approximates log(1+u),
| u = (Y-F)/F.
|
| Implementation Notes:
| Note 1. There are 64 different possible values for F, thus 64 log(F)'s
| need to be tabulated. Moreover, the values of 1/F are also
| tabulated so that the division in (Y-F)/F can be performed by a
| multiplication.
|
| Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value
| Y-F has to be calculated carefully when 1/2 <= X < 3/2.
|
| Note 3. To fully exploit the pipeline, polynomials are usually separated
| into two parts evaluated independently before being added up.
|
| Copyright (C) Motorola, Inc. 1990
| All Rights Reserved
|
| For details on the license for this file, please see the
| file, README, in this same directory.
|slogn idnt 2,1 | Motorola 040 Floating Point Software Package
|section 8
#include "fpsp.h"
BOUNDS1: .long 0x3FFEF07D,0x3FFF8841
BOUNDS2: .long 0x3FFE8000,0x3FFFC000
LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
one: .long 0x3F800000
zero: .long 0x00000000
infty: .long 0x7F800000
negone: .long 0xBF800000
LOGA6: .long 0x3FC2499A,0xB5E4040B
LOGA5: .long 0xBFC555B5,0x848CB7DB
LOGA4: .long 0x3FC99999,0x987D8730
LOGA3: .long 0xBFCFFFFF,0xFF6F7E97
LOGA2: .long 0x3FD55555,0x555555a4
LOGA1: .long 0xBFE00000,0x00000008
LOGB5: .long 0x3F175496,0xADD7DAD6
LOGB4: .long 0x3F3C71C2,0xFE80C7E0
LOGB3: .long 0x3F624924,0x928BCCFF
LOGB2: .long 0x3F899999,0x999995EC
LOGB1: .long 0x3FB55555,0x55555555
TWO: .long 0x40000000,0x00000000
LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000
LOGTBL:
.long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
.long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
.long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
.long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
.long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
.long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
.long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
.long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
.long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
.long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
.long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
.long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
.long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
.long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
.long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
.long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
.long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
.long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
.long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
.long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
.long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
.long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
.long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
.long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
.long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
.long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
.long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
.long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
.long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
.long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
.long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
.long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
.long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
.long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
.long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
.long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
.long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
.long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
.long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
.long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
.long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
.long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
.long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
.long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
.long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
.long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
.long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
.long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
.long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
.long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
.long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
.long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
.long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
.long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
.long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
.long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
.long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
.long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
.long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
.long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
.long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
.long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
.long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
.long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
.long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
.long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
.long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
.long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
.long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
.long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
.long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
.long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
.long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
.long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
.long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
.long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
.long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
.long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
.long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
.long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
.long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
.long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
.long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
.long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
.long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
.long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
.long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
.long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
.long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
.long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
.long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
.long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
.long 0x3FFE0000,0x94458094,0x45809446,0x00000000
.long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
.long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
.long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
.long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
.long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
.long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
.long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
.long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
.long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
.long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
.long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
.long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
.long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
.long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
.long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
.long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
.long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
.long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
.long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
.long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
.long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
.long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
.long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
.long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
.long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
.long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
.long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
.long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
.long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
.long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
.long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
.long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
.long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
.long 0x3FFE0000,0x80808080,0x80808081,0x00000000
.long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
.set ADJK,L_SCR1
.set X,FP_SCR1
.set XDCARE,X+2
.set XFRAC,X+4
.set F,FP_SCR2
.set FFRAC,F+4
.set KLOG2,FP_SCR3
.set SAVEU,FP_SCR4
| xref t_frcinx
|xref t_extdnrm
|xref t_operr
|xref t_dz
.global slognd
slognd:
|--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
movel #-100,ADJK(%a6) | ...INPUT = 2^(ADJK) * FP0
|----normalize the input value by left shifting k bits (k to be determined
|----below), adjusting exponent and storing -k to ADJK
|----the value TWOTO100 is no longer needed.
|----Note that this code assumes the denormalized input is NON-ZERO.
moveml %d2-%d7,-(%a7) | ...save some registers
movel #0x00000000,%d3 | ...D3 is exponent of smallest norm. #
movel 4(%a0),%d4
movel 8(%a0),%d5 | ...(D4,D5) is (Hi_X,Lo_X)
clrl %d2 | ...D2 used for holding K
tstl %d4
bnes HiX_not0
HiX_0:
movel %d5,%d4
clrl %d5
movel #32,%d2
clrl %d6
bfffo %d4{#0:#32},%d6
lsll %d6,%d4
addl %d6,%d2 | ...(D3,D4,D5) is normalized
movel %d3,X(%a6)
movel %d4,XFRAC(%a6)
movel %d5,XFRAC+4(%a6)
negl %d2
movel %d2,ADJK(%a6)
fmovex X(%a6),%fp0
moveml (%a7)+,%d2-%d7 | ...restore registers
lea X(%a6),%a0
bras LOGBGN | ...begin regular log(X)
HiX_not0:
clrl %d6
bfffo %d4{#0:#32},%d6 | ...find first 1
movel %d6,%d2 | ...get k
lsll %d6,%d4
movel %d5,%d7 | ...a copy of D5
lsll %d6,%d5
negl %d6
addil #32,%d6
lsrl %d6,%d7
orl %d7,%d4 | ...(D3,D4,D5) normalized
movel %d3,X(%a6)
movel %d4,XFRAC(%a6)
movel %d5,XFRAC+4(%a6)
negl %d2
movel %d2,ADJK(%a6)
fmovex X(%a6),%fp0
moveml (%a7)+,%d2-%d7 | ...restore registers
lea X(%a6),%a0
bras LOGBGN | ...begin regular log(X)
.global slogn
slogn:
|--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
fmovex (%a0),%fp0 | ...LOAD INPUT
movel #0x00000000,ADJK(%a6)
LOGBGN:
|--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
|--A FINITE, NON-ZERO, NORMALIZED NUMBER.
movel (%a0),%d0
movew 4(%a0),%d0
movel (%a0),X(%a6)
movel 4(%a0),X+4(%a6)
movel 8(%a0),X+8(%a6)
cmpil #0,%d0 | ...CHECK IF X IS NEGATIVE
blt LOGNEG | ...LOG OF NEGATIVE ARGUMENT IS INVALID
cmp2l BOUNDS1,%d0 | ...X IS POSITIVE, CHECK IF X IS NEAR 1
bcc LOGNEAR1 | ...BOUNDS IS ROUGHLY [15/16, 17/16]
LOGMAIN:
|--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
|--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
|--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
|--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
|-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
|--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
|--LOG(1+U) CAN BE VERY EFFICIENT.
|--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
|--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
|--GET K, Y, F, AND ADDRESS OF 1/F.
asrl #8,%d0
asrl #8,%d0 | ...SHIFTED 16 BITS, BIASED EXPO. OF X
subil #0x3FFF,%d0 | ...THIS IS K
addl ADJK(%a6),%d0 | ...ADJUST K, ORIGINAL INPUT MAY BE DENORM.
lea LOGTBL,%a0 | ...BASE ADDRESS OF 1/F AND LOG(F)
|