aboutsummaryrefslogtreecommitdiff
path: root/arch/alpha/kernel/core_t2.c
blob: 2f770e99428961f6233c8d7742f705180455bdb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*
 *	linux/arch/alpha/kernel/core_t2.c
 *
 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
 * December 1996.
 *
 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
 *
 * Code common to all T2 core logic chips.
 */

#define __EXTERN_INLINE
#include <asm/io.h>
#include <asm/core_t2.h>
#undef __EXTERN_INLINE

#include <linux/types.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/init.h>

#include <asm/ptrace.h>
#include <asm/delay.h>

#include "proto.h"
#include "pci_impl.h"

/* For dumping initial DMA window settings. */
#define DEBUG_PRINT_INITIAL_SETTINGS 0

/* For dumping final DMA window settings. */
#define DEBUG_PRINT_FINAL_SETTINGS 0

/*
 * By default, we direct-map starting at 2GB, in order to allow the
 * maximum size direct-map window (2GB) to match the maximum amount of
 * memory (2GB) that can be present on SABLEs. But that limits the
 * floppy to DMA only via the scatter/gather window set up for 8MB
 * ISA DMA, since the maximum ISA DMA address is 2GB-1.
 *
 * For now, this seems a reasonable trade-off: even though most SABLEs
 * have less than 1GB of memory, floppy usage/performance will not
 * really be affected by forcing it to go via scatter/gather...
 */
#define T2_DIRECTMAP_2G 1

#if T2_DIRECTMAP_2G
# define T2_DIRECTMAP_START	0x80000000UL
# define T2_DIRECTMAP_LENGTH	0x80000000UL
#else
# define T2_DIRECTMAP_START	0x40000000UL
# define T2_DIRECTMAP_LENGTH	0x40000000UL
#endif

/* The ISA scatter/gather window settings. */
#define T2_ISA_SG_START		0x00800000UL
#define T2_ISA_SG_LENGTH	0x00800000UL

/*
 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
 * One plausible explanation is that the i/o controller does not properly
 * handle the system transaction.  Another involves timing.  Ho hum.
 */

/*
 * BIOS32-style PCI interface:
 */

#define DEBUG_CONFIG 0

#if DEBUG_CONFIG
# define DBG(args)	printk args
#else
# define DBG(args)
#endif

static volatile unsigned int t2_mcheck_any_expected;
static volatile unsigned int t2_mcheck_last_taken;

/* Place to save the DMA Window registers as set up by SRM
   for restoration during shutdown. */
static struct
{
	struct {
		unsigned long wbase;
		unsigned long wmask;
		unsigned long tbase;
	} window[2];
	unsigned long hae_1;
  	unsigned long hae_2;
	unsigned long hae_3;
	unsigned long hae_4;
	unsigned long hbase;
} t2_saved_config __attribute((common));

/*
 * Given a bus, device, and function number, compute resulting
 * configuration space address and setup the T2_HAXR2 register
 * accordingly.  It is therefore not safe to have concurrent
 * invocations to configuration space access routines, but there
 * really shouldn't be any need for this.
 *
 * Type 0:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:11	Device select bit.
 * 	10:8	Function number
 * 	 7:2	Register number
 *
 * Type 1:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:24	reserved
 *	23:16	bus number (8 bits = 128 possible buses)
 *	15:11	Device number (5 bits)
 *	10:8	function number
 *	 7:2	register number
 *  
 * Notes:
 *	The function number selects which function of a multi-function device 
 *	(e.g., SCSI and Ethernet).
 * 
 *	The register selects a DWORD (32 bit) register offset.  Hence it
 *	doesn't get shifted by 2 bits as we want to "drop" the bottom two
 *	bits.
 */

static int
mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where,
	     unsigned long *pci_addr, unsigned char *type1)
{
	unsigned long addr;
	u8 bus = pbus->number;

	DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
	     " addr=0x%lx, type1=0x%x)\n",
	     bus, device_fn, where, pci_addr, type1));

	if (bus == 0) {
		int device = device_fn >> 3;

		/* Type 0 configuration cycle.  */

		if (device > 8) {
			DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
			     device));
			return -1;
		}

		*type1 = 0;
		addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
	} else {
		/* Type 1 configuration cycle.  */
		*type1 = 1;
		addr = (bus << 16) | (device_fn << 8) | (where);
	}
	*pci_addr = addr;
	DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
	return 0;
}

/*
 * NOTE: both conf_read() and conf_write() may set HAE_3 when needing
 *       to do type1 access. This is protected by the use of spinlock IRQ
 *       primitives in the wrapper functions pci_{read,write}_config_*()
 *       defined in drivers/pci/pci.c.
 */
static unsigned int
conf_read(unsigned long addr, unsigned char type1)
{
	unsigned int value, cpu, taken;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
		mb();
	}
	mb();
	draina();

	mcheck_expected(cpu) = 1;
	mcheck_taken(cpu) = 0;
	t2_mcheck_any_expected |= (1 << cpu);
	mb();

	/* Access configuration space. */
	value = *(vuip)addr;
	mb();
	mb();  /* magic */

	/* Wait for possible mcheck. Also, this lets other CPUs clear
	   their mchecks as well, as they can reliably tell when
	   another CPU is in the midst of handling a real mcheck via
	   the "taken" function. */
	udelay(100);

	if ((taken = mcheck_taken(cpu))) {
		mcheck_taken(cpu) = 0;
		t2_mcheck_last_taken |= (1 << cpu);
		value = 0xffffffffU;
		mb();
	}
	mcheck_expected(cpu) = 0;
	t2_mcheck_any_expected = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}

	return value;
}

static void
conf_write(unsigned long addr, unsigned int value, unsigned char type1)
{
	unsigned int cpu, taken;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
		mb();
	}
	mb();
	draina();

	mcheck_expected(cpu) = 1;
	mcheck_taken(cpu) = 0;
	t2_mcheck_any_expected |= (1 << cpu);
	mb();

	/* Access configuration space.  */
	*(vuip)addr = value;
	mb();
	mb();  /* magic */

	/* Wait for possible mcheck. Also, this lets other CPUs clear
	   their mchecks as well, as they can reliably tell when
	   this CPU is in the midst of handling a real mcheck via
	   the "taken" function. */
	udelay(100);

	if ((taken = mcheck_taken(cpu))) {
		mcheck_taken(cpu) = 0;
		t2_mcheck_last_taken |= (1 << cpu);
		mb();
	}
	mcheck_expected(cpu) = 0;
	t2_mcheck_any_expected = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}
}

static int
t2_read_config(struct pci_bus *bus, unsigned int devfn, int where,
	       int size, u32 *value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;
	int shift;
	long mask;

	if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	mask = (size - 1) * 8;
	shift = (where & 3) * 8;
	addr = (pci_addr << 5) + mask + T2_CONF;
	*value = conf_read(addr, type1) >> (shift);
	return PCIBIOS_SUCCESSFUL;
}

static int 
t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
		u32 value)
{
	unsigned long addr, pci_addr;
	unsigned char type1;
	long mask;

	if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	mask = (size - 1) * 8;
	addr = (pci_addr << 5) + mask + T2_CONF;
	conf_write(addr, value << ((where & 3) * 8), type1);
	return PCIBIOS_SUCCESSFUL;
}

struct pci_ops t2_pci_ops = 
{
	.read =		t2_read_config,
	.write =	t2_write_config,
};

static void __init
t2_direct_map_window1(unsigned long base, unsigned long length)
{
	unsigned long temp;

	__direct_map_base = base;
	__direct_map_size = length;

	temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
	*(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */
	temp = (length - 1) & 0xfff00000UL;
	*(vulp)T2_WMASK1 = temp;
	*(vulp)T2_TBASE1 = 0;

#if DEBUG_PRINT_FINAL_SETTINGS
	printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
	       __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
#endif
}

static void __init
t2_sg_map_window2(struct pci_controller *hose,
		  unsigned long base,
		  unsigned long length)
{
	unsigned long temp;

	/* Note we can only do 1 SG window, as the other is for direct, so
	   do an ISA SG area, especially for the floppy. */
	hose->sg_isa = iommu_arena_new(hose, base, length, 0);
	hose->sg_pci = NULL;

	temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20);
	*(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */
	temp = (length - 1) & 0xfff00000UL;
	*(vulp)T2_WMASK2 = temp;
	*(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1;
	mb();

	t2_pci_tbi(hose, 0, -1); /* flush TLB all */

#if DEBUG_PRINT_FINAL_SETTINGS
	printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
	       __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
#endif
}

static void __init
t2_save_configuration(void)
{
#if DEBUG_PRINT_INITIAL_SETTINGS
	printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */
	printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2);
	printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3);
	printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4);
	printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE);

	printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__,
	       *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1);
	printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__,
	       *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2);
#endif

	/*
	 * Save the DMA Window registers.
	 */
	t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1;
	t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1;
	t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1;
	t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2;
	t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2;
	t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2;

	t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */
	t2_saved_config.hae_2 = *(vulp)T2_HAE_2;
	t2_saved_config.hae_3 = *(vulp)T2_HAE_3;
	t2_saved_config.hae_4 = *(vulp)T2_HAE_4;
	t2_saved_config.hbase = *(vulp)T2_HBASE;
}

void __init
t2_init_arch(void)
{
	struct pci_controller *hose;
	struct resource *hae_mem;
	unsigned long temp;
	unsigned int i;

	for (i = 0; i < NR_CPUS; i++) {
		mcheck_expected(i) = 0;
		mcheck_taken(i) = 0;
	}
	t2_mcheck_any_expected = 0;
	t2_mcheck_last_taken = 0;

	/* Enable scatter/gather TLB use.  */
	temp = *(vulp)T2_IOCSR;
	if (!(temp & (0x1UL << 26))) {
		printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n",
		       temp);
		*(vulp)T2_IOCSR = temp | (0x1UL << 26);
		mb();	
		*(vulp)T2_IOCSR; /* read it back to make sure */
	}

	t2_save_configuration();

	/*
	 * Create our single hose.
	 */
	pci_isa_hose = hose = alloc_pci_controller();
	hose->io_space = &ioport_resource;
	hae_mem = alloc_resource();
	hae_mem->start = 0;
	hae_mem->end = T2_MEM_R1_MASK;
	hae_mem->name = pci_hae0_name;
	if (request_resource(&iomem_resource, hae_mem) < 0)
		printk(KERN_ERR "Failed to request HAE_MEM\n");
	hose->mem_space = hae_mem;
	hose->index = 0;

	hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR;
	hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR;
	hose->sparse_io_base = T2_IO - IDENT_ADDR;
	hose->dense_io_base = 0;

	/*
	 * Set up the PCI->physical memory translation windows.
	 *
	 * Window 1 is direct mapped.
	 * Window 2 is scatter/gather (for ISA).
	 */

	t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH);

	/* Always make an ISA DMA window. */
	t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH);

	*(vulp)T2_HBASE = 0x0; /* Disable HOLES. */

	/* Zero HAE.  */
	*(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */
	*(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */
	*(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */

	/*
	 * We also now zero out HAE_4, the dense memory HAE, so that
	 * we need not account for its "offset" when accessing dense
	 * memory resources which we allocated in our normal way. This
	 * HAE would need to stay untouched were we to keep the SRM
	 * resource settings.
	 *
	 * Thus we can now run standard X servers on SABLE/LYNX. :-)
	 */
	*(vulp)T2_HAE_4 = 0; mb();
}

void
t2_kill_arch(int mode)
{
	/*
	 * Restore the DMA Window registers.
	 */
	*(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase;
	*(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask;
	*(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase;
	*(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase;
	*(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask;
	*(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase;
	mb();

	*(vulp)T2_HAE_1 = srm_hae;
	*(vulp)T2_HAE_2 = t2_saved_config.hae_2;
	*(vulp)T2_HAE_3 = t2_saved_config.hae_3;
	*(vulp)T2_HAE_4 = t2_saved_config.hae_4;
	*(vulp)T2_HBASE = t2_saved_config.hbase;
	mb();
	*(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */
}

void
t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end)
{
	unsigned long t2_iocsr;

	t2_iocsr = *(vulp)T2_IOCSR;

	/* set the TLB Clear bit */
	*(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28);
	mb();
	*(vulp)T2_IOCSR; /* read it back to make sure */

	/* clear the TLB Clear bit */
	*(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28);
	mb();
	*(vulp)T2_IOCSR; /* read it back to make sure */
}

#define SIC_SEIC (1UL << 33)    /* System Event Clear */

static void
t2_clear_errors(int cpu)
{
	struct sable_cpu_csr *cpu_regs;

	cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu);
		
	cpu_regs->sic &= ~SIC_SEIC;

	/* Clear CPU errors.  */
	cpu_regs->bcce |= cpu_regs->bcce;
	cpu_regs->cbe  |= cpu_regs->cbe;
	cpu_regs->bcue |= cpu_regs->bcue;
	cpu_regs->dter |= cpu_regs->dter;

	*(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
	*(vulp)T2_PERR1 |= *(vulp)T2_PERR1;

	mb();
	mb();  /* magic */
}

/*
 * SABLE seems to have a "broadcast" style machine check, in that all
 * CPUs receive it. And, the issuing CPU, in the case of PCI Config
 * space read/write faults, will also receive a second mcheck, upon
 * lowering IPL during completion processing in pci_read_config_byte()
 * et al.
 *
 * Hence all the taken/expected/any_expected/last_taken stuff...
 */
void
t2_machine_check(unsigned long vector, unsigned long la_ptr)
{
	int cpu = smp_processor_id();
#ifdef CONFIG_VERBOSE_MCHECK
	struct el_common *mchk_header = (struct el_common *)la_ptr;
#endif

	/* Clear the error before any reporting.  */
	mb();
	mb();  /* magic */
	draina();
	t2_clear_errors(cpu);

	/* This should not actually be done until the logout frame is
	   examined, but, since we don't do that, go on and do this... */
	wrmces(0x7);
	mb();

	/* Now, do testing for the anomalous conditions. */
	if (!mcheck_expected(cpu) && t2_mcheck_any_expected) {
		/*
		 * FUNKY: Received mcheck on a CPU and not
		 * expecting it, but another CPU is expecting one.
		 *
		 * Just dismiss it for now on this CPU...
		 */
#ifdef CONFIG_VERBOSE_MCHECK
		if (alpha_verbose_mcheck > 1) {
			printk("t2_machine_check(cpu%d): any_expected 0x%x -"
			       " (assumed) spurious -"
			       " code 0x%x\n", cpu, t2_mcheck_any_expected,
			       (unsigned int)mchk_header->code);
		}
#endif
		return;
	}

	if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) {
		if (t2_mcheck_last_taken & (1 << cpu)) {
#ifdef CONFIG_VERBOSE_MCHECK
		    if (alpha_verbose_mcheck > 1) {
			printk("t2_machine_check(cpu%d): last_taken 0x%x - "
			       "unexpected mcheck - code 0x%x\n",
			       cpu, t2_mcheck_last_taken,
			       (unsigned int)mchk_header->code);
		    }
#endif
		    t2_mcheck_last_taken = 0;
		    mb();
		    return;
		} else {
			t2_mcheck_last_taken = 0;
			mb();
		}
	}

#ifdef CONFIG_VERBOSE_MCHECK
	if (alpha_verbose_mcheck > 1) {
		printk("%s t2_mcheck(cpu%d): last_taken 0x%x - "
		       "any_expected 0x%x - code 0x%x\n",
		       (mcheck_expected(cpu) ? "EX" : "UN"), cpu,
		       t2_mcheck_last_taken, t2_mcheck_any_expected,
		       (unsigned int)mchk_header->code);
	}
#endif

	process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu));
}