aboutsummaryrefslogtreecommitdiff
path: root/Documentation/networking/bonding.txt
blob: 0bc2ed136a3836ea48f5478252c953646b3d4ade (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
                   Linux Ethernet Bonding Driver HOWTO

Initial release : Thomas Davis <tadavis at lbl.gov>
Corrections, HA extensions : 2000/10/03-15 :
  - Willy Tarreau <willy at meta-x.org>
  - Constantine Gavrilov <const-g at xpert.com>
  - Chad N. Tindel <ctindel at ieee dot org>
  - Janice Girouard <girouard at us dot ibm dot com>
  - Jay Vosburgh <fubar at us dot ibm dot com>

Reorganized and updated Feb 2005 by Jay Vosburgh

Note :
------
	
The bonding driver originally came from Donald Becker's beowulf patches for
kernel 2.0. It has changed quite a bit since, and the original tools from
extreme-linux and beowulf sites will not work with this version of the driver.

For new versions of the driver, patches for older kernels and the updated
userspace tools, please follow the links at the end of this file.

Table of Contents
=================

1. Bonding Driver Installation

2. Bonding Driver Options

3. Configuring Bonding Devices
3.1	Configuration with sysconfig support
3.2	Configuration with initscripts support
3.3	Configuring Bonding Manually
3.4	Configuring Multiple Bonds

5. Querying Bonding Configuration
5.1	Bonding Configuration
5.2	Network Configuration

6. Switch Configuration

7. 802.1q VLAN Support

8. Link Monitoring
8.1	ARP Monitor Operation
8.2	Configuring Multiple ARP Targets
8.3	MII Monitor Operation

9. Potential Trouble Sources
9.1	Adventures in Routing
9.2	Ethernet Device Renaming
9.3	Painfully Slow Or No Failed Link Detection By Miimon

10. SNMP agents

11. Promiscuous mode

12. High Availability Information
12.1	High Availability in a Single Switch Topology
12.1.1		Bonding Mode Selection for Single Switch Topology
12.1.2		Link Monitoring for Single Switch Topology
12.2	High Availability in a Multiple Switch Topology
12.2.1		Bonding Mode Selection for Multiple Switch Topology
12.2.2		Link Monitoring for Multiple Switch Topology
12.3	Switch Behavior Issues for High Availability

13. Hardware Specific Considerations
13.1	IBM BladeCenter

14. Frequently Asked Questions

15. Resources and Links


1. Bonding Driver Installation
==============================

	Most popular distro kernels ship with the bonding driver
already available as a module and the ifenslave user level control
program installed and ready for use. If your distro does not, or you
have need to compile bonding from source (e.g., configuring and
installing a mainline kernel from kernel.org), you'll need to perform
the following steps:

1.1 Configure and build the kernel with bonding
-----------------------------------------------

	The latest version of the bonding driver is available in the
drivers/net/bonding subdirectory of the most recent kernel source
(which is available on http://kernel.org).

	Prior to the 2.4.11 kernel, the bonding driver was maintained
largely outside the kernel tree; patches for some earlier kernels are
available on the bonding sourceforge site, although those patches are
still several years out of date.  Most users will want to use either
the most recent kernel from kernel.org or whatever kernel came with
their distro.

	Configure kernel with "make menuconfig" (or "make xconfig" or
"make config"), then select "Bonding driver support" in the "Network
device support" section.  It is recommended that you configure the
driver as module since it is currently the only way to pass parameters
to the driver or configure more than one bonding device.

	Build and install the new kernel and modules, then proceed to
step 2.

1.2 Install ifenslave Control Utility
-------------------------------------

	The ifenslave user level control program is included in the
kernel source tree, in the file Documentation/networking/ifenslave.c.
It is generally recommended that you use the ifenslave that
corresponds to the kernel that you are using (either from the same
source tree or supplied with the distro), however, ifenslave
executables from older kernels should function (but features newer
than the ifenslave release are not supported).  Running an ifenslave
that is newer than the kernel is not supported, and may or may not
work.

	To install ifenslave, do the following:

# gcc -Wall -O -I/usr/src/linux/include ifenslave.c -o ifenslave
# cp ifenslave /sbin/ifenslave

	If your kernel source is not in "/usr/src/linux," then replace
"/usr/src/linux/include" in the above with the location of your kernel
source include directory.

	You may wish to back up any existing /sbin/ifenslave, or, for
testing or informal use, tag the ifenslave to the kernel version
(e.g., name the ifenslave executable /sbin/ifenslave-2.6.10).

IMPORTANT NOTE:

	If you omit the "-I" or specify an incorrect directory, you
may end up with an ifenslave that is incompatible with the kernel
you're trying to build it for.  Some distros (e.g., Red Hat from 7.1
onwards) do not have /usr/include/linux symbolically linked to the
default kernel source include directory.


2. Bonding Driver Options
=========================

	Options for the bonding driver are supplied as parameters to
the bonding module at load time.  They may be given as command line
arguments to the insmod or modprobe command, but are usually specified
in either the /etc/modprobe.conf configuration file, or in a
distro-specific configuration file (some of which are detailed in the
next section).

	The available bonding driver parameters are listed below. If a
parameter is not specified the default value is used.  When initially
configuring a bond, it is recommended "tail -f /var/log/messages" be
run in a separate window to watch for bonding driver error messages.

	It is critical that either the miimon or arp_interval and
arp_ip_target parameters be specified, otherwise serious network
degradation will occur during link failures.  Very few devices do not
support at least miimon, so there is really no reason not to use it.

	Options with textual values will accept either the text name
	or, for backwards compatibility, the option value.  E.g.,
	"mode=802.3ad" and "mode=4" set the same mode.

	The parameters are as follows:

arp_interval

	Specifies the ARP monitoring frequency in milli-seconds. If
	ARP monitoring is used in a load-balancing mode (mode 0 or 2),
	the switch should be configured in a mode that evenly
	distributes packets across all links - such as round-robin. If
	the switch is configured to distribute the packets in an XOR
	fashion, all replies from the ARP targets will be received on
	the same link which could cause the other team members to
	fail. ARP monitoring should not be used in conjunction with
	miimon. A value of 0 disables ARP monitoring. The default
	value is 0.

arp_ip_target

	Specifies the ip addresses to use when arp_interval is > 0.
	These are the targets of the ARP request sent to determine the
	health of the link to the targets.  Specify these values in
	ddd.ddd.ddd.ddd format.  Multiple ip adresses must be
	seperated by a comma.  At least one IP address must be given
	for ARP monitoring to function.  The maximum number of targets
	that can be specified is 16.  The default value is no IP
	addresses.

downdelay

	Specifies the time, in milliseconds, to wait before disabling
	a slave after a link failure has been detected.  This option
	is only valid for the miimon link monitor.  The downdelay
	value should be a multiple of the miimon value; if not, it
	will be rounded down to the nearest multiple.  The default
	value is 0.

lacp_rate

	Option specifying the rate in which we'll ask our link partner
	to transmit LACPDU packets in 802.3ad mode.  Possible values
	are:

	slow or 0
		Request partner to transmit LACPDUs every 30 seconds (default)

	fast or 1
		Request partner to transmit LACPDUs every 1 second

max_bonds

	Specifies the number of bonding devices to create for this
	instance of the bonding driver.  E.g., if max_bonds is 3, and
	the bonding driver is not already loaded, then bond0, bond1
	and bond2 will be created.  The default value is 1.

miimon

	Specifies the frequency in milli-seconds that MII link
	monitoring will occur.  A value of zero disables MII link
	monitoring.  A value of 100 is a good starting point.  The
	use_carrier option, below, affects how the link state is
	determined.  See the High Availability section for additional
	information.  The default value is 0.

mode

	Specifies one of the bonding policies. The default is
	balance-rr (round robin).  Possible values are:

	balance-rr or 0

		Round-robin policy: Transmit packets in sequential
		order from the first available slave through the
		last.  This mode provides load balancing and fault
		tolerance.

	active-backup or 1

		Active-backup policy: Only one slave in the bond is
		active.  A different slave becomes active if, and only
		if, the active slave fails.  The bond's MAC address is
		externally visible on only one port (network adapter)
		to avoid confusing the switch.  This mode provides
		fault tolerance.  The primary option affects the
		behavior of this mode.

	balance-xor or 2

		XOR policy: Transmit based on [(source MAC address
		XOR'd with destination MAC address) modulo slave
		count].  This selects the same slave for each
		destination MAC address.  This mode provides load
		balancing and fault tolerance.

	broadcast or 3

		Broadcast policy: transmits everything on all slave
		interfaces.  This mode provides fault tolerance.

	802.3ad or 4

		IEEE 802.3ad Dynamic link aggregation.  Creates
		aggregation groups that share the same speed and
		duplex settings.  Utilizes all slaves in the active
		aggregator according to the 802.3ad specification.

		Pre-requisites:

		1. Ethtool support in the base drivers for retrieving
		the speed and duplex of each slave.

		2. A switch that supports IEEE 802.3ad Dynamic link
		aggregation.

		Most switches will require some type of configuration
		to enable 802.3ad mode.

	balance-tlb or 5

		Adaptive transmit load balancing: channel bonding that
		does not require any special switch support.  The
		outgoing traffic is distributed according to the
		current load (computed relative to the speed) on each
		slave.  Incoming traffic is received by the current
		slave.  If the receiving slave fails, another slave
		takes over the MAC address of the failed receiving
		slave.

		Prerequisite:

		Ethtool support in the base drivers for retrieving the
		speed of each slave.

	balance-alb or 6

		Adaptive load balancing: includes balance-tlb plus
		receive load balancing (rlb) for IPV4 traffic, and
		does not require any special switch support.  The
		receive load balancing is achieved by ARP negotiation.
		The bonding driver intercepts the ARP Replies sent by
		the local system on their way out and overwrites the
		source hardware address with the unique hardware
		address of one of the slaves in the bond such that
		different peers use different hardware addresses for
		the server.

		Receive traffic from connections created by the server
		is also balanced.  When the local system sends an ARP
		Request the bonding driver copies and saves the peer's
		IP information from the ARP packet.  When the ARP
		Reply arrives from the peer, its hardware address is
		retrieved and the bonding driver initiates an ARP
		reply to this peer assigning it to one of the slaves
		in the bond.  A problematic outcome of using ARP
		negotiation for balancing is that each time that an
		ARP request is broadcast it uses the hardware address
		of the bond.  Hence, peers learn the hardware address
		of the bond and the balancing of receive traffic
		collapses to the current slave.  This is handled by
		sending updates (ARP Replies) to all the peers with
		their individually assigned hardware address such that
		the traffic is redistributed.  Receive traffic is also
		redistributed when a new slave is added to the bond
		and when an inactive slave is re-activated.  The
		receive load is distributed sequentially (round robin)
		among the group of highest speed slaves in the bond.

		When a link is reconnected or a new slave joins the
		bond the receive traffic is redistributed among all
		active slaves in the bond by intiating ARP Replies
		with the selected mac address to each of the
		clients. The updelay parameter (detailed below) must
		be set to a value equal or greater than the switch's
		forwarding delay so that the ARP Replies sent to the
		peers will not be blocked by the switch.

		Prerequisites:

		1. Ethtool support in the base drivers for retrieving
		the speed of each slave.

		2. Base driver support for setting the hardware
		address of a device while it is open.  This is
		required so that there will always be one slave in the
		team using the bond hardware address (the
		curr_active_slave) while having a unique hardware
		address for each slave in the bond.  If the
		curr_active_slave fails its hardware address is
		swapped with the new curr_active_slave that was
		chosen.

primary

	A string (eth0, eth2, etc) specifying which slave is the
	primary device.  The specified device will always be the
	active slave while it is available.  Only when the primary is
	off-line will alternate devices be used.  This is useful when
	one slave is preferred over another, e.g., when one slave has
	higher throughput than another.

	The primary option is only valid for active-backup mode.

updelay

	Specifies the time, in milliseconds, to wait before enabling a
	slave after a link recovery has been detected.  This option is
	only valid for the miimon link monitor.  The updelay value
	should be a multiple of the miimon value; if not, it will be
	rounded down to the nearest multiple.  The default value is 0.

use_carrier

	Specifies whether or not miimon should use MII or ETHTOOL
	ioctls vs. netif_carrier_ok() to determine the link
	status. The MII or ETHTOOL ioctls are less efficient and
	utilize a deprecated calling sequence within the kernel.  The
	netif_carrier_ok() relies on the device driver to maintain its
	state with netif_carrier_on/off; at this writing, most, but
	not all, device drivers support this facility.

	If bonding insists that the link is up when it should not be,
	it may be that your network device driver does not support
	netif_carrier_on/off.  The default state for netif_carrier is
	"carrier on," so if a driver does not support netif_carrier,
	it will appear as if the link is always up.  In this case,
	setting use_carrier to 0 will cause bonding to revert to the
	MII / ETHTOOL ioctl method to determine the link state.

	A value of 1 enables the use of netif_carrier_ok(), a value of
	0 will use the deprecated MII / ETHTOOL ioctls.  The default
	value is 1.



3. Configuring Bonding Devices
==============================

	There are, essentially, two methods for configuring bonding:
with support from the distro's network initialization scripts, and
without.  Distros generally use one of two packages for the network
initialization scripts: initscripts or sysconfig.  Recent versions of
these packages have support for bonding, while older versions do not.

	We will first describe the options for configuring bonding for
distros using versions of initscripts and sysconfig with full or
partial support for bonding, then provide information on enabling
bonding without support from the network initialization scripts (i.e.,
older versions of initscripts or sysconfig).

	If you're unsure whether your distro uses sysconfig or
initscripts, or don't know if it's new enough, have no fear.
Determining this is fairly straightforward.

	First, issue the command:

$ rpm -qf /sbin/ifup

	It will respond with a line of text starting with either
"initscripts" or "sysconfig," followed by some numbers.  This is the
package that provides your network initialization scripts.

	Next, to determine if your installation supports bonding,
issue the command:

$ grep ifenslave /sbin/ifup

	If this returns any matches, then your initscripts or
sysconfig has support for bonding.

3.1 Configuration with sysconfig support
----------------------------------------

	This section applies to distros using a version of sysconfig
with bonding support, for example, SuSE Linux Enterprise Server 9.

	SuSE SLES 9's networking configuration system does support
bonding, however, at this writing, the YaST system configuration
frontend does not provide any means to work with bonding devices.
Bonding devices can be managed by hand, however, as follows.

	First, if they have not already been configured, configure the
slave devices.  On SLES 9, this is most easily done by running the
yast2 sysconfig configuration utility.  The goal is for to create an
ifcfg-id file for each slave device.  The simplest way to accomplish
this is to configure the devices for DHCP.  The name of the
configuration file for each device will be of the form:

ifcfg-id-xx:xx:xx:xx:xx:xx

	Where the "xx" portion will be replaced with the digits from
the device's permanent MAC address.

	Once the set of ifcfg-id-xx:xx:xx:xx:xx:xx files has been
created, it is necessary to edit the configuration files for the slave
devices (the MAC addresses correspond to those of the slave devices).
Before editing, the file will contain muliple lines, and will look
something like this:

BOOTPROTO='dhcp'
STARTMODE='on'
USERCTL='no'
UNIQUE='XNzu.WeZGOGF+4wE'
_nm_name='bus-pci-0001:61:01.0'

	Change the BOOTPROTO and STARTMODE lines to the following:

BOOTPROTO='none'
STARTMODE='off'

	Do not alter the UNIQUE or _nm_name lines.  Remove any other
lines (USERCTL, etc).

	Once the ifcfg-id-xx:xx:xx:xx:xx:xx files have been modified,
it's time to create the configuration file for the bonding device
itself.  This file is named ifcfg-bondX, where X is the number of the
bonding device to create, starting at 0.  The first such file is
ifcfg-bond0, the second is ifcfg-bond1, and so on.  The sysconfig
network configuration system will correctly start multiple instances
of bonding.

	The contents of the ifcfg-bondX file is as follows:

BOOTPROTO="static"
BROADCAST="10.0.2.255"
IPADDR="10.0.2.10"
NETMASK="255.255.0.0"
NETWORK="10.0.2.0"
REMOTE_IPADDR=""
STARTMODE="onboot"
BONDING_MASTER="yes"
BONDING_MODULE_OPTS="mode=active-backup miimon=100"
BONDING_SLAVE0="eth0"
BONDING_SLAVE1="eth1"

	Replace the sample BROADCAST, IPADDR, NETMASK and NETWORK
values with the appropriate values for your network.

	Note that configuring the bonding device with BOOTPROTO='dhcp'
does not work; the scripts attempt to obtain the device address from
DHCP prior to adding any of the slave devices.  Without active slaves,
the DHCP requests are not sent to the network.

	The STARTMODE specifies when the device is brought online.
The possible values are:

	onboot:	 The device is started at boot time.  If you're not
		 sure, this is probably what you want.

	manual:	 The device is started only when ifup is called
		 manually.  Bonding devices may be configured this
		 way if you do not wish them to start automatically
		 at boot for some reason.

	hotplug: The device is started by a hotplug event.  This is not
		 a valid choice for a bonding device.

	off or ignore: The device configuration is ignored.

	The line BONDING_MASTER='yes' indicates that the device is a
bonding master device.  The only useful value is "yes."

	The contents of BONDING_MODULE_OPTS are supplied to the
instance of the bonding module for this device.  Specify the options
for the bonding mode, link monitoring, and so on here.  Do not include
the max_bonds bonding parameter; this will confuse the configuration
system if you have multiple bonding devices.

	Finally, supply one BONDING_SLAVEn="ethX" for each slave,
where "n" is an increasing value, one for each slave, and "ethX" is
the name of the slave device (eth0, eth1, etc).

	When all configuration files have been modified or created,
networking must be restarted for the configuration changes to take
effect.  This can be accomplished via the following:

# /etc/init.d/network restart

	Note that the network control script (/sbin/ifdown) will
remove the bonding module as part of the network shutdown processing,
so it is not necessary to remove the module by hand if, e.g., the
module paramters have changed.

	Also, at this writing, YaST/YaST2 will not manage bonding
devices (they do not show bonding interfaces on its list of network
devices).  It is necessary to edit the configuration file by hand to
change the bonding configuration.

	Additional general options and details of the ifcfg file
format can be found in an example ifcfg template file:

/etc/sysconfig/network/ifcfg.template

	Note that the template does not document the various BONDING_
settings described above, but does describe many of the other options.

3.2 Configuration with initscripts support
------------------------------------------

	This section applies to distros using a version of initscripts
with bonding support, for example, Red Hat Linux 9 or Red Hat
Enterprise Linux version 3.  On these systems, the network
initialization scripts have some knowledge of bonding, and can be
configured to control bonding devices.

	These distros will not automatically load the network adapter
driver unless the ethX device is configured with an IP address.
Because of this constraint, users must manually configure a
network-script file for all physical adapters that will be members of
a bondX link.  Network script files are located in the directory:

/etc/sysconfig/network-scripts

	The file name must be prefixed with "ifcfg-eth" and suffixed
with the adapter's physical adapter number.  For example, the script
for eth0 would be named /etc/sysconfig/network-scripts/ifcfg-eth0.
Place the following text in the file:

DEVICE=eth0
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

	The DEVICE= line will be different for every ethX device and
must correspond with the name of the file, i.e., ifcfg-eth1 must have
a device line of DEVICE=eth1.  The setting of the MASTER= line will
also depend on the final bonding interface name chosen for your bond.
As with other network devices, these typically start at 0, and go up
one for each device, i.e., the first bonding instance is bond0, the
second is bond1, and so on.

	Next, create a bond network script.  The file name for this
script will be /etc/sysconfig/network-scripts/ifcfg-bondX where X is
the number of the bond.  For bond0 the file is named "ifcfg-bond0",
for bond1 it is named "ifcfg-bond1", and so on.  Within that file,
place the following text:

DEVICE=bond0
IPADDR=192.168.1.1
NETMASK=255.255.255.0
NETWORK=192.168.1.0
BROADCAST=192.168.1.255
ONBOOT=yes
BOOTPROTO=none
USERCTL=no

	Be sure to change the networking specific lines (IPADDR,
NETMASK, NETWORK and BROADCAST) to match your network configuration.

	Finally, it is necessary to edit /etc/modules.conf to load the
bonding module when the bond0 interface is brought up.  The following
sample lines in /etc/modules.conf will load the bonding module, and
select its options:

alias bond0 bonding
options bond0 mode=balance-alb miimon=100

	Replace the sample parameters with the appropriate set of
options for your configuration.

	Finally run "/etc/rc.d/init.d/network restart" as root.  This
will restart the networking subsystem and your bond link should be now
up and running.


3.3 Configuring Bonding Manually
--------------------------------

	This section applies to distros whose network initialization
scripts (the sysconfig or initscripts package) do not have specific
knowledge of bonding.  One such distro is SuSE Linux Enterprise Server
version 8.

	The general methodology for these systems is to place the
bonding module parameters into /etc/modprobe.conf, then add modprobe
and/or ifenslave commands to the system's global init script.  The
name of the global init script differs; for sysconfig, it is
/etc/init.d/boot.local and for initscripts it is /etc/rc.d/rc.local.

	For example, if you wanted to make a simple bond of two e100
devices (presumed to be eth0 and eth1), and have it persist across
reboots, edit the appropriate file (/etc/init.d/boot.local or
/etc/rc.d/rc.local), and add the following:

modprobe bonding -obond0 mode=balance-alb miimon=100
modprobe e100
ifconfig bond0 192.168.1.1 netmask 255.255.255.0 up
ifenslave bond0 eth0
ifenslave bond0 eth1

	Replace the example bonding module parameters and bond0
network configuration (IP address, netmask, etc) with the appropriate
values for your configuration.  The above example loads the bonding
module with the name "bond0," this simplifies the naming if multiple
bonding modules are loaded (each successive instance of the module is
given a different name, and the module instance names match the
bonding interface names).

	Unfortunately, this method will not provide support for the
ifup and ifdown scripts on the bond devices.  To reload the bonding
configuration, it is necessary to run the initialization script, e.g.,

# /etc/init.d/boot.local

	or

# /etc/rc.d/rc.local

	It may be desirable in such a case to create a separate script
which only initializes the bonding configuration, then call that
separate script from within boot.local.  This allows for bonding to be
enabled without re-running the entire global init script.

	To shut down the bonding devices, it is necessary to first
mark the bonding device itself as being down, then remove the
appropriate device driver modules.  For our example above, you can do
the following:

# ifconfig bond0 down
# rmmod bond0
# rmmod e100

	Again, for convenience, it may be desirable to create a script
with these commands.


3.4 Configuring Multiple Bonds
------------------------------

	This section contains information on configuring multiple
bonding devices with differing options.  If you require multiple
bonding devices, but all with the same options, see the "max_bonds"
module paramter, documented above.

	To create multiple bonding devices with differing options, it
is necessary to load the bonding driver multiple times.  Note that
current versions of the sysconfig network initialization scripts
handle this automatically; if your distro uses these scripts, no
special action is needed.  See the section Configuring Bonding
Devices, above, if you're not sure about your network initialization
scripts.

	To load multiple instances of the module, it is necessary to
specify a different name for each instance (the module loading system
requires that every loaded module, even multiple instances of the same
module, have a unique name).  This is accomplished by supplying
multiple sets of bonding options in /etc/modprobe.conf, for example:
	
alias bond0 bonding
options bond0 -o bond0 mode=balance-rr miimon=100

alias bond1 bonding
options bond1 -o bond1 mode=balance-alb miimon=50

	will load the bonding module two times.  The first instance is
named "bond0" and creates the bond0 device in balance-rr mode with an
miimon of 100.  The second instance is named "bond1" and creates the
bond1 device in balance-alb mode with an miimon of 50.

	This may be repeated any number of times, specifying a new and
unique name in place of bond0 or bond1 for each instance.

	When the appropriate module paramters are in place, then
configure bonding according to the instructions for your distro.

5. Querying Bonding Configuration 
=================================

5.1 Bonding Configuration
-------------------------

	Each bonding device has a read-only file residing in the
/proc/net/bonding directory.  The file contents include information
about the bonding configuration, options and state of each slave.

	For example, the contents of /proc/net/bonding/bond0 after the
driver is loaded with parameters of mode=0 and miimon=1000 is
generally as follows:

	Ethernet Channel Bonding Driver: 2.6.1 (October 29, 2004)
        Bonding Mode: load balancing (round-robin)
        Currently Active Slave: eth0
        MII Status: up
        MII Polling Interval (ms): 1000
        Up Delay (ms): 0
        Down Delay (ms): 0

        Slave Interface: eth1
        MII Status: up
        Link Failure Count: 1

        Slave Interface: eth0
        MII Status: up
        Link Failure Count: 1

	The precise format and contents will change depending upon the
bonding configuration, state, and version of the bonding driver.

5.2 Network configuration
-------------------------

	The network configuration can be inspected using the ifconfig
command.  Bonding devices will have the MASTER flag set; Bonding slave
devices will have the SLAVE flag set.  The ifconfig output does not
contain information on which slaves are associated with which masters.

	In the example below, the bond0 interface is the master
(MASTER) while eth0 and eth1 are slaves (SLAVE). Notice all slaves of
bond0 have the same MAC address (HWaddr) as bond0 for all modes except
TLB and ALB that require a unique MAC address for each slave.

# /sbin/ifconfig
bond0     Link encap:Ethernet  HWaddr 00:C0:F0:1F:37:B4
          inet addr:XXX.XXX.XXX.YYY  Bcast:XXX.XXX.XXX.255  Mask:255.255.252.0
          UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500  Metric:1
          RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0
          TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0
          collisions:0 txqueuelen:0

eth0      Link encap:Ethernet  HWaddr 00:C0:F0:1F:37:B4
          inet addr:XXX.XXX.XXX.YYY  Bcast:XXX.XXX.XXX.255  Mask:255.255.252.0
          UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500  Metric:1
          RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0
          collisions:0 txqueuelen:100
          Interrupt:10 Base address:0x1080

eth1      Link encap:Ethernet  HWaddr 00:C0:F0:1F:37:B4
          inet addr:XXX.XXX.XXX.YYY  Bcast:XXX.XXX.XXX.255  Mask:255.255.252.0
          UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500  Metric:1
          RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:100
          Interrupt:9 Base address:0x1400

6. Switch Configuration
=======================

	For this section, "switch" refers to whatever system the
bonded devices are directly connected to (i.e., where the other end of
the cable plugs into).  This may be an actual dedicated switch device,
or it may be another regular system (e.g., another computer running
Linux),

	The active-backup, balance-tlb and balance-alb modes do not
require any specific configuration of the switch.

	The 802.3ad mode requires that the switch have the appropriate
ports configured as an 802.3ad aggregation.  The precise method used
to configure this varies from switch to switch, but, for example, a
Cisco 3550 series switch requires that the appropriate ports first be
grouped together in a single etherchannel instance, then that
etherchannel is set to mode "lacp" to enable 802.3ad (instead of
standard EtherChannel).

	The balance-rr, balance-xor and broadcast modes generally
require that the switch have the appropriate ports grouped together.
The nomenclature for such a group differs between switches, it may be
called an "etherchannel" (as in the Cisco example, above), a "trunk
group" or some other similar variation.  For these modes, each switch
will also have its own configuration options for the switch's transmit
policy to the bond.  Typical choices include XOR of either the MAC or
IP addresses.  The transmit policy of the two peers does not need to
match.  For these three modes, the bonding mode really selects a
transmit policy for an EtherChannel group; all three will interoperate
with another EtherChannel group.


7. 802.1q VLAN Support
======================

	It is possible to configure VLAN devices over a bond interface
using the 8021q driver.  However, only packets coming from the 8021q
driver and passing through bonding will be tagged by default.  Self
generated packets, for example, bonding's learning packets or ARP
packets generated by either ALB mode or the ARP monitor mechanism, are
tagged internally by bonding itself.  As a result, bonding must
"learn" the VLAN IDs configured above it, and use those IDs to tag
self generated packets.

	For reasons of simplicity, and to support the use of adapters
that can do VLAN hardware acceleration offloding, the bonding
interface declares itself as fully hardware offloaing capable, it gets
the add_vid/kill_vid notifications to gather the necessary
information, and it propagates those actions to the slaves.  In case
of mixed adapter types, hardware accelerated tagged packets that
should go through an adapter that is not offloading capable are
"un-accelerated" by the bonding driver so the VLAN tag sits in the
regular location.

	VLAN interfaces *must* be added on top of a bonding interface
only after enslaving at least one slave.  The bonding interface has a
hardware address of 00:00:00:00:00:00 until the first slave is added.
If the VLAN interface is created prior to the first enslavement, it
would pick up the all-zeroes hardware address.  Once the first slave
is attached to the bond, the bond device itself will pick up the
slave's hardware address, which is then available for the VLAN device.

	Also, be aware that a similar problem can occur if all slaves
are released from a bond that still has one or more VLAN interfaces on
top of it.  When a new slave is added, the bonding interface will
obtain its hardware address from the first slave, which might not
match the hardware address of the VLAN interfaces (which was
ultimately copied from an earlier slave).

	There are two methods to insure that the VLAN device operates
with the correct hardware address if all slaves are removed from a
bond interface:

	1. Remove all VLAN interfaces then recreate them

	2. Set the bonding interface's hardware address so that it
matches the hardware address of the VLAN interfaces.

	Note that changing a VLAN interface's HW address would set the
underlying device -- i.e. the bonding interface -- to promiscouos
mode, which might not be what you want.


8. Link Monitoring
==================

	The bonding driver at present supports two schemes for
monitoring a slave device's link state: the ARP monitor and the MII
monitor.

	At the present time, due to implementation restrictions in the
bonding driver itself, it is not possible to enable both ARP and MII
monitoring simultaneously.

8.1 ARP Monitor Operation
-------------------------

	The ARP monitor operates as its name suggests: it sends ARP
queries to one or more designated peer systems on the network, and
uses the response as an indication that the link is operating.  This
gives some assurance that traffic is actually flowing to and from one
or more peers on the local network.

	The ARP monitor relies on the device driver itself to verify
that traffic is flowing.  In particular, the driver must keep up to
date the last receive time, dev->last_rx, and transmit start time,
dev->trans_start.  If these are not updated by the driver, then the
ARP monitor will immediately fail any slaves using that driver, and
those slaves will stay down.  If networking monitoring (tcpdump, etc)
shows the ARP requests and replies on the network, then it may be that
your device driver is not updating last_rx and trans_start.

8.2 Configuring Multiple ARP Targets
------------------------------------

	While ARP monitoring can be done with just one target, it can
be useful in a High Availability setup to have several targets to
monitor.  In the case of just one target, the target itself may go
down or have a problem making it unresponsive to ARP requests.  Having
an additional target (or several) increases the reliability of the ARP
monitoring.

	Multiple ARP targets must be seperated by commas as follows:

# example options for ARP monitoring with three targets
alias bond0 bonding
options bond0 arp_interval=60 arp_ip_target=192.168.0.1,192.168.0.3,192.168.0.9

	For just a single target the options would resemble:

# example options for ARP monitoring with one target
alias bond0 bonding
options bond0 arp_interval=60 arp_ip_target=192.168.0.100


8.3 MII Monitor Operation
-------------------------

	The MII monitor monitors only the carrier state of the local
network interface.  It accomplishes this in one of three ways: by
depending upon the device driver to maintain its carrier state, by
querying the device's MII registers, or by making an ethtool query to
the device.

	If the use_carrier module parameter is 1 (the default value),
then the MII monitor will rely on the driver for carrier state
information (via the netif_carrier subsystem).  As explained in the
use_carrier parameter information, above, if the MII monitor fails to
detect carrier loss on the device (e.g., when the cable is physically
disconnected), it may be that the driver does not support
netif_carrier.

	If use_carrier is 0, then the MII monitor will first query the
device's (via ioctl) MII registers and check the link state.  If that
request fails (not just that it returns carrier down), then the MII
monitor will make an ethtool ETHOOL_GLINK request to attempt to obtain
the same information.  If both methods fail (i.e., the driver either
does not support or had some error in processing both the MII register
and ethtool requests), then the MII monitor will assume the link is
up.

9. Potential Sources of Trouble
===============================

9.1 Adventures in Routing
-------------------------

	When bonding is configured, it is important that the slave
devices not have routes that supercede routes of the master (or,
generally, not have routes at all).  For example, suppose the bonding
device bond0 has two slaves, eth0 and eth1, and the routing table is
as follows:

Kernel IP routing table
Destination     Gateway         Genmask         Flags   MSS Window  irtt Iface
10.0.0.0        0.0.0.0         255.255.0.0     U        40 0          0 eth0
10.0.0.0        0.0.0.0         255.255.0.0     U        40 0          0 eth1
10.0.0.0        0.0.0.0         255.255.0.0     U        40 0          0 bond0
127.0.0.0       0.0.0.0         255.0.0.0       U        40 0          0 lo

	This routing configuration will likely still update the
receive/transmit times in the driver (needed by the ARP monitor), but
may bypass the bonding driver (because outgoing traffic to, in this
case, another host on network 10 would use eth0 or eth1 before bond0).

	The ARP monitor (and ARP itself) may become confused by this
configuration, because ARP requests (generated by the ARP monitor)
will be sent on one interface (bond0), but the corresponding reply
will arrive on a different interface (eth0).  This reply looks to ARP
as an unsolicited ARP reply (because ARP matches replies on an
interface basis), and is discarded.  The MII monitor is not affected
by the state of the routing table.

	The solution here is simply to insure that slaves do not have
routes of their own, and if for some reason they must, those routes do
not supercede routes of their master.  This should generally be the
case, but unusual configurations or errant manual or automatic static
route additions may cause trouble.

9.2 Ethernet Device Renaming
----------------------------

	On systems with network configuration scripts that do not
associate physical devices directly with network interface names (so
that the same physical device always has the same "ethX" name), it may
be necessary to add some special logic to either /etc/modules.conf or
/etc/modprobe.conf (depending upon which is installed on the system).

	For example, given a modules.conf containing the following:

alias bond0 bonding
options bond0 mode=some-mode miimon=50
alias eth0 tg3
alias eth1 tg3
alias eth2 e1000
alias eth3 e1000

	If neither eth0 and eth1 are slaves to bond0, then when the
bond0 interface comes up, the devices may end up reordered.  This
happens because bonding is loaded first, then its slave device's
drivers are loaded next.  Since no other drivers have been loaded,
when the e1000 driver loads, it will receive eth0 and eth1 for its
devices, but the bonding configuration tries to enslave eth2 and eth3
(which may later be assigned to the tg3 devices).

	Adding the following:

add above bonding e1000 tg3

	causes modprobe to load e1000 then tg3, in that order, when
bonding is loaded.  This command is fully documented in the
modules.conf manual page.

	On systems utilizing modprobe.conf (or modprobe.conf.local),
an equivalent problem can occur.  In this case, the following can be
added to modprobe.conf (or modprobe.conf.local, as appropriate), as
follows (all on one line; it has been split here for clarity):

install bonding /sbin/modprobe tg3; /sbin/modprobe e1000;
	/sbin/modprobe --ignore-install bonding

	This will, when loading the bonding module, rather than
performing the normal action, instead execute the provided command.
This command loads the device drivers in the order needed, then calls
modprobe with --ingore-install to cause the normal action to then take
place.  Full documentation on this can be found in the modprobe.conf
and modprobe manual pages.

9.3. Painfully Slow Or No Failed Link Detection By Miimon
---------------------------------------------------------

	By default, bonding enables the use_carrier option, which
instructs bonding to trust the driver to maintain carrier state.

	As discussed in the options section, above, some drivers do
not support the netif_carrier_on/_off link state tracking system.
With use_carrier enabled, bonding will always see these links as up,
regardless of their actual state.

	Additionally, other drivers do support netif_carrier, but do
not maintain it in real time, e.g., only polling the link state at
some fixed interval.  In this case, miimon will detect failures, but
only after some long period of time has expired.  If it appears that
miimon is very slow in detecting link failures, try specifying
use_carrier=0 to see if that improves the failure detection time.  If
it does, then it may be that the driver checks the carrier state at a
fixed interval, but does not cache the MII register values (so the
use_carrier=0 method of querying the registers directly works).  If
use_carrier=0 does not improve the failover, then the driver may cache
the registers, or the problem may be elsewhere.

	Also, remember that miimon only checks for the device's
carrier state.  It has no way to determine the state of devices on or
beyond other ports of a switch, or if a switch is refusing to pass
traffic while still maintaining carrier on.

10. SNMP agents
===============

	If running SNMP agents, the bonding driver should be loaded
before any network drivers participating in a bond.  This requirement
is due to the the interface index (ipAdEntIfIndex) being associated to
the first interface found with a given IP address.  That is, there is
only one ipAdEntIfIndex for each IP address.  For example, if eth0 and
eth1 are slaves of bond0 and the driver for eth0 is loaded before the
bonding driver, the interface for the IP address will be associated
with the eth0 interface.  This configuration is shown below, the IP
address 192.168.1.1 has an interface index of 2 which indexes to eth0
in the ifDescr table (ifDescr.2).

     interfaces.ifTable.ifEntry.ifDescr.1 = lo
     interfaces.ifTable.ifEntry.ifDescr.2 = eth0
     interfaces.ifTable.ifEntry.ifDescr.3 = eth1
     interfaces.ifTable.ifEntry.ifDescr.4 = eth2
     interfaces.ifTable.ifEntry.ifDescr.5 = eth3
     interfaces.ifTable.ifEntry.ifDescr.6 = bond0
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.10.10.10.10 = 5
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.192.168.1.1 = 2
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.10.74.20.94 = 4
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.127.0.0.1 = 1

	This problem is avoided by loading the bonding driver before
any network drivers participating in a bond.  Below is an example of
loading the bonding driver first, the IP address 192.168.1.1 is
correctly associated with ifDescr.2.

     interfaces.ifTable.ifEntry.ifDescr.1 = lo
     interfaces.ifTable.ifEntry.ifDescr.2 = bond0
     interfaces.ifTable.ifEntry.ifDescr.3 = eth0
     interfaces.ifTable.ifEntry.ifDescr.4 = eth1
     interfaces.ifTable.ifEntry.ifDescr.5 = eth2
     interfaces.ifTable.ifEntry.ifDescr.6 = eth3
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.10.10.10.10 = 6
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.192.168.1.1 = 2
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.10.74.20.94 = 5
     ip.ipAddrTable.ipAddrEntry.ipAdEntIfIndex.127.0.0.1 = 1

	While some distributions may not report the interface name in
ifDescr, the association between the IP address and IfIndex remains
and SNMP functions such as Interface_Scan_Next will report that
association.

11. Promiscuous mode
====================

	When running network monitoring tools, e.g., tcpdump, it is
common to enable promiscuous mode on the device, so that all traffic
is seen (instead of seeing only traffic destined for the local host).
The bonding driver handles promiscuous mode changes to the bonding
master device (e.g., bond0), and propogates the setting to the slave
devices.

	For the balance-rr, balance-xor, broadcast, and 802.3ad modes,
the promiscuous mode setting is propogated to all slaves.

	For the active-backup, balance-tlb and balance-alb modes, the
promiscuous mode setting is propogated only to the active slave.

	For balance-tlb mode, the active slave is the slave currently
receiving inbound traffic.

	For balance-alb mode, the active slave is the slave used as a
"primary."  This slave is used for mode-specific control traffic, for
sending to peers that are unassigned or if the load is unbalanced.

	For the active-backup, balance-tlb and balance-alb modes, when
the active slave changes (e.g., due to a link failure), the
promiscuous setting will be propogated to the new active slave.

12. High Availability Information
=================================

	High Availability refers to configurations that provide
maximum network availability by having redundant or backup devices,
links and switches between the host and the rest of the world.

	There are currently two basic methods for configuring to
maximize availability. They are dependent on the network topology and
the primary goal of the configuration, but in general, a configuration
can be optimized for maximum available bandwidth, or for maximum
network availability.

12.1 High Availability in a Single Switch Topology
--------------------------------------------------

	If two hosts (or a host and a switch) are directly connected
via multiple physical links, then there is no network availability
penalty for optimizing for maximum bandwidth: there is only one switch
(or peer), so if it fails, you have no alternative access to fail over
to.

Example 1 : host to switch (or other host)

          +----------+                          +----------+
          |          |eth0                  eth0|  switch  |
          | Host A   +--------------------------+    or    |
          |          +--------------------------+  other   |
          |          |eth1                  eth1|  host    |
          +----------+                          +----------+


12.1.1 Bonding Mode Selection for single switch topology
--------------------------------------------------------

	This configuration is the easiest to set up and to understand,
although you will have to decide which bonding mode best suits your
needs.  The tradeoffs for each mode are detailed below:

balance-rr: This mode is the only mode that will permit a single
	TCP/IP connection to stripe traffic across multiple
	interfaces. It is therefore the only mode that will allow a
	single TCP/IP stream to utilize more than one interface's
	worth of throughput.  This comes at a cost, however: the
	striping often results in peer systems receiving packets out
	of order, causing TCP/IP's congestion control system to kick
	in, often by retransmitting segments.

	It is possible to adjust TCP/IP's congestion limits by
	altering the net.ipv4.tcp_reordering sysctl parameter.  The
	usual default value is 3, and the maximum useful value is 127.
	For a four interface balance-rr bond, expect that a single
	TCP/IP stream will utilize no more than approximately 2.3
	interface's worth of throughput, even after adjusting
	tcp_reordering.

	If you are utilizing protocols other than TCP/IP, UDP for
	example, and your application can tolerate out of order
	delivery, then this mode can allow for single stream datagram
	performance that scales near linearly as interfaces are added
	to the bond.

	This mode requires the switch to have the appropriate ports
	configured for "etherchannel" or "trunking."

active-backup: There is not much advantage in this network topology to
	the active-backup mode, as the inactive backup devices are all
	connected to the same peer as the primary.  In this case, a
	load balancing mode (with link monitoring) will provide the
	same level of network availability, but with increased
	available bandwidth.  On the plus side, it does not require
	any configuration of the switch.

balance-xor: This mode will limit traffic such that packets destined
	for specific peers will always be sent over the same
	interface.  Since the destination is determined by the MAC
	addresses involved, this may be desirable if you have a large
	network with many hosts.  It is likely to be suboptimal if all
	your traffic is passed through a single router, however.  As
	with balance-rr, the switch ports need to be configured for
	"etherchannel" or "trunking."

broadcast: Like active-backup, there is not much advantage to this
	mode in this type of network topology.

802.3ad: This mode can be a good choice for this type of network
	topology.  The 802.3ad mode is an IEEE standard, so all peers
	that implement 802.3ad should interoperate well.  The 802.3ad
	protocol includes automatic configuration of the aggregates,
	so minimal manual configuration of the switch is needed
	(typically only to designate that some set of devices is
	usable for 802.3ad).  The 802.3ad standard also mandates that
	frames be delivered in order (within certain limits), so in
	general single connections will not see misordering of
	packets.  The 802.3ad mode does have some drawbacks: the
	standard mandates that all devices in the aggregate operate at
	the same speed and duplex.  Also, as with all bonding load
	balance modes other than balance-rr, no single connection will
	be able to utilize more than a single interface's worth of
	bandwidth.  Additionally, the linux bonding 802.3ad
	implementation distributes traffic by peer (using an XOR of
	MAC addresses), so in general all traffic to a particular
	destination will use the same interface.  Finally, the 802.3ad
	mode mandates the use of the MII monitor, therefore, the ARP
	monitor is not available in this mode.

balance-tlb: This mode is also a good choice for this type of
	topology.  It has no special switch configuration
	requirements, and balances outgoing traffic by peer, in a
	vaguely intelligent manner (not a simple XOR as in balance-xor
	or 802.3ad mode), so that unlucky MAC addresses will not all
	"bunch up" on a single interface.  Interfaces may be of
	differing speeds.  On the down side, in this mode all incoming
	traffic arrives over a single interface, this mode requires
	certain ethtool support in the network device driver of the
	slave interfaces, and the ARP monitor is not available.

balance-alb: This mode is everything that balance-tlb is, and more. It
	has all of the features (and restrictions) of balance-tlb, and
	will also balance incoming traffic from peers (as described in
	the Bonding Module Options section, above).  The only extra
	down side to this mode is that the network device driver must
	support changing the hardware address while the device is
	open.

12.1.2 Link Monitoring for Single Switch Topology
-------------------------------------------------

	The choice of link monitoring may largely depend upon which
mode you choose to use.  The more advanced load balancing modes do not
support the use of the ARP monitor, and are thus restricted to using
the MII monitor (which does not provide as high a level of assurance
as the ARP monitor).


12.2 High Availability in a Multiple Switch Topology
----------------------------------------------------

	With multiple switches, the configuration of bonding and the
network changes dramatically.  In multiple switch topologies, there is
a tradeoff between network availability and usable bandwidth.

	Below is a sample network, configured to maximize the
availability of the network:

                |                                     |
                |port3                           port3|
          +-----+----+                          +-----+----+
          |          |port2       ISL      port2|          |
          | switch A +--------------------------+ switch B |
          |          |                          |          |
          +-----+----+                          +-----++---+
                |port1                           port1|
                |             +-------+               |
                +-------------+ host1 +---------------+
                         eth0 +-------+ eth1

	In this configuration, there is a link between the two
switches (ISL, or inter switch link), and multiple ports connecting to
the outside world ("port3" on each switch).  There is no technical
reason that this could not be extended to a third switch.

12.2.1 Bonding Mode Selection for Multiple Switch Topology
----------------------------------------------------------

	In a topology such as this, the active-backup and broadcast
modes are the only useful bonding modes; the other modes require all
links to terminate on the same peer for them to behave rationally.

active-backup: This is generally the preferred mode, particularly if
	the switches have an ISL and play together well.  If the
	network configuration is such that one switch is specifically
	a backup switch (e.g., has lower capacity, higher cost, etc),
	then the primary option can be used to insure that the
	preferred link is always used when it is available.

broadcast: This mode is really a special purpose mode, and is suitable
	only for very specific needs.  For example, if the two
	switches are not connected (no ISL), and the networks beyond
	them are totally independant.  In this case, if it is
	necessary for some specific one-way traffic to reach both
	independent networks, then the broadcast mode may be suitable.

12.2.2 Link Monitoring Selection for Multiple Switch Topology
-------------------------------------------------------------

	The choice of link monitoring ultimately depends upon your
switch.  If the switch can reliably fail ports in response to other
failures, then either the MII or ARP monitors should work.  For
example, in the above example, if the "port3" link fails at the remote
end, the MII monitor has no direct means to detect this.  The ARP
monitor could be configured with a target at the remote end of port3,
thus detecting that failure without switch support.

	In general, however, in a multiple switch topology, the ARP
monitor can provide a higher level of reliability in detecting link
failures.  Additionally, it should be configured with multiple targets
(at least one for each switch in the network).  This will insure that,
regardless of which switch is active, the ARP monitor has a suitable
target to query.


12.3 Switch Behavior Issues for High Availability
-------------------------------------------------

	You may encounter issues with the timing of link up and down
reporting by the switch.

	First, when a link comes up, some switches may indicate that
the link is up (carrier available), but not pass traffic over the
interface for some period of time.  This delay is typically due to
some type of autonegotiation or routing protocol, but may also occur
during switch initialization (e.g., during recovery after a switch
failure).  If you find this to be a problem, specify an appropriate
value to the updelay bonding module option to delay the use of the
relevant interface(s).

	Second, some switches may "bounce" the link state one or more
times while a link is changing state.  This occurs most commonly while
the switch is initializing.  Again, an appropriate updelay value may
help, but note that if all links are down, then updelay is ignored
when any link becomes active (the slave closest to completing its
updelay is chosen).

	Note that when a bonding interface has no active links, the
driver will immediately reuse the first link that goes up, even if
updelay parameter was specified.  If there are slave interfaces
waiting for the updelay timeout to expire, the interface that first
went into that state will be immediately reused.  This reduces down
time of the network if the value of updelay has been overestimated.

	In addition to the concerns about switch timings, if your
switches take a long time to go into backup mode, it may be desirable
to not activate a backup interface immediately after a link goes down.
Failover may be delayed via the downdelay bonding module option.

13. Hardware Specific Considerations
====================================

	This section contains additional information for configuring
bonding on specific hardware platforms, or for interfacing bonding
with particular switches or other devices.

13.1 IBM BladeCenter
--------------------

	This applies to the JS20 and similar systems.

	On the JS20 blades, the bonding driver supports only
balance-rr, active-backup, balance-tlb and balance-alb modes.  This is
largely due to the network topology inside the BladeCenter, detailed
below.

JS20 network adapter information
--------------------------------

	All JS20s come with two Broadcom Gigabit Ethernet ports
integrated on the planar.  In the BladeCenter chassis, the eth0 port
of all JS20 blades is hard wired to I/O Module #1; similarly, all eth1
ports are wired to I/O Module #2.  An add-on Broadcom daughter card
can be installed on a JS20 to provide two more Gigabit Ethernet ports.
These ports, eth2 and eth3, are wired to I/O Modules 3 and 4,
respectively.

	Each I/O Module may contain either a switch or a passthrough
module (which allows ports to be directly connected to an external
switch).  Some bonding modes require a specific BladeCenter internal
network topology in order to function; these are detailed below.

	Additional BladeCenter-specific networking information can be
found in two IBM Redbooks (www.ibm.com/redbooks):

"IBM eServer BladeCenter Networking Options"
"IBM eServer BladeCenter Layer 2-7 Network Switching"

BladeCenter networking configuration
------------------------------------

	Because a BladeCenter can be configured in a very large number
of ways, this discussion will be confined to describing basic
configurations.

	Normally, Ethernet Switch Modules (ESM) are used in I/O
modules 1 and 2.  In this configuration, the eth0 and eth1 ports of a
JS20 will be connected to different internal switches (in the
respective I/O modules).

	An optical passthru module (OPM) connects the I/O module
directly to an external switch.  By using OPMs in I/O module #1 and
#2, the eth0 and eth1 interfaces of a JS20 can be redirected to the
outside world and connected to a common external switch.

	Depending upon the mix of ESM and OPM modules, the network
will appear to bonding as either a single switch topology (all OPM
modules) or as a multiple switch topology (one or more ESM modules,
zero or more OPM modules).  It is also possible to connect ESM modules
together, resulting in a configuration much like the example in "High
Availability in a multiple switch topology."

Requirements for specifc modes
------------------------------

	The balance-rr mode requires the use of OPM modules for
devices in the bond, all connected to an common external switch.  That
switch must be configured for "etherchannel" or "trunking" on the
appropriate ports, as is usual for balance-rr.

	The balance-alb and balance-tlb modes will function with
either switch modules or passthrough modules (or a mix).  The only
specific requirement for these modes is that all network interfaces
must be able to reach all destinations for traffic sent over the
bonding device (i.e., the network must converge at some point outside
the BladeCenter).

	The active-backup mode has no additional requirements.

Link monitoring issues
----------------------

	When an Ethernet Switch Module is in place, only the ARP
monitor will reliably detect link loss to an external switch.  This is
nothing unusual, but examination of the BladeCenter cabinet would
suggest that the "external" network ports are the ethernet ports for
the system, when it fact there is a switch between these "external"
ports and the devices on the JS20 system itself.  The MII monitor is
only able to detect link failures between the ESM and the JS20 system.

	When a passthrough module is in place, the MII monitor does
detect failures to the "external" port, which is then directly
connected to the JS20 system.

Other concerns
--------------

	The Serial Over LAN link is established over the primary
ethernet (eth0) only, therefore, any loss of link to eth0 will result
in losing your SoL connection.  It will not fail over with other
network traffic.

	It may be desirable to disable spanning tree on the switch
(either the internal Ethernet Switch Module, or an external switch) to
avoid fail-over delays issues when using bonding.

	
14. Frequently Asked Questions
==============================

1.  Is it SMP safe?

	Yes. The old 2.0.xx channel bonding patch was not SMP safe.
The new driver was designed to be SMP safe from the start.

2.  What type of cards will work with it?

	Any Ethernet type cards (you can even mix cards - a Intel
EtherExpress PRO/100 and a 3com 3c905b, for example).  They need not
be of the same speed.

3.  How many bonding devices can I have?

	There is no limit.

4.  How many slaves can a bonding device have?

	This is limited only by the number of network interfaces Linux
supports and/or the number of network cards you can place in your
system.

5.  What happens when a slave link dies?

	If link monitoring is enabled, then the failing device will be
disabled.  The active-backup mode will fail over to a backup link, and
other modes will ignore the failed link.  The link will continue to be
monitored, and should it recover, it will rejoin the bond (in whatever
manner is appropriate for the mode). See the section on High
Availability for additional information.
	
	Link monitoring can be enabled via either the miimon or
arp_interval paramters (described in the module paramters section,
above).  In general, miimon monitors the carrier state as sensed by
the underlying network device, and the arp monitor (arp_interval)
monitors connectivity to another host on the local network.

	If no link monitoring is configured, the bonding driver will
be unable to detect link failures, and will assume that all links are
always available.  This will likely result in lost packets, and a
resulting degredation of performance.  The precise performance loss
depends upon the bonding mode and network configuration.

6.  Can bonding be used for High Availability?

	Yes.  See the section on High Availability for details.

7.  Which switches/systems does it work with?

	The full answer to this depends upon the desired mode.

	In the basic balance modes (balance-rr and balance-xor), it
works with any system that supports etherchannel (also called
trunking).  Most managed switches currently available have such
support, and many unmananged switches as well.

	The advanced balance modes (balance-tlb and balance-alb) do
not have special switch requirements, but do need device drivers that
support specific features (described in the appropriate section under
module paramters, above).

	In 802.3ad mode, it works with with systems that support IEEE
802.3ad Dynamic Link Aggregation.  Most managed and many unmanaged
switches currently available support 802.3ad.

        The active-backup mode should work with any Layer-II switch.

8.  Where does a bonding device get its MAC address from?

	If not explicitly configured with ifconfig, the MAC address of
the bonding device is taken from its first slave device. This MAC
address is then passed to all following slaves and remains persistent
(even if the the first slave is removed) until the bonding device is
brought down or reconfigured.

	If you wish to change the MAC address, you can set it with
ifconfig:

# ifconfig bond0 hw ether 00:11:22:33:44:55

	The MAC address can be also changed by bringing down/up the
device and then changing its slaves (or their order):

# ifconfig bond0 down ; modprobe -r bonding
# ifconfig bond0 .... up
# ifenslave bond0 eth...

	This method will automatically take the address from the next
slave that is added.

	To restore your slaves' MAC addresses, you need to detach them
from the bond (`ifenslave -d bond0 eth0'). The bonding driver will
then restore the MAC addresses that the slaves had before they were
enslaved.

15. Resources and Links
=======================

The latest version of the bonding driver can be found in the latest
version of the linux kernel, found on http://kernel.org

Discussions regarding the bonding driver take place primarily on the
bonding-devel mailing list, hosted at sourceforge.net.  If you have
questions or problems, post them to the list.

bonding-devel@lists.sourceforge.net

https://lists.sourceforge.net/lists/listinfo/bonding-devel

There is also a project site on sourceforge.

http://www.sourceforge.net/projects/bonding

Donald Becker's Ethernet Drivers and diag programs may be found at :
 - http://www.scyld.com/network/

You will also find a lot of information regarding Ethernet, NWay, MII,
etc. at www.scyld.com.

-- END --