1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
<book id="Linux-USB-API">
<bookinfo>
<title>The Linux-USB Host Side API</title>
<legalnotice>
<para>
This documentation is free software; you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
</para>
<para>
This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
</para>
<para>
For more details see the file COPYING in the source
distribution of Linux.
</para>
</legalnotice>
</bookinfo>
<toc></toc>
<chapter id="intro">
<title>Introduction to USB on Linux</title>
<para>A Universal Serial Bus (USB) is used to connect a host,
such as a PC or workstation, to a number of peripheral
devices. USB uses a tree structure, with the host at the
root (the system's master), hubs as interior nodes, and
peripheral devices as leaves (and slaves).
Modern PCs support several such trees of USB devices, usually
one USB 2.0 tree (480 Mbit/sec each) with
a few USB 1.1 trees (12 Mbit/sec each) that are used when you
connect a USB 1.1 device directly to the machine's "root hub".
</para>
<para>That master/slave asymmetry was designed in part for
ease of use. It is not physically possible to assemble
(legal) USB cables incorrectly: all upstream "to-the-host"
connectors are the rectangular type, matching the sockets on
root hubs, and the downstream type are the squarish type
(or they are built in to the peripheral).
Software doesn't need to deal with distributed autoconfiguration
since the pre-designated master node manages all that.
At the electrical level, bus protocol overhead is reduced by
eliminating arbitration and moving scheduling into host software.
</para>
<para>USB 1.0 was announced in January 1996, and was revised
as USB 1.1 (with improvements in hub specification and
support for interrupt-out transfers) in September 1998.
USB 2.0 was released in April 2000, including high speed
transfers and transaction translating hubs (used for USB 1.1
and 1.0 backward compatibility).
</para>
<para>USB support was added to Linux early in the 2.2 kernel series
shortly before the 2.3 development forked off. Updates
from 2.3 were regularly folded back into 2.2 releases, bringing
new features such as <filename>/sbin/hotplug</filename> support,
more drivers, and more robustness.
The 2.5 kernel series continued such improvements, and also
worked on USB 2.0 support,
higher performance,
better consistency between host controller drivers,
API simplification (to make bugs less likely),
and providing internal "kerneldoc" documentation.
</para>
<para>Linux can run inside USB devices as well as on
the hosts that control the devices.
Because the Linux 2.x USB support evolved to support mass market
platforms such as Apple Macintosh or PC-compatible systems,
it didn't address design concerns for those types of USB systems.
So it can't be used inside mass-market PDAs, or other peripherals.
USB device drivers running inside those Linux peripherals
don't do the same things as the ones running inside hosts,
and so they've been given a different name:
they're called <emphasis>gadget drivers</emphasis>.
This document does not present gadget drivers.
</para>
</chapter>
<chapter id="host">
<title>USB Host-Side API Model</title>
<para>Within the kernel,
host-side drivers for USB devices talk to the "usbcore" APIs.
There are two types of public "usbcore" APIs, targetted at two different
layers of USB driver. Those are
<emphasis>general purpose</emphasis> drivers, exposed through
driver frameworks such as block, character, or network devices;
and drivers that are <emphasis>part of the core</emphasis>,
which are involved in managing a USB bus.
Such core drivers include the <emphasis>hub</emphasis> driver,
which manages trees of USB devices, and several different kinds
of <emphasis>host controller driver (HCD)</emphasis>,
which control individual busses.
</para>
<para>The device model seen by USB drivers is relatively complex.
</para>
<itemizedlist>
<listitem><para>USB supports four kinds of data transfer
(control, bulk, interrupt, and isochronous). Two transfer
types use bandwidth as it's available (control and bulk),
while the other two types of transfer (interrupt and isochronous)
are scheduled to provide guaranteed bandwidth.
</para></listitem>
<listitem><para>The device description model includes one or more
"configurations" per device, only one of which is active at a time.
Devices that are capable of high speed operation must also support
full speed configurations, along with a way to ask about the
"other speed" configurations that might be used.
</para></listitem>
<listitem><para>Configurations have one or more "interface", each
of which may have "alternate settings". Interfaces may be
standardized by USB "Class" specifications, or may be specific to
a vendor or device.</para>
<para>USB device drivers actually bind to interfaces, not devices.
Think of them as "interface drivers", though you
may not see many devices where the distinction is important.
<emphasis>Most USB devices are simple, with only one configuration,
one interface, and one alternate setting.</emphasis>
</para></listitem>
<listitem><para>Interfaces have one or more "endpoints", each of
which supports one type and direction of data transfer such as
"bulk out" or "interrupt in". The entire configuration may have
up to sixteen endpoints in each direction, allocated as needed
among all the interfaces.
</para></listitem>
<listitem><para>Data transfer on USB is packetized; each endpoint
has a maximum packet size.
Drivers must often be aware of conventions such as flagging the end
of bulk transfers using "short" (including zero length) packets.
</para></listitem>
<listitem><para>The Linux USB API supports synchronous calls for
control and bulk messaging.
It also supports asynchnous calls for all kinds of data transfer,
using request structures called "URBs" (USB Request Blocks).
</para></listitem>
</itemizedlist>
<para>Accordingly, the USB Core API exposed to device drivers
covers quite a lot of territory. You'll probably need to consult
the USB 2.0 specification, available online from www.usb.org at
no cost, as well as class or device specifications.
</para>
<para>The only host-side drivers that actually touch hardware
(reading/writing registers, handling IRQs, and so on) are the HCDs.
In theory, all HCDs provide the same functionality through the same
API. In practice, that's becoming more true on the 2.5 kernels,
but there are still differences that crop up especially with
fault handling. Different controllers don't necessarily report
the same aspects of failures, and recovery from faults (including
software-induced ones like unlinking an URB) isn't yet fully
consistent.
Device driver authors should make a point of doing disconnect
testing (while the device is active) with each different host
controller driver, to make sure drivers don't have bugs of
their own as well as to make sure they aren't relying on some
HCD-specific behavior.
(You will need external USB 1.1 and/or
USB 2.0 hubs to perform all those tests.)
</para>
</chapter>
<chapter><title>USB-Standard Types</title>
<para>In <filename><linux/usb_ch9.h></filename> you will find
the USB data types defined in chapter 9 of the USB specification.
These data types are used throughout USB, and in APIs including
this host side API, gadget APIs, and usbfs.
</para>
!Iinclude/linux/usb_ch9.h
</chapter>
<chapter><title>Host-Side Data Types and Macros</title>
<para>The host side API exposes several layers to drivers, some of
which are more necessary than others.
These support lifecycle models for host side drivers
and devices, and support passing buffers through usbcore to
some HCD that performs the I/O for the device driver.
</para>
!Iinclude/linux/usb.h
</chapter>
<chapter><title>USB Core APIs</title>
<para>There are two basic I/O models in the USB API.
The most elemental one is asynchronous: drivers submit requests
in the form of an URB, and the URB's completion callback
handle the next step.
All USB transfer types support that model, although there
are special cases for control URBs (which always have setup
and status stages, but may not have a data stage) and
isochronous URBs (which allow large packets and include
per-packet fault reports).
Built on top of that is synchronous API support, where a
driver calls a routine that allocates one or more URBs,
submits them, and waits until they complete.
There are synchronous wrappers for single-buffer control
and bulk transfers (which are awkward to use in some
driver disconnect scenarios), and for scatterlist based
streaming i/o (bulk or interrupt).
</para>
<para>USB drivers need to provide buffers that can be
used for DMA, although they don't necessarily need to
provide the DMA mapping themselves.
There are APIs to use used when allocating DMA buffers,
which can prevent use of bounce buffers on some systems.
In some cases, drivers may be able to rely on 64bit DMA
to eliminate another kind of bounce buffer.
</para>
!Edrivers/usb/core/urb.c
!Edrivers/usb/core/message.c
!Edrivers/usb/core/file.c
!Edrivers/usb/core/driver.c
!Edrivers/usb/core/usb.c
!Edrivers/usb/core/hub.c
</chapter>
<chapter><title>Host Controller APIs</title>
<para>These APIs are only for use by host controller drivers,
most of which implement standard register interfaces such as
EHCI, OHCI, or UHCI.
UHCI was one of the first interfaces, designed by Intel and
also used by VIA; it doesn't do much in hardware.
OHCI was designed later, to have the hardware do more work
(bigger transfers, tracking protocol state, and so on).
EHCI was designed with USB 2.0; its design has features that
resemble OHCI (hardware does much more work) as well as
UHCI (some parts of ISO support, TD list processing).
</para>
<para>There are host controllers other than the "big three",
although most PCI based controllers (and a few non-PCI based
ones) use one of those interfaces.
Not all host controllers use DMA; some use PIO, and there
is also a simulator.
</para>
<para>The same basic APIs are available to drivers for all
those controllers.
For historical reasons they are in two layers:
<structname>struct usb_bus</structname> is a rather thin
layer that became available in the 2.2 kernels, while
<structname>struct usb_hcd</structname> is a more featureful
layer (available in later 2.4 kernels and in 2.5) that
lets HCDs share common code, to shrink driver size
and significantly reduce hcd-specific behaviors.
</para>
!Edrivers/usb/core/hcd.c
!Edrivers/usb/core/hcd-pci.c
!Idrivers/usb/core/buffer.c
</chapter>
<chapter>
<title>The USB Filesystem (usbfs)</title>
<para>This chapter presents the Linux <emphasis>usbfs</emphasis>.
You may prefer to avoid writing new kernel code for your
USB driver; that's the problem that usbfs set out to solve.
User mode device drivers are usually packaged as applications
or libraries, and may use usbfs through some programming library
that wraps it. Such libraries include
<ulink url="http://libusb.sourceforge.net">libusb</ulink>
for C/C++, and
<ulink url="http://jUSB.sourceforge.net">jUSB</ulink> for Java.
</para>
<note><title>Unfinished</title>
<para>This particular documentation is incomplete,
especially with respect to the asynchronous mode.
As of kernel 2.5.66 the code and this (new) documentation
need to be cross-reviewed.
</para>
</note>
<para>Configure usbfs into Linux kernels by enabling the
<emphasis>USB filesystem</emphasis> option (CONFIG_USB_DEVICEFS),
and you get basic support for user mode USB device drivers.
Until relatively recently it was often (confusingly) called
<emphasis>usbdevfs</emphasis> although it wasn't solving what
<emphasis>devfs</emphasis> was.
Every USB device will appear in usbfs, regardless of whether or
not it has a kernel driver; but only devices with kernel drivers
show up in devfs.
</para>
<sect1>
<title>What files are in "usbfs"?</title>
<para>Conventionally mounted at
<filename>/proc/bus/usb</filename>, usbfs
features include:
<itemizedlist>
<listitem><para><filename>/proc/bus/usb/devices</filename>
... a text file
showing each of the USB devices on known to the kernel,
and their configuration descriptors.
You can also poll() this to learn about new devices.
</para></listitem>
<listitem><para><filename>/proc/bus/usb/BBB/DDD</filename>
... magic files
exposing the each device's configuration descriptors, and
supporting a series of ioctls for making device requests,
including I/O to devices. (Purely for access by programs.)
</para></listitem>
</itemizedlist>
</para>
<para> Each bus is given a number (BBB) based on when it was
enumerated; within each bus, each device is given a similar
number (DDD).
Those BBB/DDD paths are not "stable" identifiers;
expect them to change even if you always leave the devices
plugged in to the same hub port.
<emphasis>Don't even think of saving these in application
configuration files.</emphasis>
Stable identifiers are available, for user mode applications
that want to use them. HID and networking devices expose
these stable IDs, so that for example you can be sure that
you told the right UPS to power down its second server.
"usbfs" doesn't (yet) expose those IDs.
</para>
</sect1>
<sect1>
<title>Mounting and Access Control</title>
<para&g
|