1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/*
* OMAP3/OMAP4 smartreflex device file
*
* Author: Thara Gopinath <thara@ti.com>
*
* Based originally on code from smartreflex.c
* Copyright (C) 2010 Texas Instruments, Inc.
* Thara Gopinath <thara@ti.com>
*
* Copyright (C) 2008 Nokia Corporation
* Kalle Jokiniemi
*
* Copyright (C) 2007 Texas Instruments, Inc.
* Lesly A M <x0080970@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <plat/omap_device.h>
#include "smartreflex.h"
#include "voltage.h"
#include "control.h"
#include "pm.h"
static bool sr_enable_on_init;
/* Read EFUSE values from control registers for OMAP3430 */
static void __init sr_set_nvalues(struct omap_volt_data *volt_data,
struct omap_sr_data *sr_data)
{
struct omap_sr_nvalue_table *nvalue_table;
int i, count = 0;
while (volt_data[count].volt_nominal)
count++;
nvalue_table = kzalloc(sizeof(struct omap_sr_nvalue_table)*count,
GFP_KERNEL);
for (i = 0; i < count; i++) {
u32 v;
/*
* In OMAP4 the efuse registers are 24 bit aligned.
* A __raw_readl will fail for non-32 bit aligned address
* and hence the 8-bit read and shift.
*/
if (cpu_is_omap44xx()) {
u16 offset = volt_data[i].sr_efuse_offs;
v = omap_ctrl_readb(offset) |
omap_ctrl_readb(offset + 1) << 8 |
omap_ctrl_readb(offset + 2) << 16;
} else {
v = omap_ctrl_readl(volt_data[i].sr_efuse_offs);
}
nvalue_table[i].efuse_offs = volt_data[i].sr_efuse_offs;
nvalue_table[i].nvalue = v;
}
sr_data->nvalue_table = nvalue_table;
sr_data->nvalue_count = count;
}
static int sr_dev_init(struct omap_hwmod *oh, void *user)
{
struct omap_sr_data *sr_data;
struct platform_device *pdev;
struct omap_volt_data *volt_data;
struct omap_smartreflex_dev_attr *sr_dev_attr;
char *name = "smartreflex";
static int i;
sr_data = kzalloc(sizeof(struct omap_sr_data), GFP_KERNEL);
if (!sr_data) {
pr_err("%s: Unable to allocate memory for %s sr_data.Error!\n",
__func__, oh->name);
return -ENOMEM;
}
sr_dev_attr = (struct omap_smartreflex_dev_attr *)oh->dev_attr;
if (!sr_dev_attr || !sr_dev_attr->sensor_voltdm_name) {
pr_err("%s: No voltage domain specified for %s."
"Cannot initialize\n", __func__,
oh->name);
goto exit;
}
sr_data->ip_type = oh->class->rev;
sr_data->senn_mod = 0x1;
sr_data->senp_mod = 0x1;
sr_data->voltdm = voltdm_lookup(sr_dev_attr->sensor_voltdm_name);
if (IS_ERR(sr_data->voltdm)) {
pr_err("%s: Unable to get voltage domain pointer for VDD %s\n",
__func__, sr_dev_attr->sensor_voltdm_name);
goto exit;
}
omap_voltage_get_volttable(sr_data->voltdm, &volt_data);
if (!volt_data) {
pr_warning("%s: No Voltage table registerd fo VDD%d."
"Something really wrong\n\n", __func__, i + 1);
goto exit;
}
sr_set_nvalues(volt_data, sr_data);
sr_data->enable_on_init = sr_enable_on_init;
pdev = omap_device_build(name, i, oh, sr_data, sizeof(*sr_data),
NULL, 0, 0);
if (IS_ERR(pdev))
pr_warning("%s: Could not build omap_device for %s: %s.\n\n",
__func__, name, oh->name);
exit:
i++;
kfree(sr_data);
return 0;
}
/*
* API to be called from board files to enable smartreflex
* autocompensation at init.
*/
void __init omap_enable_smartreflex_on_init(void)
{
sr_enable_on_init = true;
}
int __init omap_devinit_smartreflex(void)
{
return omap_hwmod_for_each_by_class("smartreflex", sr_dev_init, NULL);
}
|