1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
|
Notes on the Generic Block Layer Rewrite in Linux 2.5
=====================================================
Notes Written on Jan 15, 2002:
Jens Axboe <jens.axboe@oracle.com>
Suparna Bhattacharya <suparna@in.ibm.com>
Last Updated May 2, 2002
September 2003: Updated I/O Scheduler portions
Nick Piggin <npiggin@kernel.dk>
Introduction:
These are some notes describing some aspects of the 2.5 block layer in the
context of the bio rewrite. The idea is to bring out some of the key
changes and a glimpse of the rationale behind those changes.
Please mail corrections & suggestions to suparna@in.ibm.com.
Credits:
---------
2.5 bio rewrite:
Jens Axboe <jens.axboe@oracle.com>
Many aspects of the generic block layer redesign were driven by and evolved
over discussions, prior patches and the collective experience of several
people. See sections 8 and 9 for a list of some related references.
The following people helped with review comments and inputs for this
document:
Christoph Hellwig <hch@infradead.org>
Arjan van de Ven <arjanv@redhat.com>
Randy Dunlap <rdunlap@xenotime.net>
Andre Hedrick <andre@linux-ide.org>
The following people helped with fixes/contributions to the bio patches
while it was still work-in-progress:
David S. Miller <davem@redhat.com>
Description of Contents:
------------------------
1. Scope for tuning of logic to various needs
1.1 Tuning based on device or low level driver capabilities
- Per-queue parameters
- Highmem I/O support
- I/O scheduler modularization
1.2 Tuning based on high level requirements/capabilities
1.2.1 I/O Barriers
1.2.2 Request Priority/Latency
1.3 Direct access/bypass to lower layers for diagnostics and special
device operations
1.3.1 Pre-built commands
2. New flexible and generic but minimalist i/o structure or descriptor
(instead of using buffer heads at the i/o layer)
2.1 Requirements/Goals addressed
2.2 The bio struct in detail (multi-page io unit)
2.3 Changes in the request structure
3. Using bios
3.1 Setup/teardown (allocation, splitting)
3.2 Generic bio helper routines
3.2.1 Traversing segments and completion units in a request
3.2.2 Setting up DMA scatterlists
3.2.3 I/O completion
3.2.4 Implications for drivers that do not interpret bios (don't handle
multiple segments)
3.2.5 Request command tagging
3.3 I/O submission
4. The I/O scheduler
5. Scalability related changes
5.1 Granular locking: Removal of io_request_lock
5.2 Prepare for transition to 64 bit sector_t
6. Other Changes/Implications
6.1 Partition re-mapping handled by the generic block layer
7. A few tips on migration of older drivers
8. A list of prior/related/impacted patches/ideas
9. Other References/Discussion Threads
---------------------------------------------------------------------------
Bio Notes
--------
Let us discuss the changes in the context of how some overall goals for the
block layer are addressed.
1. Scope for tuning the generic logic to satisfy various requirements
The block layer design supports adaptable abstractions to handle common
processing with the ability to tune the logic to an appropriate extent
depending on the nature of the device and the requirements of the caller.
One of the objectives of the rewrite was to increase the degree of tunability
and to enable higher level code to utilize underlying device/driver
capabilities to the maximum extent for better i/o performance. This is
important especially in the light of ever improving hardware capabilities
and application/middleware software designed to take advantage of these
capabilities.
1.1 Tuning based on low level device / driver capabilities
Sophisticated devices with large built-in caches, intelligent i/o scheduling
optimizations, high memory DMA support, etc may find some of the
generic processing an overhead, while for less capable devices the
generic functionality is essential for performance or correctness reasons.
Knowledge of some of the capabilities or parameters of the device should be
used at the generic block layer to take the right decisions on
behalf of the driver.
How is this achieved ?
Tuning at a per-queue level:
i. Per-queue limits/values exported to the generic layer by the driver
Various parameters that the generic i/o scheduler logic uses are set at
a per-queue level (e.g maximum request size, maximum number of segments in
a scatter-gather list, hardsect size)
Some parameters that were earlier available as global arrays indexed by
major/minor are now directly associated with the queue. Some of these may
move into the block device structure in the future. Some characteristics
have been incorporated into a queue flags field rather than separate fields
in themselves. There are blk_queue_xxx functions to set the parameters,
rather than update the fields directly
Some new queue property settings:
blk_queue_bounce_limit(q, u64 dma_address)
Enable I/O to highmem pages, dma_address being the
limit. No highmem default.
blk_queue_max_sectors(q, max_sectors)
Sets two variables that limit the size of the request.
- The request queue's max_sectors, which is a soft size in
units of 512 byte sectors, and could be dynamically varied
by the core kernel.
- The request queue's max_hw_sectors, which is a hard limit
and reflects the maximum size request a driver can handle
in units of 512 byte sectors.
The default for both max_sectors and max_hw_sectors is
255. The upper limit of max_sectors is 1024.
blk_queue_max_phys_segments(q, max_segments)
Maximum physical segments you can handle in a request. 128
default (driver limit). (See 3.2.2)
blk_queue_max_hw_segments(q, max_segments)
Maximum dma segments the hardware can handle in a request. 128
default (host adapter limit, after dma remapping).
(See 3.2.2)
blk_queue_max_segment_size(q, max_seg_size)
Maximum size of a clustered segment, 64kB default.
blk_queue_hardsect_size(q, hardsect_size)
Lowest possible sector size that the hardware can operate
on, 512 bytes default.
New queue flags:
QUEUE_FLAG_CLUSTER (see 3.2.2)
QUEUE_FLAG_QUEUED (see 3.2.4)
ii. High-mem i/o capabilities are now considered the default
The generic bounce buffer logic, present in 2.4, where the block layer would
by default copyin/out i/o requests on high-memory buffers to low-memory buffers
assuming that the driver wouldn't be able to handle it directly, has been
changed in 2.5. The bounce logic is now applied only for memory ranges
for which the device cannot handle i/o. A driver can specify this by
setting the queue bounce limit for the request queue for the device
(blk_queue_bounce_limit()). This avoids the inefficiencies of the copyin/out
where a device is capable of handling high memory i/o.
In order to enable high-memory i/o where the device is capable of supporting
it, the pci dma mapping routines and associated data structures have now been
modified to accomplish a direct page -> bus translation, without requiring
a virtual address mapping (unlike the earlier scheme of virtual address
-> bus translation). So this works uniformly for high-memory pages (which
do not have a corresponding kernel virtual address space mapping) and
low-memory pages.
Note: Please refer to Documentation/PCI/PCI-DMA-mapping.txt for a discussion
on PCI high mem DMA aspects and mapping of scatter gather lists, and support
for 64 bit PCI.
Special handling is required only for cases where i/o needs to happen on
pages at physical memory addresses beyond what the device can support. In these
cases, a bounce bio representing a buffer from the supported memory range
is used for performing the i/o with copyin/copyout as needed depending on
the type of the operation. For example, in case of a read operation, the
data read has to be copied to the original buffer on i/o completion, so a
callback routine is set up to do this, while for write, the data is copied
from the original buffer to the bounce buffer prior to issuing the
operation. Since an original buffer may be in a high memory area that's not
mapped in kernel virtual addr, a kmap operation may be required for
performing the copy, and special care may be needed in the completion path
as it may not be in irq context. Special care is also required (by way of
GFP flags) when allocating bounce buffers, to avoid certain highmem
deadlock possibilities.
It is also possible that a bounce buffer may be allocated from high-memory
area that's not mapped in kernel virtual addr, but within the range that the
device can use directly; so the bounce page may need to be kmapped during
copy operations. [Note: This does not hold in the current implementation,
though]
There are some situations when pages from high memory may need to
be kmapped, even if bounce buffers are not necessary. For example a device
may need to abort DMA operations and revert to PIO for the transfer, in
which case a virtual mapping of the page is required. For SCSI it is also
done in some scenarios where the low level driver cannot be trusted to
handle a single sg entry correctly. The driver is expected to perform the
kmaps as needed on such occasions using the __bio_kmap_atomic and bio_kmap_irq
routines as appropriate. A driver could also use the blk_queue_bounce()
routine on its own to bounce highmem i/o to low memory for specific requests
if so desired.
iii. The i/o scheduler algorithm itself can be replaced/set as appropriate
As in 2.4, it is possible to plugin a brand new i/o scheduler for a particular
queue or pick from (copy) existing generic schedulers and replace/override
certain portions of it. The 2.5 rewrite provides improved modularization
of the i/o scheduler. There are more pluggable callbacks, e.g for init,
add request, extract request, which makes it possible to abstract specific
i/o scheduling algorithm aspects and details outside of the generic loop.
It also makes it possible to completely hide the implementation details of
the i/o scheduler from block drivers.
I/O scheduler wrappers are to be used instead of accessing the queue directly.
See section 4. The I/O scheduler for details.
1.2 Tuning Based on High level code capabilities
i. Application capabilities for raw i/o
This comes from some of the high-performance database/middleware
requirements where an application prefers to make its own i/o scheduling
decisions based on an understanding of the access patterns and i/o
characteristics
ii. High performance filesystems or other higher level kernel code's
capabilities
Kernel components like filesystems could also take their own i/o scheduling
decisions for optimizing performance. Journalling filesystems may need
some control over i/o ordering.
What kind of support exists at the generic block layer for this ?
The flags and rw fields in the bio structure can be used for some tuning
from above e.g indicating that an i/o is just a readahead request, or for
marking barrier requests (discussed next), or priority settings (currently
unused). As far as user applications are concerned they would need an
additional mechanism either via open flags or ioctls, or some other upper
level mechanism to communicate such settings to block.
1.2.1 I/O Barriers
There is a way to enforce strict ordering for i/os through barriers.
All requests before a barrier point must be serviced before the barrier
request and any other requests arriving after the barrier will not be
serviced until after the barrier has completed. This is useful for higher
level control on write ordering, e.g flushing a log of committed updates
to disk before the corresponding updates themselves.
A flag in the bio structure, BIO_BARRIER is used to identify a barrier i/o.
The generic i/o scheduler would make sure that it places the barrier request and
all other requests coming after it after all the previous requests in the
queue. Barriers may be implemented in different ways depending on the
driver. For more details regarding I/O barriers, please read barrier.txt
in this directory.
1.2.2 Request Priority/Latency
Todo/Under discussion:
Arjan's proposed request priority scheme allows higher levels some broad
control (high/med/low) over the priority of an i/o request vs other pending
requests in the queue. For example it allows reads for bringing in an
executable page on demand to be given a higher priority over pending write
requests which haven't aged too much on the queue. Potentially this priority
could even be exposed to applications in some manner, providing higher level
tunability. Time based aging avoids starvation of lower priority
requests. Some bits in the bi_rw flags field in the bio structure are
intended to be used for this priority information.
1.3 Direct Access to Low level Device/Driver Capabilities (Bypass mode)
(e.g Diagnostics, Systems Management)
There are situations where high-level code needs to have direct access to
the low level device capabilities or requires the ability to issue commands
to the device bypassing some of the intermediate i/o layers.
These could, for example, be special control commands issued through ioctl
interfaces, or could be raw read/write commands that stress the drive's
capabilities for certain kinds of fitness tests. Having direct interfaces at
multiple levels without having to pass through upper layers makes
it possible to perform bottom up validation of the i/o path, layer by
layer, starting from the media.
The normal i/o submission interfaces, e.g submit_bio, could be bypassed
for specially crafted requests which such ioctl or diagnostics
interfaces would typically use, and the elevator add_request routine
can instead be used to directly insert such requests in the queue or preferably
the blk_do_rq routine can be used to place the request on the queue and
wait for completion. Alternatively, sometimes the caller might just
invoke a lower level driver specific interface with the request as a
parameter.
If the request is a means for passing on special information associated with
the command, then such information is associated with the request->special
field (rather than misuse the request->buffer field which is meant for the
request data buffer's virtual mapping).
For passing request data, the caller must build up a bio descriptor
representing the concerned memory buffer if the underlying driver interprets
bio segments or uses the block layer end*request* functions for i/o
completion. Alternatively one could directly use the request->buffer field to
specify the virtual address of the buffer, if the driver expects buffer
addresses passed in this way and ignores bio entries for the request type
involved. In the latter case, the driver would modify and manage the
request->buffer, request->sector and request->nr_sectors or
request->current_nr_sectors fields itself rather than using the block layer
end_request or end_that_request_first completion interfaces.
(See 2.3 or Documentation/block/request.txt for a brief explanation of
the request structure fields)
[TBD: end_that_request_last should be usable even in this case;
Perhaps an end_that_direct_request_first routine could be implemented to make
handling direct requests easier for such drivers; Also for drivers that
expect bios, a helper function could be provided for setting up a bio
corresponding to a data buffer]
<JENS: I dont understand the above, why is end_that_request_first() not
usable? Or _las
|