/* * usbmidi.c - ALSA USB MIDI driver * * Copyright (c) 2002-2009 Clemens Ladisch * All rights reserved. * * Based on the OSS usb-midi driver by NAGANO Daisuke, * NetBSD's umidi driver by Takuya SHIOZAKI, * the "USB Device Class Definition for MIDI Devices" by Roland * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed and/or modified under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/bitops.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/timer.h> #include <linux/usb.h> #include <linux/wait.h> #include <linux/usb/audio.h> #include <linux/module.h> #include <sound/core.h> #include <sound/control.h> #include <sound/rawmidi.h> #include <sound/asequencer.h> #include "usbaudio.h" #include "midi.h" #include "power.h" #include "helper.h" /* * define this to log all USB packets */ /* #define DUMP_PACKETS */ /* * how long to wait after some USB errors, so that khubd can disconnect() us * without too many spurious errors */ #define ERROR_DELAY_JIFFIES (HZ / 10) #define OUTPUT_URBS 7 #define INPUT_URBS 7 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); MODULE_DESCRIPTION("USB Audio/MIDI helper module"); MODULE_LICENSE("Dual BSD/GPL"); struct usb_ms_header_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDescriptorSubtype; __u8 bcdMSC[2]; __le16 wTotalLength; } __attribute__ ((packed)); struct usb_ms_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDescriptorSubtype; __u8 bNumEmbMIDIJack; __u8 baAssocJackID[0]; } __attribute__ ((packed)); struct snd_usb_midi_in_endpoint; struct snd_usb_midi_out_endpoint; struct snd_usb_midi_endpoint; struct usb_protocol_ops { void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int); void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb); void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t); void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*); void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*); }; struct snd_usb_midi { struct usb_device *dev; struct snd_card *card; struct usb_interface *iface; const struct snd_usb_audio_quirk *quirk; struct snd_rawmidi *rmidi; struct usb_protocol_ops* usb_protocol_ops; struct list_head list; struct timer_list error_timer; spinlock_t disc_lock; struct mutex mutex; u32 usb_id; int next_midi_device; struct snd_usb_midi_endpoint { struct snd_usb_midi_out_endpoint *out; struct snd_usb_midi_in_endpoint *in; } endpoints[MIDI_MAX_ENDPOINTS]; unsigned long input_triggered; unsigned int opened; unsigned char disconnected; struct snd_kcontrol *roland_load_ctl; }; struct snd_usb_midi_out_endpoint { struct snd_usb_midi* umidi; struct out_urb_context { struct urb *urb; struct snd_usb_midi_out_endpoint *ep; } urbs[OUTPUT_URBS]; unsigned int active_urbs; unsigned int drain_urbs; int max_transfer; /* size of urb buffer */ struct tasklet_struct tasklet; unsigned int next_urb; spinlock_t buffer_lock; struct usbmidi_out_port { struct snd_usb_midi_out_endpoint* ep; struct snd_rawmidi_substream *substream; int active; bool autopm_reference; uint8_t cable; /* cable number << 4 */ uint8_t state; #define STATE_UNKNOWN 0 #define STATE_1PARAM 1 #define STATE_2PARAM_1 2 #define STATE_2PARAM_2 3 #define STATE_SYSEX_0 4 #define STATE_SYSEX_1 5 #define STATE_SYSEX_2 6 uint8_t data[2]; } ports[0x10]; int current_port; wait_queue_head_t drain_wait; }; struct snd_usb_midi_in_endpoint { struct snd_usb_midi* umidi; struct urb* urbs[INPUT_URBS]; struct usbmidi_in_port { struct snd_rawmidi_substream *substream; u8 running_status_length; } ports[0x10]; u8 seen_f5; u8 error_resubmit; int current_port; }; static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep); static const uint8_t snd_usbmidi_cin_length[] = { 0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1 }; /* * Submits the URB, with error handling. */ static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags) { int err = usb_submit_urb(urb, flags); if (err < 0 && err != -ENODEV) snd_printk(KERN_ERR "usb_submit_urb: %d\n", err); return err; } /* * Error handling for URB completion functions. */ static int snd_usbmidi_urb_error(int status) { switch (status) { /* manually unlinked, or device gone */ case -ENOENT: case -ECONNRESET: case -ESHUTDOWN: case -ENODEV: return -ENODEV; /* errors that might occur during unplugging */ case -EPROTO: case -ETIME: case -EILSEQ: return -EIO; default: snd_printk(KERN_ERR "urb status %d\n", status); return 0; /* continue */ } } /* * Receives a chunk of MIDI data. */ static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx, uint8_t* data, int length) { struct usbmidi_in_port* port = &ep->ports[portidx]; if (!port->substream) { snd_printd("unexpected port %d!\n", portidx); return; } if (!test_bit(port->substream->number, &ep->umidi->input_triggered)) return; snd_rawmidi_receive(port->substream, data, length); } #ifdef DUMP_PACKETS static void dump_urb(const char *type, const u8 *data, int length) { snd_printk(KERN_DEBUG "%s packet: [", type); for (; length > 0; ++data, --length) printk(" %02x", *data); printk(" ]\n"); } #else #define dump_urb(type, data, length) /* nothing */ #endif /* * Processes the data read from the device. */ static void snd_usbmidi_in_urb_complete(struct urb* urb) { struct snd_usb_midi_in_endpoint* ep = urb->context; if (urb->status == 0) { dump_urb("received", urb->transfer_buffer, urb->actual_length); ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer, urb->actual_length); } else { int err = snd_usbmidi_urb_error(urb->status); if (err < 0) { if (err != -ENODEV) { ep->error_resubmit = 1; mod_timer(&ep->umidi->error_timer, jiffies + ERROR_DELAY_JIFFIES); } return; } } urb->dev = ep->umidi->dev; snd_usbmidi_submit_urb(urb, GFP_ATOMIC); } static void snd_usbmidi_out_urb_complete(struct urb* urb) { struct out_urb_context *context = urb->context; struct snd_usb_midi_out_endpoint* ep = context->ep; unsigned int urb_index; spin_lock(&ep->buffer_lock); urb_index = context - ep->urbs; ep->active_urbs &= ~(1 << urb_index); if (unlikely(ep->drain_urbs)) { ep->drain_urbs &= ~(1 << urb_index); wake_up(&ep->drain_wait); } spin_unlock(&ep->buffer_lock); if (urb->status < 0) { int err = snd_usbmidi_urb_error(urb->status); if (err < 0) { if (err != -ENODEV) mod_timer(&ep->umidi->error_timer, jiffies + ERROR_DELAY_JIFFIES); return; } } snd_usbmidi_do_output(ep); } /* * This is called when some data should be transferred to the device * (from one or more substreams). */ static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep) { unsigned int urb_index; struct urb* urb; unsigned long flags; spin_lock_irqsave(&ep->buffer_lock, flags); if (ep->umidi->disconnected) { spin_unlock_irqrestore(&ep->buffer_lock, flags); return; } urb_index = ep->next_urb; for (;;) { if (!(ep->active_urbs & (1 << urb_index))) { urb = ep->urbs[urb_index].urb; urb->transfer_buffer_length = 0; ep->umidi->usb_protocol_ops->output(ep, urb); if (urb->transfer_buffer_length == 0) break; dump_urb("sending", urb->transfer_buffer, urb->transfer_buffer_length); urb->dev = ep->umidi->dev; if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0) break; ep->active_urbs |= 1 << urb_index; } if (++urb_index >= OUTPUT_URBS) urb_index = 0; if (urb_index == ep->next_urb) break; } ep->next_urb = urb_index; spin_unlock_irqrestore(&ep->buffer_lock, flags); } static void snd_usbmidi_out_tasklet(unsigned long data) { struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data; snd_usbmidi_do_output(ep); } /* called after transfers had been interrupted due to some USB error */ static void snd_usbmidi_error_timer(unsigned long data) { struct snd_usb_midi *umidi = (struct snd_usb_midi *)data; unsigned int i, j; spin_lock(&umidi->disc_lock); if (umidi->disconnected) { spin_unlock(&umidi->disc_lock); return; } for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in; if (in && in->error_resubmit) { in->error_resubmit = 0; for (j = 0; j < INPUT_URBS; ++j) { in->urbs[j]->dev = umidi->dev; snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC); } } if (umidi->endpoints[i].out) snd_usbmidi_do_output(umidi->endpoints[i].out); } spin_unlock(&umidi->disc_lock); } /* helper function to send static data that may not DMA-able */ static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep, const void *data, int len) { int err = 0; void *buf = kmemdup(data, len, GFP_KERNEL); if (!buf) return -ENOMEM; dump_urb("sending", buf, len); if (ep->urbs[0].urb) err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe, buf, len, NULL, 250); kfree(buf); return err; } /* * Standard USB MIDI protocol: see the spec. * Midiman protocol: like the standard protocol, but the control byte is the * fourth byte in each packet, and uses length instead of CIN. */ static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { int i; for (i = 0; i + 3 < buffer_length; i += 4) if (buffer[i] != 0) { int cable = buffer[i] >> 4; int length = snd_usbmidi_cin_length[buffer[i] & 0x0f]; snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); } } static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { int i; for (i = 0; i + 3 < buffer_length; i += 4) if (buffer[i + 3] != 0) { int port = buffer[i + 3] >> 4; int length = buffer[i + 3] & 3; snd_usbmidi_input_data(ep, port, &buffer[i], length); } } /* * Buggy M-Audio device: running status on input results in a packet that has * the data bytes but not the status byte and that is marked with CIN 4. */ static void snd_usbmidi_maudio_broken_running_status_input( struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { int i; for (i = 0; i + 3 < buffer_length; i += 4) if (buffer[i] != 0) { int cable = buffer[i] >> 4; u8 cin = buffer[i] & 0x0f; struct usbmidi_in_port *port = &ep->ports[cable]; int length; length = snd_usbmidi_cin_length[cin]; if (cin == 0xf && buffer[i + 1] >= 0xf8) ; /* realtime msg: no running status change */ else if (cin >= 0x8 && cin <= 0xe) /* channel msg */ port->running_status_length = length - 1; else if (cin == 0x4 && port->running_status_length != 0 && buffer[i + 1] < 0x80) /* CIN 4 that is not a SysEx */ length = port->running_status_length; else /* * All other msgs cannot begin running status. * (A channel msg sent as two or three CIN 0xF * packets could in theory, but this device * doesn't use this format.) */ port->running_status_length = 0; snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length); } } /* * CME protocol: like the standard protocol, but SysEx commands are sent as a * single USB packet preceded by a 0x0F byte. */ static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep, uint8_t *buffer, int buffer_length) { if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f) snd_usbmidi_standard_input(ep, buffer, buffer_length); else snd_usbmidi_input_data(ep, buffer[0] >> 4, &buffer[1], buffer_length - 1); } /* * Adds one USB MIDI packet to the output buffer. */ static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3) { uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; buf[0] = p0; buf[1] = p1; buf[2] = p2; buf[3] = p3; urb->transfer_buffer_length += 4; } /* * Adds one Midiman packet to the output buffer. */ static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0, uint8_t p1, uint8_t p2, uint8_t p3) { uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length; buf[0] = p1; buf[1] = p2; buf[2] = p3; buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f]; urb->transfer_buffer_length += 4; } /* * Converts MIDI commands to USB MIDI packets. */ static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port, uint8_t b, struct urb* urb) { uint8_t p0 = port->cable; void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) = port->ep->umidi->usb_protocol_ops->output_packet; if (b >= 0xf8) { output_packet(urb, p0 | 0x0f, b, 0, 0); } else if (b >= 0xf0) { switch (b) { case 0xf0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case 0xf1: case 0xf3: port->data[0] = b; port->state = STATE_1PARAM; break; case 0xf2: port->data[0] = b; port->state = STATE_2PARAM_1; break; case 0xf4: case 0xf5: port->state = STATE_UNKNOWN; break; case 0xf6: output_packet(urb, p0 | 0x05, 0xf6, 0, 0); port->state = STATE_UNKNOWN; break; case 0xf7: switch (port->state) { case STATE_SYSEX_0: output_packet(urb, p0 | 0x05, 0xf7, 0, 0); break; case STATE_SYSEX_1: output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0); break; case STATE_SYSEX_2: output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7); break; } port->state = STATE_UNKNOWN; break; } } else if (b >= 0x80) { port->data[0] = b; if (b >= 0xc0 && b <= 0xdf) port->state = STATE_1PARAM; else port->state = STATE_2PARAM_1; } else { /* b < 0x80 */ switch (port->state) { case STATE_1PARAM: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; } else { p0 |= 0x02; port->state = STATE_UNKNOWN; } output_packet(urb, p0, port->data[0], b, 0); break; case STATE_2PARAM_1: port->data[1] = b; port->state = STATE_2PARAM_2; break; case STATE_2PARAM_2: if (port->data[0] < 0xf0) { p0 |= port->data[0] >> 4; port->state = STATE_2PARAM_1; } else { p0 |= 0x03; port->state = STATE_UNKNOWN; } output_packet(urb, p0, port->data[0], port->data[1], b); break; case STATE_SYSEX_0: port->data[0] = b; port->state = STATE_SYSEX_1; break; case STATE_SYSEX_1: port->data[1] = b; port->state = STATE_SYSEX_2; break; case STATE_SYSEX_2: output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b); port->state = STATE_SYSEX_0; break; } } } static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep, struct urb *urb) { int p; /* FIXME: lower-numbered ports can starve higher-numbered ports */ for (p = 0; p < 0x10; ++p) { struct usbmidi_out_port* port = &ep->ports[p]; if (!port->active) continue; while (urb->transfer_buffer_length + 3 < ep->max_transfer) { uint8_t b; if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) { port->active = 0; break; } snd_usbmidi_transmit_byte(port, b, urb); } } } static struct usb_protocol_ops snd_usbmidi_standard_ops = { .input = snd_usbmidi_standard_input, .output = snd_usbmidi_standard_output, .output_packet = snd_usbmidi_output_standard_packet, }; static struct usb_protocol_ops snd_usbmidi_midiman_ops = { .input = snd_usbmidi_midiman_input, .output = snd_usbmidi_standard_output, .output_packet = snd_usbmidi_output_midiman_packet, }; static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = { .input = snd_usbmidi_maudio_broken_running_status_input, .output = snd_usbmidi_standard_output, .output_packet = snd_usbmidi_output_standard_packet, }; static struct usb_protocol_ops snd_usbmidi_cme_ops = { .input = snd_usbmidi_cme_input, .output = snd_usbmidi_standard_output, .output_packet = snd_usbmidi_output_standard_packet, }; /* * AKAI MPD16 protocol: * * For control port (endpoint 1): * ============================== * One or more chunks consisting of first byte of (0x10 | msg_len) and then a * SysEx message (msg_len=9 bytes long). * * For data port (endpoint 2): * =========================== * One or more chunks consisting of first byte of (0x20 | msg_len) and then a * MIDI message (msg_len bytes long) * * Messages sent: Active Sense, Note On, Poly Pressure, Control Change. */ static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep, uint8_t *buffer, int buffer_length) { unsigned int pos = 0; unsigned int len = (unsigned int)buffer_length; while (pos < len) { unsigned int port = (buffer[pos] >> 4) - 1; unsigned int msg_len = buffer[pos] & 0x0f; pos++; if (pos + msg_len <= len && port < 2) snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len); pos += msg_len; } } #define MAX_AKAI_SYSEX_LEN 9 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep, struct urb *urb) { uint8_t *msg; int pos, end, count, buf_end; uint8_t tmp[MAX_AKAI_SYSEX_LEN]; struct snd_rawmidi_substream *substream = ep->ports[0].substream; if (!ep->ports[0].active) return; msg = urb->transfer_buffer + urb->transfer_buffer_length; buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1; /* only try adding more data when there's space for at least 1 SysEx */ while (urb->transfer_buffer_length < buf_end) { count = snd_rawmidi_transmit_peek(substream, tmp, MAX_AKAI_SYSEX_LEN); if (!count) { ep->ports[0].active = 0; return; } /* try to skip non-SysEx data */ for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++) ; if (pos > 0) { snd_rawmidi_transmit_ack(substream, pos); continue; } /* look for the start or end marker */ for (end = 1; end < count && tmp[end] < 0xF0; end++) ; /* next SysEx started before the end of current one */ if (end < count && tmp[end] == 0xF0) { /* it's incomplete - drop it */ snd_rawmidi_transmit_ack(substream, end); continue; } /* SysEx complete */ if (end < count && tmp[end] == 0xF7) { /* queue it, ack it, and get the next one */ count = end + 1; msg[0] = 0x10 | count; memcpy(&msg[1], tmp, count); snd_rawmidi_transmit_ack(substream, count); urb->transfer_buffer_length += count + 1; msg += count + 1; continue; } /* less than 9 bytes and no end byte - wait for more */ if (count < MAX_AKAI_SYSEX_LEN) { ep->ports[0].active = 0; return; } /* 9 bytes and no end marker in sight - malformed, skip it */ snd_rawmidi_transmit_ack(substream, count); } } static struct usb_protocol_ops snd_usbmidi_akai_ops = { .input = snd_usbmidi_akai_input, .output = snd_usbmidi_akai_output, }; /* * Novation USB MIDI protocol: number of data bytes is in the first byte * (when receiving) (+1!) or in the second byte (when sending); data begins * at the third byte. */ static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1) return; snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1); } static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep, struct urb *urb) { uint8_t* transfer_buffer; int count; if (!ep->ports[0].active) return; transfer_buffer = urb->transfer_buffer; count = snd_rawmidi_transmit(ep->ports[0].substream, &transfer_buffer[2], ep->max_transfer - 2); if (count < 1) { ep->ports[0].active = 0; return; } transfer_buffer[0] = 0; transfer_buffer[1] = count; urb->transfer_buffer_length = 2 + count; } static struct usb_protocol_ops snd_usbmidi_novation_ops = { .input = snd_usbmidi_novation_input, .output = snd_usbmidi_novation_output, }; /* * "raw" protocol: just move raw MIDI bytes from/to the endpoint */ static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { snd_usbmidi_input_data(ep, 0, buffer, buffer_length); } static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep, struct urb *urb) { int count; if (!ep->ports[0].active) return; count = snd_rawmidi_transmit(ep->ports[0].substream, urb->transfer_buffer, ep->max_transfer); if (count < 1) { ep->ports[0].active = 0; return; } urb->transfer_buffer_length = count; } static struct usb_protocol_ops snd_usbmidi_raw_ops = { .input = snd_usbmidi_raw_input, .output = snd_usbmidi_raw_output, }; /* * FTDI protocol: raw MIDI bytes, but input packets have two modem status bytes. */ static void snd_usbmidi_ftdi_input(struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { if (buffer_length > 2) snd_usbmidi_input_data(ep, 0, buffer + 2, buffer_length - 2); } static struct usb_protocol_ops snd_usbmidi_ftdi_ops = { .input = snd_usbmidi_ftdi_input, .output = snd_usbmidi_raw_output, }; static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep, uint8_t *buffer, int buffer_length) { if (buffer_length != 9) return; buffer_length = 8; while (buffer_length && buffer[buffer_length - 1] == 0xFD) buffer_length--; if (buffer_length) snd_usbmidi_input_data(ep, 0, buffer, buffer_length); } static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep, struct urb *urb) { int count; if (!ep->ports[0].active) return; switch (snd_usb_get_speed(ep->umidi->dev)) { case USB_SPEED_HIGH: case USB_SPEED_SUPER: count = 1; break; default: count = 2; } count = snd_rawmidi_transmit(ep->ports[0].substream, urb->transfer_buffer, count); if (count < 1) { ep->ports[0].active = 0; return; } memset(urb->transfer_buffer + count, 0xFD, ep->max_transfer - count); urb->transfer_buffer_length = ep->max_transfer; } static struct usb_protocol_ops snd_usbmidi_122l_ops = { .input = snd_usbmidi_us122l_input, .output = snd_usbmidi_us122l_output, }; /* * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching. */ static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep) { static const u8 init_data[] = { /* initialization magic: "get version" */ 0xf0, 0x00, 0x20, 0x31, /* Emagic */ 0x64, /* Unitor8 */ 0x0b, /* version number request */ 0x00, /* command version */ 0x00, /* EEPROM, box 0 */ 0xf7 }; send_bulk_static_data(ep, init_data, sizeof(init_data)); /* while we're at it, pour on more magic */ send_bulk_static_data(ep, init_data, sizeof(init_data)); } static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep) { static const u8 finish_data[] = { /* switch to patch mode with last preset */ 0xf0, 0x00, 0x20, 0x31, /* Emagic */ 0x64, /* Unitor8 */ 0x10, /* patch switch command */ 0x00, /* command version */ 0x7f, /* to all boxes */ 0x40, /* last preset in EEPROM */ 0xf7 }; send_bulk_static_data(ep, finish_data, sizeof(finish_data)); } static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep, uint8_t* buffer, int buffer_length) { int i; /* FF indicates end of valid data */ for (i = 0; i < buffer_length; ++i) if (buffer[i] == 0xff) { buffer_length = i; break; } /* handle F5 at end of last buffer */ if (ep->seen_f5) goto switch_port; while (buffer_length > 0) { /* determine size of data until next F5 */ for (i = 0; i < buffer_length; ++i) if (buffer[i] == 0xf5) break; snd_usbmidi_input_data(ep, ep->current_port, buffer, i); buffer += i; buffer_length -= i; if (buffer_length <= 0) break; /* assert(buffer[0] == 0xf5); */ ep->seen_f5 = 1; ++buffer; --buffer_length; switch_port: if (buffer_length <= 0) break; if (buffer[0] < 0x80) { ep->current_port = (buffer[0] - 1) & 15; ++buffer; --buffer_length; } ep->seen_f5 = 0; } } static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep, struct urb *urb) { int port0 = ep->current_port; uint8_t* buf = urb->transfer_buffer; int buf_free = ep->max_transfer; int length, i; for (i = 0; i < 0x10; ++i) { /* round-robin, starting at the last current port */ int portnum = (port0 + i) & 15; struct usbmidi_out_port* port = &ep->ports[portnum]; if (!port->active) continue; if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) { port->active = 0; continue; } if (portnum != ep->current_port) { if (buf_free < 2) break; ep->current_port = portnum; buf[0] = 0xf5; buf[1] = (portnum + 1) & 15; buf += 2; buf_free -= 2; } if (buf_free < 1) break; length = snd_rawmidi_transmit(port->substream, buf, buf_free); if (length > 0) { buf += length; buf_free -= length; if (buf_free < 1) break; } } if (buf_free < ep->max_transfer && buf_free > 0) { *buf = 0xff; --buf_free; } urb->transfer_buffer_length = ep->max_transfer - buf_free; } static struct usb_protocol_ops snd_usbmidi_emagic_ops = { .input = snd_usbmidi_emagic_input, .output = snd_usbmidi_emagic_output, .init_out_endpoint = snd_usbmidi_emagic_init_out, .finish_out_endpoint = snd_usbmidi_emagic_finish_out, }; static void update_roland_altsetting(struct snd_usb_midi* umidi) { struct usb_interface *intf; struct usb_host_interface *hostif; struct usb_interface_descriptor *intfd; int is_light_load; intf = umidi->iface; is_light_load = intf->cur_altsetting != intf->altsetting; if (umidi->roland_load_ctl->private_value == is_light_load) return; hostif = &intf->altsetting[umidi->roland_load_ctl->private_value]; intfd = get_iface_desc(hostif); snd_usbmidi_input_stop(&umidi->list); usb_set_interface(umidi->dev, intfd->bInterfaceNumber, intfd->bAlternateSetting); snd_usbmidi_input_start(&umidi->list); } static void substream_open(struct snd_rawmidi_substream *substream, int open) { struct snd_usb_midi* umidi = substream->rmidi->private_data; struct snd_kcontrol *ctl; mutex_lock(&umidi->mutex); if (open) { if (umidi->opened++ == 0 && umidi->roland_load_ctl) { ctl = umidi->roland_load_ctl; ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(umidi->card, SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); update_roland_altsetting(umidi); } } else { if (--umidi->opened == 0 && umidi->roland_load_ctl) { ctl = umidi->roland_load_ctl; ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(umidi->card, SNDRV_CTL_EVENT_MASK_INFO, &ctl->id); } } mutex_unlock(&umidi->mutex); } static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream) { struct snd_usb_midi* umidi = substream->rmidi->private_data; struct usbmidi_out_port* port = NULL; int i, j; int err; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) if (umidi->endpoints[i].out) for (j = 0; j < 0x10; ++j) if (umidi->endpoints[i].out->ports[j].substream == substream) { port = &umidi->endpoints[i].out->ports[j]; break; } if (!port) { snd_BUG(); return -ENXIO; } err = usb_autopm_get_interface(umidi->iface); port->autopm_reference = err >= 0; if (err < 0 && err != -EACCES) return -EIO; substream->runtime->private_data = port; port->state = STATE_UNKNOWN; substream_open(substream, 1); return 0; } static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream) { struct snd_usb_midi* umidi = substream->rmidi->private_data; struct usbmidi_out_port *port = substream->runtime->private_data; substream_open(substream, 0); if (port->autopm_reference) usb_autopm_put_interface(umidi->iface); return 0; } static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up) { struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data; port->active = up; if (up) { if (port->ep->umidi->disconnected) { /* gobble up remaining bytes to prevent wait in * snd_rawmidi_drain_output */ while (!snd_rawmidi_transmit_empty(substream)) snd_rawmidi_transmit_ack(substream, 1); return; } tasklet_schedule(&port->ep->tasklet); } } static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream) { struct usbmidi_out_port* port = substream->runtime->private_data; struct snd_usb_midi_out_endpoint *ep = port->ep; unsigned int drain_urbs; DEFINE_WAIT(wait); long timeout = msecs_to_jiffies(50); if (ep->umidi->disconnected) return; /* * The substream buffer is empty, but some data might still be in the * currently active URBs, so we have to wait for those to complete. */ spin_lock_irq(&ep->buffer_lock); drain_urbs = ep->active_urbs; if (drain_urbs) { ep->drain_urbs |= drain_urbs; do { prepare_to_wait(&ep->drain_wait, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&ep->buffer_lock); timeout = schedule_timeout(timeout); spin_lock_irq(&ep->buffer_lock); drain_urbs &= ep->drain_urbs; } while (drain_urbs && timeout); finish_wait(&ep->drain_wait, &wait); } spin_unlock_irq(&ep->buffer_lock); } static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream) { substream_open(substream, 1); return 0; } static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream) { substream_open(substream, 0); return 0; } static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up) { struct snd_usb_midi* umidi = substream->rmidi->private_data; if (up) set_bit(substream->number, &umidi->input_triggered); else clear_bit(substream->number, &umidi->input_triggered); } static struct snd_rawmidi_ops snd_usbmidi_output_ops = { .open = snd_usbmidi_output_open, .close = snd_usbmidi_output_close, .trigger = snd_usbmidi_output_trigger, .drain = snd_usbmidi_output_drain, }; static struct snd_rawmidi_ops snd_usbmidi_input_ops = { .open = snd_usbmidi_input_open, .close = snd_usbmidi_input_close, .trigger = snd_usbmidi_input_trigger }; static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb, unsigned int buffer_length) { usb_free_coherent(umidi->dev, buffer_length, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); } /* * Frees an input endpoint. * May be called when ep hasn't been initialized completely. */ static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep) { unsigned int i; for (i = 0; i < INPUT_URBS; ++i) if (ep->urbs[i]) free_urb_and_buffer(ep->umidi, ep->urbs[i], ep->urbs[i]->transfer_buffer_length); kfree(ep); } /* * Creates an input endpoint. */ static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* ep_info, struct snd_usb_midi_endpoint* rep) { struct snd_usb_midi_in_endpoint* ep; void* buffer; unsigned int pipe; int length; unsigned int i; rep->in = NULL; ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; ep->umidi = umidi; for (i = 0; i < INPUT_URBS; ++i) { ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL); if (!ep->urbs[i]) { snd_usbmidi_in_endpoint_delete(ep); return -ENOMEM; } } if (ep_info->in_interval) pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep); else pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep); length = usb_maxpacket(umidi->dev, pipe, 0); for (i = 0; i < INPUT_URBS; ++i) { buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL, &ep->urbs[i]->transfer_dma); if (!buffer) { snd_usbmidi_in_endpoint_delete(ep); return -ENOMEM; } if (ep_info->in_interval) usb_fill_int_urb(ep->urbs[i], umidi->dev, pipe, buffer, length, snd_usbmidi_in_urb_complete, ep, ep_info->in_interval); else usb_fill_bulk_urb(ep->urbs[i], umidi->dev, pipe, buffer, length, snd_usbmidi_in_urb_complete, ep); ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP; } rep->in = ep; return 0; } /* * Frees an output endpoint. * May be called when ep hasn't been initialized completely. */ static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep) { unsigned int i; for (i = 0; i < OUTPUT_URBS; ++i) if (ep->urbs[i].urb) { free_urb_and_buffer(ep->umidi, ep->urbs[i].urb, ep->max_transfer); ep->urbs[i].urb = NULL; } } static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep) { snd_usbmidi_out_endpoint_clear(ep); kfree(ep); } /* * Creates an output endpoint, and initializes output ports. */ static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* ep_info, struct snd_usb_midi_endpoint* rep) { struct snd_usb_midi_out_endpoint* ep; unsigned int i; unsigned int pipe; void* buffer; rep->out = NULL; ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; ep->umidi = umidi; for (i = 0; i < OUTPUT_URBS; ++i) { ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL); if (!ep->urbs[i].urb) { snd_usbmidi_out_endpoint_delete(ep); return -ENOMEM; } ep->urbs[i].ep = ep; } if (ep_info->out_interval) pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep); else pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep); switch (umidi->usb_id) { default: ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1); break; /* * Various chips declare a packet size larger than 4 bytes, but * do not actually work with larger packets: */ case USB_ID(0x0a92, 0x1020): /* ESI M4U */ case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */ case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */ case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */ case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */ case USB_ID(0xfc08, 0x0101): /* Unknown vendor Cable */ ep->max_transfer = 4; break; /* * Some devices only work with 9 bytes packet size: */ case USB_ID(0x0644, 0x800E): /* Tascam US-122L */ case USB_ID(0x0644, 0x800F): /* Tascam US-144 */ ep->max_transfer = 9; break; } for (i = 0; i < OUTPUT_URBS; ++i) { buffer = usb_alloc_coherent(umidi->dev, ep->max_transfer, GFP_KERNEL, &ep->urbs[i].urb->transfer_dma); if (!buffer) { snd_usbmidi_out_endpoint_delete(ep); return -ENOMEM; } if (ep_info->out_interval) usb_fill_int_urb(ep->urbs[i].urb, umidi->dev, pipe, buffer, ep->max_transfer, snd_usbmidi_out_urb_complete, &ep->urbs[i], ep_info->out_interval); else usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev, pipe, buffer, ep->max_transfer, snd_usbmidi_out_urb_complete, &ep->urbs[i]); ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; } spin_lock_init(&ep->buffer_lock); tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep); init_waitqueue_head(&ep->drain_wait); for (i = 0; i < 0x10; ++i) if (ep_info->out_cables & (1 << i)) { ep->ports[i].ep = ep; ep->ports[i].cable = i << 4; } if (umidi->usb_protocol_ops->init_out_endpoint) umidi->usb_protocol_ops->init_out_endpoint(ep); rep->out = ep; return 0; } /* * Frees everything. */ static void snd_usbmidi_free(struct snd_usb_midi* umidi) { int i; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; if (ep->out) snd_usbmidi_out_endpoint_delete(ep->out); if (ep->in) snd_usbmidi_in_endpoint_delete(ep->in); } mutex_destroy(&umidi->mutex); kfree(umidi); } /* * Unlinks all URBs (must be done before the usb_device is deleted). */ void snd_usbmidi_disconnect(struct list_head* p) { struct snd_usb_midi* umidi; unsigned int i, j; umidi = list_entry(p, struct snd_usb_midi, list); /* * an URB's completion handler may start the timer and * a timer may submit an URB. To reliably break the cycle * a flag under lock must be used */ spin_lock_irq(&umidi->disc_lock); umidi->disconnected = 1; spin_unlock_irq(&umidi->disc_lock); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; if (ep->out) tasklet_kill(&ep->out->tasklet); if (ep->out) { for (j = 0; j < OUTPUT_URBS; ++j) usb_kill_urb(ep->out->urbs[j].urb); if (umidi->usb_protocol_ops->finish_out_endpoint) umidi->usb_protocol_ops->finish_out_endpoint(ep->out); ep->out->active_urbs = 0; if (ep->out->drain_urbs) { ep->out->drain_urbs = 0; wake_up(&ep->out->drain_wait); } } if (ep->in) for (j = 0; j < INPUT_URBS; ++j) usb_kill_urb(ep->in->urbs[j]); /* free endpoints here; later call can result in Oops */ if (ep->out) snd_usbmidi_out_endpoint_clear(ep->out); if (ep->in) { snd_usbmidi_in_endpoint_delete(ep->in); ep->in = NULL; } } del_timer_sync(&umidi->error_timer); } static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi) { struct snd_usb_midi* umidi = rmidi->private_data; snd_usbmidi_free(umidi); } static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi, int stream, int number) { struct list_head* list; list_for_each(list, &umidi->rmidi->streams[stream].substreams) { struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list); if (substream->number == number) return substream; } return NULL; } /* * This list specifies names for ports that do not fit into the standard * "(product) MIDI (n)" schema because they aren't external MIDI ports, * such as internal control or synthesizer ports. */ static struct port_info { u32 id; short int port; short int voices; const char *name; unsigned int seq_flags; } snd_usbmidi_port_info[] = { #define PORT_INFO(vendor, product, num, name_, voices_, flags) \ { .id = USB_ID(vendor, product), \ .port = num, .voices = voices_, \ .name = name_, .seq_flags = flags } #define EXTERNAL_PORT(vendor, product, num, name) \ PORT_INFO(vendor, product, num, name, 0, \ SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ SNDRV_SEQ_PORT_TYPE_HARDWARE | \ SNDRV_SEQ_PORT_TYPE_PORT) #define CONTROL_PORT(vendor, product, num, name) \ PORT_INFO(vendor, product, num, name, 0, \ SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ SNDRV_SEQ_PORT_TYPE_HARDWARE) #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \ PORT_INFO(vendor, product, num, name, voices, \ SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ SNDRV_SEQ_PORT_TYPE_HARDWARE | \ SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \ PORT_INFO(vendor, product, num, name, voices, \ SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \ SNDRV_SEQ_PORT_TYPE_MIDI_GM | \ SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \ SNDRV_SEQ_PORT_TYPE_MIDI_GS | \ SNDRV_SEQ_PORT_TYPE_MIDI_XG | \ SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \ SNDRV_SEQ_PORT_TYPE_HARDWARE | \ SNDRV_SEQ_PORT_TYPE_SYNTHESIZER) /* Roland UA-100 */ CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"), /* Roland SC-8850 */ SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128), SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128), SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128), SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128), EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"), EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"), /* Roland U-8 */ EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"), CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"), /* Roland SC-8820 */ SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64), SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64), EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"), /* Roland SK-500 */ SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64), SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64), EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"), /* Roland SC-D70 */ SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64), SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64), EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"), /* Edirol UM-880 */ CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"), /* Edirol SD-90 */ ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128), ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128), EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"), EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"), /* Edirol UM-550 */ CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"), /* Edirol SD-20 */ ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64), ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64), EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"), /* Edirol SD-80 */ ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128), ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128), EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"), EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"), /* Edirol UA-700 */ EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"), CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"), /* Roland VariOS */ EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"), EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"), EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"), /* Edirol PCR */ EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"), EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"), EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"), /* BOSS GS-10 */ EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"), CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"), /* Edirol UA-1000 */ EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"), CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"), /* Edirol UR-80 */ EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"), EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"), EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"), /* Edirol PCR-A */ EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"), EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"), EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"), /* Edirol UM-3EX */ CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"), /* M-Audio MidiSport 8x8 */ CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"), CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"), /* MOTU Fastlane */ EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"), EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"), /* Emagic Unitor8/AMT8/MT4 */ EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"), EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"), EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"), /* Akai MPD16 */ CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"), PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0, SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | SNDRV_SEQ_PORT_TYPE_HARDWARE), /* Access Music Virus TI */ EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"), PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0, SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | SNDRV_SEQ_PORT_TYPE_HARDWARE | SNDRV_SEQ_PORT_TYPE_SYNTHESIZER), }; static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number) { int i; for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) { if (snd_usbmidi_port_info[i].id == umidi->usb_id && snd_usbmidi_port_info[i].port == number) return &snd_usbmidi_port_info[i]; } return NULL; } static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number, struct snd_seq_port_info *seq_port_info) { struct snd_usb_midi *umidi = rmidi->private_data; struct port_info *port_info; /* TODO: read port flags from descriptors */ port_info = find_port_info(umidi, number); if (port_info) { seq_port_info->type = port_info->seq_flags; seq_port_info->midi_voices = port_info->voices; } } static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi, int stream, int number, struct snd_rawmidi_substream ** rsubstream) { struct port_info *port_info; const char *name_format; struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number); if (!substream) { snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number); return; } /* TODO: read port name from jack descriptor */ port_info = find_port_info(umidi, number); name_format = port_info ? port_info->name : "%s MIDI %d"; snprintf(substream->name, sizeof(substream->name), name_format, umidi->card->shortname, number + 1); *rsubstream = substream; } /* * Creates the endpoints and their ports. */ static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* endpoints) { int i, j, err; int out_ports = 0, in_ports = 0; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { if (endpoints[i].out_cables) { err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i], &umidi->endpoints[i]); if (err < 0) return err; } if (endpoints[i].in_cables) { err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i], &umidi->endpoints[i]); if (err < 0) return err; } for (j = 0; j < 0x10; ++j) { if (endpoints[i].out_cables & (1 << j)) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports, &umidi->endpoints[i].out->ports[j].substream); ++out_ports; } if (endpoints[i].in_cables & (1 << j)) { snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports, &umidi->endpoints[i].in->ports[j].substream); ++in_ports; } } } snd_printdd(KERN_INFO "created %d output and %d input ports\n", out_ports, in_ports); return 0; } /* * Returns MIDIStreaming device capabilities. */ static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* endpoints) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_ms_header_descriptor* ms_header; struct usb_host_endpoint *hostep; struct usb_endpoint_descriptor* ep; struct usb_ms_endpoint_descriptor* ms_ep; int i, epidx; intf = umidi->iface; if (!intf) return -ENXIO; hostif = &intf->altsetting[0]; intfd = get_iface_desc(hostif); ms_header = (struct usb_ms_header_descriptor*)hostif->extra; if (hostif->extralen >= 7 && ms_header->bLength >= 7 && ms_header->bDescriptorType == USB_DT_CS_INTERFACE && ms_header->bDescriptorSubtype == UAC_HEADER) snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n", ms_header->bcdMSC[1], ms_header->bcdMSC[0]); else snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n"); epidx = 0; for (i = 0; i < intfd->bNumEndpoints; ++i) { hostep = &hostif->endpoint[i]; ep = get_ep_desc(hostep); if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep)) continue; ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra; if (hostep->extralen < 4 || ms_ep->bLength < 4 || ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT || ms_ep->bDescriptorSubtype != UAC_MS_GENERAL) continue; if (usb_endpoint_dir_out(ep)) { if (endpoints[epidx].out_ep) { if (++epidx >= MIDI_MAX_ENDPOINTS) { snd_printk(KERN_WARNING "too many endpoints\n"); break; } } endpoints[epidx].out_ep = usb_endpoint_num(ep); if (usb_endpoint_xfer_int(ep)) endpoints[epidx].out_interval = ep->bInterval; else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) /* * Low speed bulk transfers don't exist, so * force interrupt transfers for devices like * ESI MIDI Mate that try to use them anyway. */ endpoints[epidx].out_interval = 1; endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); } else { if (endpoints[epidx].in_ep) { if (++epidx >= MIDI_MAX_ENDPOINTS) { snd_printk(KERN_WARNING "too many endpoints\n"); break; } } endpoints[epidx].in_ep = usb_endpoint_num(ep); if (usb_endpoint_xfer_int(ep)) endpoints[epidx].in_interval = ep->bInterval; else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW) endpoints[epidx].in_interval = 1; endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1; snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n", ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack); } } return 0; } static int roland_load_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { static const char *const names[] = { "High Load", "Light Load" }; return snd_ctl_enum_info(info, 1, 2, names); } static int roland_load_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { value->value.enumerated.item[0] = kcontrol->private_value; return 0; } static int roland_load_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_usb_midi* umidi = kcontrol->private_data; int changed; if (value->value.enumerated.item[0] > 1) return -EINVAL; mutex_lock(&umidi->mutex); changed = value->value.enumerated.item[0] != kcontrol->private_value; if (changed) kcontrol->private_value = value->value.enumerated.item[0]; mutex_unlock(&umidi->mutex); return changed; } static struct snd_kcontrol_new roland_load_ctl = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "MIDI Input Mode", .info = roland_load_info, .get = roland_load_get, .put = roland_load_put, .private_value = 1, }; /* * On Roland devices, use the second alternate setting to be able to use * the interrupt input endpoint. */ static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; intf = umidi->iface; if (!intf || intf->num_altsetting != 2) return; hostif = &intf->altsetting[1]; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints != 2 || (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK || (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) return; snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n", intfd->bAlternateSetting); usb_set_interface(umidi->dev, intfd->bInterfaceNumber, intfd->bAlternateSetting); umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi); if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0) umidi->roland_load_ctl = NULL; } /* * Try to find any usable endpoints in the interface. */ static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* endpoint, int max_endpoints) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_endpoint_descriptor* epd; int i, out_eps = 0, in_eps = 0; if (USB_ID_VENDOR(umidi->usb_id) == 0x0582) snd_usbmidi_switch_roland_altsetting(umidi); if (endpoint[0].out_ep || endpoint[0].in_ep) return 0; intf = umidi->iface; if (!intf || intf->num_altsetting < 1) return -ENOENT; hostif = intf->cur_altsetting; intfd = get_iface_desc(hostif); for (i = 0; i < intfd->bNumEndpoints; ++i) { epd = get_endpoint(hostif, i); if (!usb_endpoint_xfer_bulk(epd) && !usb_endpoint_xfer_int(epd)) continue; if (out_eps < max_endpoints && usb_endpoint_dir_out(epd)) { endpoint[out_eps].out_ep = usb_endpoint_num(epd); if (usb_endpoint_xfer_int(epd)) endpoint[out_eps].out_interval = epd->bInterval; ++out_eps; } if (in_eps < max_endpoints && usb_endpoint_dir_in(epd)) { endpoint[in_eps].in_ep = usb_endpoint_num(epd); if (usb_endpoint_xfer_int(epd)) endpoint[in_eps].in_interval = epd->bInterval; ++in_eps; } } return (out_eps || in_eps) ? 0 : -ENOENT; } /* * Detects the endpoints for one-port-per-endpoint protocols. */ static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* endpoints) { int err, i; err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { if (endpoints[i].out_ep) endpoints[i].out_cables = 0x0001; if (endpoints[i].in_ep) endpoints[i].in_cables = 0x0001; } return err; } /* * Detects the endpoints and ports of Yamaha devices. */ static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* endpoint) { struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; uint8_t* cs_desc; intf = umidi->iface; if (!intf) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); if (intfd->bNumEndpoints < 1) return -ENOENT; /* * For each port there is one MIDI_IN/OUT_JACK descriptor, not * necessarily with any useful contents. So simply count 'em. */ for (cs_desc = hostif->extra; cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2; cs_desc += cs_desc[0]) { if (cs_desc[1] == USB_DT_CS_INTERFACE) { if (cs_desc[2] == UAC_MIDI_IN_JACK) endpoint->in_cables = (endpoint->in_cables << 1) | 1; else if (cs_desc[2] == UAC_MIDI_OUT_JACK) endpoint->out_cables = (endpoint->out_cables << 1) | 1; } } if (!endpoint->in_cables && !endpoint->out_cables) return -ENOENT; return snd_usbmidi_detect_endpoints(umidi, endpoint, 1); } /* * Creates the endpoints and their ports for Midiman devices. */ static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi, struct snd_usb_midi_endpoint_info* endpoint) { struct snd_usb_midi_endpoint_info ep_info; struct usb_interface* intf; struct usb_host_interface *hostif; struct usb_interface_descriptor* intfd; struct usb_endpoint_descriptor* epd; int cable, err; intf = umidi->iface; if (!intf) return -ENOENT; hostif = intf->altsetting; intfd = get_iface_desc(hostif); /* * The various MidiSport devices have more or less random endpoint * numbers, so we have to identify the endpoints by their index in * the descriptor array, like the driver for that other OS does. * * There is one interrupt input endpoint for all input ports, one * bulk output endpoint for even-numbered ports, and one for odd- * numbered ports. Both bulk output endpoints have corresponding * input bulk endpoints (at indices 1 and 3) which aren't used. */ if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) { snd_printdd(KERN_ERR "not enough endpoints\n"); return -ENOENT; } epd = get_endpoint(hostif, 0); if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) { snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n"); return -ENXIO; } epd = get_endpoint(hostif, 2); if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n"); return -ENXIO; } if (endpoint->out_cables > 0x0001) { epd = get_endpoint(hostif, 4); if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) { snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n"); return -ENXIO; } } ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.out_interval = 0; ep_info.out_cables = endpoint->out_cables & 0x5555; err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); if (err < 0) return err; ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.in_interval = get_endpoint(hostif, 0)->bInterval; ep_info.in_cables = endpoint->in_cables; err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]); if (err < 0) return err; if (endpoint->out_cables > 0x0001) { ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK; ep_info.out_cables = endpoint->out_cables & 0xaaaa; err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]); if (err < 0) return err; } for (cable = 0; cable < 0x10; ++cable) { if (endpoint->out_cables & (1 << cable)) snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable, &umidi->endpoints[cable & 1].out->ports[cable].substream); if (endpoint->in_cables & (1 << cable)) snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable, &umidi->endpoints[0].in->ports[cable].substream); } return 0; } static struct snd_rawmidi_global_ops snd_usbmidi_ops = { .get_port_info = snd_usbmidi_get_port_info, }; static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi, int out_ports, int in_ports) { struct snd_rawmidi *rmidi; int err; err = snd_rawmidi_new(umidi->card, "USB MIDI", umidi->next_midi_device++, out_ports, in_ports, &rmidi); if (err < 0) return err; strcpy(rmidi->name, umidi->card->shortname); rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->ops = &snd_usbmidi_ops; rmidi->private_data = umidi; rmidi->private_free = snd_usbmidi_rawmidi_free; snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops); umidi->rmidi = rmidi; return 0; } /* * Temporarily stop input. */ void snd_usbmidi_input_stop(struct list_head* p) { struct snd_usb_midi* umidi; unsigned int i, j; umidi = list_entry(p, struct snd_usb_midi, list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i]; if (ep->in) for (j = 0; j < INPUT_URBS; ++j) usb_kill_urb(ep->in->urbs[j]); } } static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep) { unsigned int i; if (!ep) return; for (i = 0; i < INPUT_URBS; ++i) { struct urb* urb = ep->urbs[i]; urb->dev = ep->umidi->dev; snd_usbmidi_submit_urb(urb, GFP_KERNEL); } } /* * Resume input after a call to snd_usbmidi_input_stop(). */ void snd_usbmidi_input_start(struct list_head* p) { struct snd_usb_midi* umidi; int i; umidi = list_entry(p, struct snd_usb_midi, list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) snd_usbmidi_input_start_ep(umidi->endpoints[i].in); } /* * Creates and registers everything needed for a MIDI streaming interface. */ int snd_usbmidi_create(struct snd_card *card, struct usb_interface* iface, struct list_head *midi_list, const struct snd_usb_audio_quirk* quirk) { struct snd_usb_midi* umidi; struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS]; int out_ports, in_ports; int i, err; umidi = kzalloc(sizeof(*umidi), GFP_KERNEL); if (!umidi) return -ENOMEM; umidi->dev = interface_to_usbdev(iface); umidi->card = card; umidi->iface = iface; umidi->quirk = quirk; umidi->usb_protocol_ops = &snd_usbmidi_standard_ops; init_timer(&umidi->error_timer); spin_lock_init(&umidi->disc_lock); mutex_init(&umidi->mutex); umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor), le16_to_cpu(umidi->dev->descriptor.idProduct)); umidi->error_timer.function = snd_usbmidi_error_timer; umidi->error_timer.data = (unsigned long)umidi; /* detect the endpoint(s) to use */ memset(endpoints, 0, sizeof(endpoints)); switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) { case QUIRK_MIDI_STANDARD_INTERFACE: err = snd_usbmidi_get_ms_info(umidi, endpoints); if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */ umidi->usb_protocol_ops = &snd_usbmidi_maudio_broken_running_status_ops; break; case QUIRK_MIDI_US122L: umidi->usb_protocol_ops = &snd_usbmidi_122l_ops; /* fall through */ case QUIRK_MIDI_FIXED_ENDPOINT: memcpy(&endpoints[0], quirk->data, sizeof(struct snd_usb_midi_endpoint_info)); err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); break; case QUIRK_MIDI_YAMAHA: err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]); break; case QUIRK_MIDI_MIDIMAN: umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops; memcpy(&endpoints[0], quirk->data, sizeof(struct snd_usb_midi_endpoint_info)); err = 0; break; case QUIRK_MIDI_NOVATION: umidi->usb_protocol_ops = &snd_usbmidi_novation_ops; err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); break; case QUIRK_MIDI_RAW_BYTES: umidi->usb_protocol_ops = &snd_usbmidi_raw_ops; /* * Interface 1 contains isochronous endpoints, but with the same * numbers as in interface 0. Since it is interface 1 that the * USB core has most recently seen, these descriptors are now * associated with the endpoint numbers. This will foul up our * attempts to submit bulk/interrupt URBs to the endpoints in * interface 0, so we have to make sure that the USB core looks * again at interface 0 by calling usb_set_interface() on it. */ if (umidi->usb_id == USB_ID(0x07fd, 0x0001)) /* MOTU Fastlane */ usb_set_interface(umidi->dev, 0, 0); err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); break; case QUIRK_MIDI_EMAGIC: umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops; memcpy(&endpoints[0], quirk->data, sizeof(struct snd_usb_midi_endpoint_info)); err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1); break; case QUIRK_MIDI_CME: umidi->usb_protocol_ops = &snd_usbmidi_cme_ops; err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); break; case QUIRK_MIDI_AKAI: umidi->usb_protocol_ops = &snd_usbmidi_akai_ops; err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); /* endpoint 1 is input-only */ endpoints[1].out_cables = 0; break; case QUIRK_MIDI_FTDI: umidi->usb_protocol_ops = &snd_usbmidi_ftdi_ops; /* set baud rate to 31250 (48 MHz / 16 / 96) */ err = usb_control_msg(umidi->dev, usb_sndctrlpipe(umidi->dev, 0), 3, 0x40, 0x60, 0, NULL, 0, 1000); if (err < 0) break; err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints); break; default: snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type); err = -ENXIO; break; } if (err < 0) { kfree(umidi); return err; } /* create rawmidi device */ out_ports = 0; in_ports = 0; for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) { out_ports += hweight16(endpoints[i].out_cables); in_ports += hweight16(endpoints[i].in_cables); } err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports); if (err < 0) { kfree(umidi); return err; } /* create endpoint/port structures */ if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN) err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]); else err = snd_usbmidi_create_endpoints(umidi, endpoints); if (err < 0) { snd_usbmidi_free(umidi); return err; } list_add_tail(&umidi->list, midi_list); for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) snd_usbmidi_input_start_ep(umidi->endpoints[i].in); return 0; } EXPORT_SYMBOL(snd_usbmidi_create); EXPORT_SYMBOL(snd_usbmidi_input_stop); EXPORT_SYMBOL(snd_usbmidi_input_start); EXPORT_SYMBOL(snd_usbmidi_disconnect);