1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
#include <linux/linkage.h>
#include <linux/init.h>
#include <asm/cache.h>
#include <asm/asm-offsets.h>
#include <asm/hardware/cache-l2x0.h>
#include "flowctrl.h"
#include "iomap.h"
#include "reset.h"
#include "sleep.h"
#define APB_MISC_GP_HIDREV 0x804
#define PMC_SCRATCH41 0x140
#define RESET_DATA(x) ((TEGRA_RESET_##x)*4)
.section ".text.head", "ax"
/*
* Tegra specific entry point for secondary CPUs.
* The secondary kernel init calls v7_flush_dcache_all before it enables
* the L1; however, the L1 comes out of reset in an undefined state, so
* the clean + invalidate performed by v7_flush_dcache_all causes a bunch
* of cache lines with uninitialized data and uninitialized tags to get
* written out to memory, which does really unpleasant things to the main
* processor. We fix this by performing an invalidate, rather than a
* clean + invalidate, before jumping into the kernel.
*/
ENTRY(v7_invalidate_l1)
mov r0, #0
mcr p15, 2, r0, c0, c0, 0
mrc p15, 1, r0, c0, c0, 0
ldr r1, =0x7fff
and r2, r1, r0, lsr #13
ldr r1, =0x3ff
and r3, r1, r0, lsr #3 @ NumWays - 1
add r2, r2, #1 @ NumSets
and r0, r0, #0x7
add r0, r0, #4 @ SetShift
clz r1, r3 @ WayShift
add r4, r3, #1 @ NumWays
1: sub r2, r2, #1 @ NumSets--
mov r3, r4 @ Temp = NumWays
2: subs r3, r3, #1 @ Temp--
mov r5, r3, lsl r1
mov r6, r2, lsl r0
orr r5, r5, r6 @ Reg = (Temp<<WayShift)|(NumSets<<SetShift)
mcr p15, 0, r5, c7, c6, 2
bgt 2b
cmp r2, #0
bgt 1b
dsb
isb
mov pc, lr
ENDPROC(v7_invalidate_l1)
ENTRY(tegra_secondary_startup)
bl v7_invalidate_l1
/* Enable coresight */
mov32 r0, 0xC5ACCE55
mcr p14, 0, r0, c7, c12, 6
b secondary_startup
ENDPROC(tegra_secondary_startup)
#ifdef CONFIG_PM_SLEEP
/*
* tegra_resume
*
* CPU boot vector when restarting the a CPU following
* an LP2 transition. Also branched to by LP0 and LP1 resume after
* re-enabling sdram.
*/
ENTRY(tegra_resume)
bl v7_invalidate_l1
/* Enable coresight */
mov32 r0, 0xC5ACCE55
mcr p14, 0, r0, c7, c12, 6
cpu_id r0
cmp r0, #0 @ CPU0?
bne cpu_resume @ no
#ifdef CONFIG_ARCH_TEGRA_3x_SOC
/* Are we on Tegra20? */
mov32 r6, TEGRA_APB_MISC_BASE
ldr r0, [r6, #APB_MISC_GP_HIDREV]
and r0, r0, #0xff00
cmp r0, #(0x20 << 8)
beq 1f @ Yes
/* Clear the flow controller flags for this CPU. */
mov32 r2, TEGRA_FLOW_CTRL_BASE + FLOW_CTRL_CPU0_CSR @ CPU0 CSR
ldr r1, [r2]
/* Clear event & intr flag */
orr r1, r1, \
#FLOW_CTRL_CSR_INTR_FLAG | FLOW_CTRL_CSR_EVENT_FLAG
movw r0, #0x0FFD @ enable, cluster_switch, immed, & bitmaps
bic r1, r1, r0
str r1, [r2]
1:
#endif
#ifdef CONFIG_HAVE_ARM_SCU
/* enable SCU */
mov32 r0, TEGRA_ARM_PERIF_BASE
ldr r1, [r0]
orr r1, r1, #1
str r1, [r0]
#endif
/* L2 cache resume & re-enable */
l2_cache_resume r0, r1, r2, l2x0_saved_regs_addr
b cpu_resume
ENDPROC(tegra_resume)
#endif
#ifdef CONFIG_CACHE_L2X0
.globl l2x0_saved_regs_addr
l2x0_saved_regs_addr:
.long 0
#endif
.align L1_CACHE_SHIFT
ENTRY(__tegra_cpu_reset_handler_start)
/*
* __tegra_cpu_reset_handler:
*
* Common handler for all CPU reset events.
*
* Register usage within the reset handler:
*
* R7 = CPU present (to the OS) mask
* R8 = CPU in LP1 state mask
* R9 = CPU in LP2 state mask
* R10 = CPU number
* R11 = CPU mask
* R12 = pointer to reset handler data
*
* NOTE: This code is copied to IRAM. All code and data accesses
* must be position-independent.
*/
.align L1_CACHE_SHIFT
ENTRY(__tegra_cpu_reset_handler)
cpsid aif, 0x13 @ SVC mode, interrupts disabled
mrc p15, 0, r10, c0, c0, 5 @ MPIDR
and r10, r10, #0x3 @ R10 = CPU number
mov r11, #1
mov r11, r11, lsl r10 @ R11 = CPU mask
adr r12, __tegra_cpu_reset_handler_data
#ifdef CONFIG_SMP
/* Does the OS know about this CPU? */
ldr r7, [r12, #RESET_DATA(MASK_PRESENT)]
tst r7, r11 @ if !present
bleq __die @ CPU not present (to OS)
#endif
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
/* Are we on Tegra20? */
mov32 r6, TEGRA_APB_MISC_BASE
ldr r0, [r6, #APB_MISC_GP_HIDREV]
and r0, r0, #0xff00
cmp r0, #(0x20 << 8)
bne 1f
/* If not CPU0, don't let CPU0 reset CPU1 now that CPU1 is coming up. */
mov32 r6, TEGRA_PMC_BASE
mov r0, #0
cmp r10, #0
strne r0, [r6, #PMC_SCRATCH41]
1:
#endif
/* Waking up from LP2? */
ldr r9, [r12, #RESET_DATA(MASK_LP2)]
tst r9, r11 @ if in_lp2
beq __is_not_lp2
ldr lr, [r12, #RESET_DATA(STARTUP_LP2)]
cmp lr, #0
bleq __die @ no LP2 startup handler
bx lr
__is_not_lp2:
#ifdef CONFIG_SMP
/*
* Can only be secondary boot (initial or hotplug) but CPU 0
* cannot be here.
*/
cmp r10, #0
bleq __die @ CPU0 cannot be here
ldr lr, [r12, #RESET_DATA(STARTUP_SECONDARY)]
cmp lr, #0
bleq __die @ no secondary startup handler
bx lr
#endif
/*
* We don't know why the CPU reset. Just kill it.
* The LR register will contain the address we died at + 4.
*/
__die:
sub lr, lr, #4
mov32 r7, TEGRA_PMC_BASE
str lr, [r7, #PMC_SCRATCH41]
mov32 r7, TEGRA_CLK_RESET_BASE
/* Are we on Tegra20? */
mov32 r6, TEGRA_APB_MISC_BASE
ldr r0, [r6, #APB_MISC_GP_HIDREV]
and r0, r0, #0xff00
cmp r0, #(0x20 << 8)
bne 1f
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
mov32 r0, 0x1111
mov r1, r0, lsl r10
str r1, [r7, #0x340] @ CLK_RST_CPU_CMPLX_SET
#endif
1:
#ifdef CONFIG_ARCH_TEGRA_3x_SOC
mov32 r6, TEGRA_FLOW_CTRL_BASE
cmp r10, #0
moveq r1, #FLOW_CTRL_HALT_CPU0_EVENTS
moveq r2, #FLOW_CTRL_CPU0_CSR
movne r1, r10, lsl #3
addne r2, r1, #(FLOW_CTRL_CPU1_CSR-8)
addne r1, r1, #(FLOW_CTRL_HALT_CPU1_EVENTS-8)
/* Clear CPU "event" and "interrupt" flags and power gate
it when halting but not before it is in the "WFI" state. */
ldr r0, [r6, +r2]
orr r0, r0, #FLOW_CTRL_CSR_INTR_FLAG | FLOW_CTRL_CSR_EVENT_FLAG
orr r0, r0, #FLOW_CTRL_CSR_ENABLE
str r0, [r6, +r2]
/* Unconditionally halt this CPU */
mov r0, #FLOW_CTRL_WAITEVENT
str r0, [r6, +r1]
ldr r0, [r6, +r1] @ memory barrier
dsb
isb
wfi @ CPU should be power gated here
/* If the CPU didn't power gate above just kill it's clock. */
mov r0, r11, lsl #8
str r0
|