aboutsummaryrefslogtreecommitdiff
path: root/arch/ia64/sn/kernel/sn2/sn2_smp.c
blob: 6dd886c5d860a29dd71b7c91a168728ff97b4611 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/*
 * SN2 Platform specific SMP Support
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
 */

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/nodemask.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>

#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/sal.h>
#include <asm/system.h>
#include <asm/delay.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/tlb.h>
#include <asm/numa.h>
#include <asm/hw_irq.h>
#include <asm/current.h>
#include <asm/sn/sn_cpuid.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/addrs.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/rw_mmr.h>
#include <asm/sn/sn_feature_sets.h>

DEFINE_PER_CPU(struct ptc_stats, ptcstats);
DECLARE_PER_CPU(struct ptc_stats, ptcstats);

static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);

/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
static int sn2_flush_opt = 0;

extern unsigned long
sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
			       volatile unsigned long *, unsigned long,
			       volatile unsigned long *, unsigned long);
void
sn2_ptc_deadlock_recovery(short *, short, short, int,
			  volatile unsigned long *, unsigned long,
			  volatile unsigned long *, unsigned long);

/*
 * Note: some is the following is captured here to make degugging easier
 * (the macros make more sense if you see the debug patch - not posted)
 */
#define sn2_ptctest	0
#define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
#define max_active_pio(sh1)		((sh1) ? 32 : 7)
#define reset_max_active_on_deadlock()	1
#define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)

struct ptc_stats {
	unsigned long ptc_l;
	unsigned long change_rid;
	unsigned long shub_ptc_flushes;
	unsigned long nodes_flushed;
	unsigned long deadlocks;
	unsigned long deadlocks2;
	unsigned long lock_itc_clocks;
	unsigned long shub_itc_clocks;
	unsigned long shub_itc_clocks_max;
	unsigned long shub_ptc_flushes_not_my_mm;
	unsigned long shub_ipi_flushes;
	unsigned long shub_ipi_flushes_itc_clocks;
};

#define sn2_ptctest	0

static inline unsigned long wait_piowc(void)
{
	volatile unsigned long *piows;
	unsigned long zeroval, ws;

	piows = pda->pio_write_status_addr;
	zeroval = pda->pio_write_status_val;
	do {
		cpu_relax();
	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
}

/**
 * sn_migrate - SN-specific task migration actions
 * @task: Task being migrated to new CPU
 *
 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
 * Context switching user threads which have memory-mapped MMIO may cause
 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
 * from the previous CPU's Shub before execution resumes on the new CPU.
 */
void sn_migrate(struct task_struct *task)
{
	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
	volatile unsigned long *adr = last_pda->pio_write_status_addr;
	unsigned long val = last_pda->pio_write_status_val;

	/* Drain PIO writes from old CPU's Shub */
	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
			!= val))
		cpu_relax();
}

void sn_tlb_migrate_finish(struct mm_struct *mm)
{
	/* flush_tlb_mm is inefficient if more than 1 users of mm */
	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
		flush_tlb_mm(mm);
}

static void
sn2_ipi_flush_all_tlb(struct mm_struct *mm)
{
	unsigned long itc;

	itc = ia64_get_itc();
	smp_flush_tlb_cpumask(mm->cpu_vm_mask);
	itc = ia64_get_itc() - itc;
	__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
	__get_cpu_var(ptcstats).shub_ipi_flushes++;
}

/**
 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
 * @mm: mm_struct containing virtual address range
 * @start: start of virtual address range
 * @end: end of virtual address range
 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
 *
 * Purges the translation caches of all processors of the given virtual address
 * range.
 *
 * Note:
 * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
 * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
 * 	  cpus in cpu_vm_mask.
 *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
 *	  process is purging its own virtual address range, then only the
 *	  local TLB needs to be flushed. This flushing can be done using
 *	  ptc.l. This is the common case & avoids the global spinlock.
 *	- if multiple cpus have loaded the context, then flushing has to be
 *	  done with ptc.g/MMRs under protection of the global ptc_lock.
 */

void
sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
		     unsigned long end, unsigned long nbits)
{
	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
	int mymm = (mm == current->active_mm && mm == current->mm);
	int use_cpu_ptcga;
	volatile unsigned long *ptc0, *ptc1;
	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
	short nasids[MAX_NUMNODES], nix;
	nodemask_t nodes_flushed;
	int active, max_active, deadlock, flush_opt = sn2_flush_opt;

	if (flush_opt > 2) {
		sn2_ipi_flush_all_tlb(mm);
		return;
	}

	nodes_clear(nodes_flushed);
	i = 0;

	for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
		cnode = cpu_to_node(cpu);
		node_set(cnode, nodes_flushed);
		lcpu = cpu;
		i++;
	}

	if (i == 0)
		return;

	preempt_disable();

	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
		do {
			ia64_ptcl(start, nbits << 2);
			start += (1UL << nbits);
		} while (start < end);
		ia64_srlz_i();
		__get_cpu_var(ptcstats).ptc_l++;
		preempt_enable();
		return;
	}

	if (atomic_read(&mm->mm_users) == 1 && mymm) {
		flush_tlb_mm(mm);
		__get_cpu_var(ptcstats).change_rid++;
		preempt_enable();
		return;
	}

	if (flush_opt == 2) {
		sn2_ipi_flush_all_tlb(mm);
		preempt_enable();
		return;
	}

	itc = ia64_get_itc();
	nix = 0;
	for_each_node_mask(cnode, nodes_flushed)
		nasids[nix++] = cnodeid_to_nasid(cnode);

	rr_value = (mm->context << 3) | REGION_NUMBER(start);

	shub1 = is_shub1();
	if (shub1) {
		data0 = (1UL << SH1_PTC_0_A_SHFT) |
		    	(nbits << SH1_PTC_0_PS_SHFT) |
			(rr_value << SH1_PTC_0_RID_SHFT) |
		    	(1UL << SH1_PTC_0_START_SHFT);
		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
	} else {
		data0 = (1UL << SH2_PTC_A_SHFT) |
			(nbits << SH2_PTC_PS_SHFT) |
		    	(1UL << SH2_PTC_START_SHFT);
		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
			(rr_value << SH2_PTC_RID_SHFT));
		ptc1 = NULL;
	}
	

	mynasid = get_nasid();
	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
	max_active = max_active_pio(shub1);

	itc = ia64_get_itc();
	spin_lock_irqsave(PTC_LOCK(shub1), flags);
	itc2 = ia64_get_itc();

	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
	__get_cpu_var(ptcstats).shub_ptc_flushes++;
	__get_cpu_var(ptcstats).nodes_flushed += nix;
	if (!mymm)
		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;

	if (use_cpu_ptcga && !mymm) {
		old_rr = ia64_get_rr(start);
		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
		ia64_srlz_d();
	}

	wait_piowc();
	do {
		if (shub1)
			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
		else
			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
		deadlock = 0;
		active = 0;
		for (ibegin = 0, i = 0; i < nix; i++) {
			nasid = nasids[i];
			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
				ia64_ptcga(start, nbits << 2);
				ia64_srlz_i();
			} else {
				ptc0 = CHANGE_NASID(nasid, ptc0);
				if (ptc1)
					ptc1 = CHANGE_NASID(nasid, ptc1);
				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
				active++;
			}
			if (active >= max_active || i == (nix - 1)) {
				if ((deadlock = wait_piowc())) {
					if (flush_opt == 1)
						goto done;
					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
					if (reset_max_active_on_deadlock())
						max_active = 1;
				}
				active = 0;
				ibegin = i + 1;
			}
		}
		start += (1UL << nbits);
	} while (start < end);

done:
	itc2 = ia64_get_itc() - itc2;
	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;

	if (old_rr) {
		ia64_set_rr(start, old_rr);
		ia64_srlz_d();
	}

	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);

	if (flush_opt == 1 && deadlock) {
		__get_cpu_var(ptcstats).deadlocks++;
		sn2_ipi_flush_all_tlb(mm);
	}

	preempt_enable();
}

/*
 * sn2_ptc_deadlock_recovery
 *
 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
 * TLB flush transaction.  The recovery sequence is somewhat tricky & is
 * coded in assembly language.
 */

void
sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
			  volatile unsigned long *ptc0, unsigned long data0,
			  volatile unsigned long *ptc1, unsigned long data1)
{
	short nasid, i;
	unsigned long *piows, zeroval, n;

	__get_cpu_var(ptcstats).deadlocks++;

	piows = (unsigned long *) pda->pio_write_status_addr;
	zeroval = pda->pio_write_status_val;


	for (i=ib; i <= ie; i++) {
		nasid = nasids[i];
		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
			continue;
		ptc0 = CHANGE_NASID(nasid, ptc0);
		if (ptc1)
			ptc1 = CHANGE_NASID(nasid, ptc1);

		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
		__get_cpu_var(ptcstats).deadlocks2 += n;
	}

}

/**
 * sn_send_IPI_phys - send an IPI to a Nasid and slice
 * @nasid: nasid to receive the interrupt (may be outside partition)
 * @physid: physical cpuid to receive the interrupt.
 * @vector: command to send
 * @delivery_mode: delivery mechanism
 *
 * Sends an IPI (interprocessor interrupt) to the processor specified by
 * @physid
 *
 * @delivery_mode can be one of the following
 *
 * %IA64_IPI_DM_INT - pend an interrupt
 * %IA64_IPI_DM_PMI - pend a PMI
 * %IA64_IPI_DM_NMI - pend an NMI
 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 */
void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
{
	long val;
	unsigned long flags = 0;
	volatile long *p;

	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
	val = (1UL << SH_IPI_INT_SEND_SHFT) |
	    (physid << SH_IPI_INT_PID_SHFT) |
	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);

	mb();
	if (enable_shub_wars_1_1()) {
		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
	}
	pio_phys_write_mmr(p, val);
	if (enable_shub_wars_1_1()) {
		wait_piowc();
		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
	}

}

EXPORT_SYMBOL(sn_send_IPI_phys);

/**
 * sn2_send_IPI - send an IPI to a processor
 * @cpuid: target of the IPI
 * @vector: command to send
 * @delivery_mode: delivery mechanism
 * @redirect: redirect the IPI?
 *
 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
 * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
 * be one of the following
 *
 * %IA64_IPI_DM_INT - pend an interrupt
 * %IA64_IPI_DM_PMI - pend a PMI
 * %IA64_IPI_DM_NMI - pend an NMI
 * %IA64_IPI_DM_INIT - pend an INIT interrupt
 */
void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
{
	long physid;
	int nasid;

	physid = cpu_physical_id(cpuid);
	nasid = cpuid_to_nasid(cpuid);

	/* the following is used only when starting cpus at boot time */
	if (unlikely(nasid == -1))
		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);

	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
}

#ifdef CONFIG_HOTPLUG_CPU
/**
 * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
 * @cpu - CPU that is requested to be disabled.
 *
 * CPU disable is only allowed on SHub2 systems running with a PROM
 * that supports CPU disable. It is not permitted to disable the boot processor.
 */
bool sn_cpu_disable_allowed(int cpu)
{
	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
		if (cpu != 0)
			return true;
		else
			printk(KERN_WARNING
			      "Disabling the boot processor is not allowed.\n");

	} else
		printk(KERN_WARNING
		       "CPU disable is not supported on this system.\n");

	return false;
}
#endif /* CONFIG_HOTPLUG_CPU */

#ifdef CONFIG_PROC_FS

#define PTC_BASENAME	"sgi_sn/ptc_statistics"

static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
{
	if (*offset < NR_CPUS)
		return offset;
	return NULL;
}

static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
{
	(*offset)++;
	if (*offset < NR_CPUS)
		return offset;
	return NULL;
}

static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
{
}

static int sn2_ptc_seq_show(struct seq_file *file, void *data)
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *) data;

	if (!cpu) {
		seq_printf(file,
			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
	}

	if (cpu < NR_CPUS && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
				stat->deadlocks,
				1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
				1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
				1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
				stat->shub_ptc_flushes_not_my_mm,
				stat->deadlocks2,
				stat->shub_ipi_flushes,
				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec);
	}
	return 0;
}

static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
{
	int cpu;
	char optstr[64];

	if (count > sizeof(optstr))
		return -EINVAL;
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);

	for_each_online_cpu(cpu)
		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));

	return count;
}

static const struct seq_operations sn2_ptc_seq_ops = {
	.start = sn2_ptc_seq_start,
	.next = sn2_ptc_seq_next,
	.stop = sn2_ptc_seq_stop,
	.show = sn2_ptc_seq_show
};

static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &sn2_ptc_seq_ops);
}

static const struct file_operations proc_sn2_ptc_operations = {
	.open = sn2_ptc_proc_open,
	.read = seq_read,
	.write = sn2_ptc_proc_write,
	.llseek = seq_lseek,
	.release = seq_release,
};

static struct proc_dir_entry *proc_sn2_ptc;

static int __init sn2_ptc_init(void)
{
	if (!ia64_platform_is("sn2"))
		return 0;

	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
				   NULL, &proc_sn2_ptc_operations);
	if (!&proc_sn2_ptc_operations) {
		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
		return -EINVAL;
	}
	spin_lock_init(&sn2_global_ptc_lock);
	return 0;
}

static void __exit sn2_ptc_exit(void)
{
	remove_proc_entry(PTC_BASENAME, NULL);
}

module_init(sn2_ptc_init);
module_exit(sn2_ptc_exit);
#endif /* CONFIG_PROC_FS */