/* Hewlett-Packard Harmony audio driver * * This is a driver for the Harmony audio chipset found * on the LASI ASIC of various early HP PA-RISC workstations. * * Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}> * * Based on the previous Harmony incarnations by, * Copyright 2000 (c) Linuxcare Canada, Alex deVries * Copyright 2000-2003 (c) Helge Deller * Copyright 2001 (c) Matthieu Delahaye * Copyright 2001 (c) Jean-Christophe Vaugeois * Copyright 2003 (c) Laurent Canet * Copyright 2004 (c) Stuart Brady * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Notes: * - graveyard and silence buffers last for lifetime of * the driver. playback and capture buffers are allocated * per _open()/_close(). * * TODO: * */ #include <linux/init.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/dma-mapping.h> #include <sound/driver.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/control.h> #include <sound/rawmidi.h> #include <sound/initval.h> #include <sound/info.h> #include <asm/io.h> #include <asm/hardware.h> #include <asm/parisc-device.h> #include "harmony.h" static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ module_param(index, int, 0444); MODULE_PARM_DESC(index, "Index value for Harmony driver."); module_param(id, charp, 0444); MODULE_PARM_DESC(id, "ID string for Harmony driver."); static struct parisc_device_id snd_harmony_devtable[] = { /* bushmaster / flounder */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A }, /* 712 / 715 */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B }, /* pace */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E }, /* outfield / coral II */ { HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F }, { 0, } }; MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable); #define NAME "harmony" #define PFX NAME ": " static unsigned int snd_harmony_rates[] = { 5512, 6615, 8000, 9600, 11025, 16000, 18900, 22050, 27428, 32000, 33075, 37800, 44100, 48000 }; static unsigned int rate_bits[14] = { HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ, HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ, HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ, HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ, HARMONY_SR_44KHZ, HARMONY_SR_48KHZ }; static struct snd_pcm_hw_constraint_list hw_constraint_rates = { .count = ARRAY_SIZE(snd_harmony_rates), .list = snd_harmony_rates, .mask = 0, }; static inline unsigned long harmony_read(struct snd_harmony *h, unsigned r) { return __raw_readl(h->iobase + r); } static inline void harmony_write(struct snd_harmony *h, unsigned r, unsigned long v) { __raw_writel(v, h->iobase + r); } static inline void harmony_wait_for_control(struct snd_harmony *h) { while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ; } static inline void harmony_reset(struct snd_harmony *h) { harmony_write(h, HARMONY_RESET, 1); mdelay(50); harmony_write(h, HARMONY_RESET, 0); } static void harmony_disable_interrupts(struct snd_harmony *h) { u32 dstatus; harmony_wait_for_control(h); dstatus = harmony_read(h, HARMONY_DSTATUS); dstatus &= ~HARMONY_DSTATUS_IE; harmony_write(h, HARMONY_DSTATUS, dstatus); } static void harmony_enable_interrupts(struct snd_harmony *h) { u32 dstatus; harmony_wait_for_control(h); dstatus = harmony_read(h, HARMONY_DSTATUS); dstatus |= HARMONY_DSTATUS_IE; harmony_write(h, HARMONY_DSTATUS, dstatus); } static void harmony_mute(struct snd_harmony *h) { unsigned long flags; spin_lock_irqsave(&h->mixer_lock, flags); harmony_wait_for_control(h); harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE); spin_unlock_irqrestore(&h->mixer_lock, flags); } static void harmony_unmute(struct snd_harmony *h) { unsigned long flags; spin_lock_irqsave(&h->mixer_lock, flags); harmony_wait_for_control(h); harmony_write(h, HARMONY_GAINCTL, h->st.gain); spin_unlock_irqrestore(&h->mixer_lock, flags); } static void harmony_set_control(struct snd_harmony *h) { u32 ctrl; unsigned long flags; spin_lock_irqsave(&h->lock, flags); ctrl = (HARMONY_CNTL_C | (h->st.format << 6) | (h->st.stereo << 5) | (h->st.rate)); harmony_wait_for_control(h); harmony_write(h, HARMONY_CNTL, ctrl); spin_unlock_irqrestore(&h->lock, flags); } static irqreturn_t snd_harmony_interrupt(int irq, void *dev, struct pt_regs *regs) { u32 dstatus; struct snd_harmony *h = dev; spin_lock(&h->lock); harmony_disable_interrupts(h); harmony_wait_for_control(h); dstatus = harmony_read(h, HARMONY_DSTATUS); spin_unlock(&h->lock); if (dstatus & HARMONY_DSTATUS_PN) { if (h->psubs && h->st.playing) { spin_lock(&h->lock); h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */ h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */ harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr + h->pbuf.buf); h->stats.play_intr++; spin_unlock(&h->lock); snd_pcm_period_elapsed(h->psubs); } else { spin_lock(&h->lock); harmony_write(h, HARMONY_PNXTADD, h->sdma.addr); h->stats.silence_intr++; spin_unlock(&h->lock); } } if (dstatus & HARMONY_DSTATUS_RN) { if (h->csubs && h->st.capturing) { spin_lock(&h->lock); h->cbuf.buf += h->cbuf.count; h->cbuf.buf %= h->cbuf.size; harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr + h->cbuf.buf); h->stats.rec_intr++; spin_unlock(&h->lock); snd_pcm_period_elapsed(h->csubs); } else { spin_lock(&h->lock); harmony_write(h, HARMONY_RNXTADD, h->gdma.addr); h->stats.graveyard_intr++; spin_unlock(&h->lock); } } spin_lock(&h->lock); harmony_enable_interrupts(h); spin_unlock(&h->lock); return IRQ_HANDLED; } static unsigned int snd_harmony_rate_bits(int rate) { unsigned int i; for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++) if (snd_harmony_rates[i] == rate) return rate_bits[i]; return HARMONY_SR_44KHZ; } static struct snd_pcm_hardware snd_harmony_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BLOCK_TRANSFER), .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW), .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT), .rate_min = 5512, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = MAX_BUF_SIZE, .period_bytes_min = BUF_SIZE, .period_bytes_max = BUF_SIZE, .periods_min = 1, .periods_max = MAX_BUFS, .fifo_size = 0, }; static struct snd_pcm_hardware snd_harmony_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BLOCK_TRANSFER), .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW), .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT), .rate_min = 5512, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = MAX_BUF_SIZE, .period_bytes_min = BUF_SIZE, .period_bytes_max = BUF_SIZE, .periods_min = 1, .periods_max = MAX_BUFS, .fifo_size = 0, }; static int snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd) { struct snd_harmony *h = snd_pcm_substream_chip(ss); if (h->st.capturing) return -EBUSY; spin_lock(&h->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: h->st.playing = 1; harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr); harmony_write(h, HARMONY_RNXTADD, h->gdma.addr); harmony_unmute(h); harmony_enable_interrupts(h); break; case SNDRV_PCM_TRIGGER_STOP: h->st.playing = 0; harmony_mute(h); harmony_write(h, HARMONY_PNXTADD, h->sdma.addr); harmony_disable_interrupts(h); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_SUSPEND: default: spin_unlock(&h->lock); snd_BUG(); return -EINVAL; } spin_unlock(&h->lock); return 0; } static int snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd) { struct snd_harmony *h = snd_pcm_substream_chip(ss); if (h->st.playing) return -EBUSY; spin_lock(&h->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: h->st.capturing = 1; harmony_write(h, HARMONY_PNXTADD, h->sdma.addr); harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr); harmony_unmute(h); harmony_enable_interrupts(h); break; case SNDRV_PCM_TRIGGER_STOP: h->st.capturing = 0; harmony_mute(h); harmony_write(h, HARMONY_RNXTADD, h->gdma.addr); harmony_disable_interrupts(h); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_SUSPEND: default: spin_unlock(&h->lock); snd_BUG(); return -EINVAL; } spin_unlock(&h->lock); return 0; } static int snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force) { int o = h->st.format; int n; switch(fmt) { case SNDRV_PCM_FORMAT_S16_BE: n = HARMONY_DF_16BIT_LINEAR; break; case SNDRV_PCM_FORMAT_A_LAW: n = HARMONY_DF_8BIT_ALAW; break; case SNDRV_PCM_FORMAT_MU_LAW: n = HARMONY_DF_8BIT_ULAW; break; default: n = HARMONY_DF_16BIT_LINEAR; break; } if (force || o != n) { snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ / (snd_pcm_format_physical_width(fmt) / 8)); } return n; } static int snd_harmony_playback_prepare(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; if (h->st.capturing) return -EBUSY; h->pbuf.size = snd_pcm_lib_buffer_bytes(ss); h->pbuf.count = snd_pcm_lib_period_bytes(ss); if (h->pbuf.buf >= h->pbuf.size) h->pbuf.buf = 0; h->st.playing = 0; h->st.rate = snd_harmony_rate_bits(rt->rate); h->st.format = snd_harmony_set_data_format(h, rt->format, 0); if (rt->channels == 2) h->st.stereo = HARMONY_SS_STEREO; else h->st.stereo = HARMONY_SS_MONO; harmony_set_control(h); h->pbuf.addr = rt->dma_addr; return 0; } static int snd_harmony_capture_prepare(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; if (h->st.playing) return -EBUSY; h->cbuf.size = snd_pcm_lib_buffer_bytes(ss); h->cbuf.count = snd_pcm_lib_period_bytes(ss); if (h->cbuf.buf >= h->cbuf.size) h->cbuf.buf = 0; h->st.capturing = 0; h->st.rate = snd_harmony_rate_bits(rt->rate); h->st.format = snd_harmony_set_data_format(h, rt->format, 0); if (rt->channels == 2) h->st.stereo = HARMONY_SS_STEREO; else h->st.stereo = HARMONY_SS_MONO; harmony_set_control(h); h->cbuf.addr = rt->dma_addr; return 0; } static snd_pcm_uframes_t snd_harmony_playback_pointer(struct snd_pcm_substream *ss) { struct snd_pcm_runtime *rt = ss->runtime; struct snd_harmony *h = snd_pcm_substream_chip(ss); unsigned long pcuradd; unsigned long played; if (!(h->st.playing) || (h->psubs == NULL)) return 0; if ((h->pbuf.addr == 0) || (h->pbuf.size == 0)) return 0; pcuradd = harmony_read(h, HARMONY_PCURADD); played = pcuradd - h->pbuf.addr; #ifdef HARMONY_DEBUG printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n", pcuradd, h->pbuf.addr, played); #endif if (pcuradd > h->pbuf.addr + h->pbuf.size) { return 0; } return bytes_to_frames(rt, played); } static snd_pcm_uframes_t snd_harmony_capture_pointer(struct snd_pcm_substream *ss) { struct snd_pcm_runtime *rt = ss->runtime; struct snd_harmony *h = snd_pcm_substream_chip(ss); unsigned long rcuradd; unsigned long caught; if (!(h->st.capturing) || (h->csubs == NULL)) return 0; if ((h->cbuf.addr == 0) || (h->cbuf.size == 0)) return 0; rcuradd = harmony_read(h, HARMONY_RCURADD); caught = rcuradd - h->cbuf.addr; #ifdef HARMONY_DEBUG printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n", rcuradd, h->cbuf.addr, caught); #endif if (rcuradd > h->cbuf.addr + h->cbuf.size) { return 0; } return bytes_to_frames(rt, caught); } static int snd_harmony_playback_open(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; int err; h->psubs = ss; rt->hw = snd_harmony_playback; snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraint_rates); err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_harmony_capture_open(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); struct snd_pcm_runtime *rt = ss->runtime; int err; h->csubs = ss; rt->hw = snd_harmony_capture; snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE, &hw_constraint_rates); err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; return 0; } static int snd_harmony_playback_close(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); h->psubs = NULL; return 0; } static int snd_harmony_capture_close(struct snd_pcm_substream *ss) { struct snd_harmony *h = snd_pcm_substream_chip(ss); h->csubs = NULL; return 0; } static int snd_harmony_hw_params(struct snd_pcm_substream *ss, struct snd_pcm_hw_params *hw) { int err; struct snd_harmony *h = snd_pcm_substream_chip(ss); err = snd_pcm_lib_malloc_pages(ss, params_buffer_bytes(hw)); if (err > 0 && h->dma.type == SNDRV_DMA_TYPE_CONTINUOUS) ss->runtime->dma_addr = __pa(ss->runtime->dma_area); return err; } static int snd_harmony_hw_free(struct snd_pcm_substream *ss) { return snd_pcm_lib_free_pages(ss); } static struct snd_pcm_ops snd_harmony_playback_ops = { .open = snd_harmony_playback_open, .close = snd_harmony_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_harmony_hw_params, .hw_free = snd_harmony_hw_free, .prepare = snd_harmony_playback_prepare, .trigger = snd_harmony_playback_trigger, .pointer = snd_harmony_playback_pointer, }; static struct snd_pcm_ops snd_harmony_capture_ops = { .open = snd_harmony_capture_open, .close = snd_harmony_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_harmony_hw_params, .hw_free = snd_harmony_hw_free, .prepare = snd_harmony_capture_prepare, .trigger = snd_harmony_capture_trigger, .pointer = snd_harmony_capture_pointer, }; static int snd_harmony_pcm_init(struct snd_harmony *h) { struct snd_pcm *pcm; int err; harmony_disable_interrupts(h); err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm); if (err < 0) return err; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_harmony_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_harmony_capture_ops); pcm->private_data = h; pcm->info_flags = 0; strcpy(pcm->name, "harmony"); h->pcm = pcm; h->psubs = NULL; h->csubs = NULL; /* initialize graveyard buffer */ h->dma.type = SNDRV_DMA_TYPE_DEV; h->dma.dev = &h->dev->dev; err = snd_dma_alloc_pages(h->dma.type, h->dma.dev, BUF_SIZE*GRAVEYARD_BUFS, &h->gdma); if (err < 0) { printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n"); return err; } /* initialize silence buffers */ err = snd_dma_alloc_pages(h->dma.type, h->dma.dev, BUF_SIZE*SILENCE_BUFS, &h->sdma); if (err < 0) { printk(KERN_ERR PFX "cannot allocate silence buffer!\n"); return err; } /* pre-allocate space for DMA */ err = snd_pcm_lib_preallocate_pages_for_all(pcm, h->dma.type, h->dma.dev, MAX_BUF_SIZE, MAX_BUF_SIZE); if (err < 0) { printk(KERN_ERR PFX "buffer allocation error: %d\n", err); return err; } h->st.format = snd_harmony_set_data_format(h, SNDRV_PCM_FORMAT_S16_BE, 1); return 0; } static void snd_harmony_set_new_gain(struct snd_harmony *h) { harmony_wait_for_control(h); harmony_write(h, HARMONY_GAINCTL, h->st.gain); } static int snd_harmony_mixercontrol_info(struct snd_kcontrol *kc, struct snd_ctl_elem_info *uinfo) { int mask = (kc->private_value >> 16) & 0xff; int left_shift = (kc->private_value) & 0xff; int right_shift = (kc->private_value >> 8) & 0xff; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = left_shift == right_shift ? 1 : 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_harmony_volume_get(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int shift_left = (kc->private_value) & 0xff; int shift_right = (kc->private_value >> 8) & 0xff; int mask = (kc->private_value >> 16) & 0xff; int invert = (kc->private_value >> 24) & 0xff; int left, right; spin_lock_irq(&h->mixer_lock); left = (h->st.gain >> shift_left) & mask; right = (h->st.gain >> shift_right) & mask; if (invert) { left = mask - left; right = mask - right; } ucontrol->value.integer.value[0] = left; if (shift_left != shift_right) ucontrol->value.integer.value[1] = right; spin_unlock_irq(&h->mixer_lock); return 0; } static int snd_harmony_volume_put(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int shift_left = (kc->private_value) & 0xff; int shift_right = (kc->private_value >> 8) & 0xff; int mask = (kc->private_value >> 16) & 0xff; int invert = (kc->private_value >> 24) & 0xff; int left, right; int old_gain = h->st.gain; spin_lock_irq(&h->mixer_lock); left = ucontrol->value.integer.value[0] & mask; if (invert) left = mask - left; h->st.gain &= ~( (mask << shift_left ) ); h->st.gain |= (left << shift_left); if (shift_left != shift_right) { right = ucontrol->value.integer.value[1] & mask; if (invert) right = mask - right; h->st.gain &= ~( (mask << shift_right) ); h->st.gain |= (right << shift_right); } snd_harmony_set_new_gain(h); spin_unlock_irq(&h->mixer_lock); return h->st.gain != old_gain; } static int snd_harmony_captureroute_info(struct snd_kcontrol *kc, struct snd_ctl_elem_info *uinfo) { static char *texts[2] = { "Line", "Mic" }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 2; if (uinfo->value.enumerated.item > 1) uinfo->value.enumerated.item = 1; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_harmony_captureroute_get(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int value; spin_lock_irq(&h->mixer_lock); value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1; ucontrol->value.enumerated.item[0] = value; spin_unlock_irq(&h->mixer_lock); return 0; } static int snd_harmony_captureroute_put(struct snd_kcontrol *kc, struct snd_ctl_elem_value *ucontrol) { struct snd_harmony *h = snd_kcontrol_chip(kc); int value; int old_gain = h->st.gain; spin_lock_irq(&h->mixer_lock); value = ucontrol->value.enumerated.item[0] & 1; h->st.gain &= ~HARMONY_GAIN_IS_MASK; h->st.gain |= value << HARMONY_GAIN_IS_SHIFT; snd_harmony_set_new_gain(h); spin_unlock_irq(&h->mixer_lock); return h->st.gain != old_gain; } #define HARMONY_CONTROLS ARRAY_SIZE(snd_harmony_controls) #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_harmony_mixercontrol_info, \ .get = snd_harmony_volume_get, .put = snd_harmony_volume_put, \ .private_value = ((left_shift) | ((right_shift) << 8) | \ ((mask) << 16) | ((invert) << 24)) } static struct snd_kcontrol_new snd_harmony_controls[] = { HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT, HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1), HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT, HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0), HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Route", .info = snd_harmony_captureroute_info, .get = snd_harmony_captureroute_get, .put = snd_harmony_captureroute_put }, HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT, HARMONY_GAIN_SE_SHIFT, 1, 0), HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT, HARMONY_GAIN_LE_SHIFT, 1, 0), HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT, HARMONY_GAIN_HE_SHIFT, 1, 0), }; static void __init snd_harmony_mixer_reset(struct snd_harmony *h) { harmony_mute(h); harmony_reset(h); h->st.gain = HARMONY_GAIN_DEFAULT; harmony_unmute(h); } static int __init snd_harmony_mixer_init(struct snd_harmony *h) { struct snd_card *card = h->card; int idx, err; snd_assert(h != NULL, return -EINVAL); strcpy(card->mixername, "Harmony Gain control interface"); for (idx = 0; idx < HARMONY_CONTROLS; idx++) { err = snd_ctl_add(card, snd_ctl_new1(&snd_harmony_controls[idx], h)); if (err < 0) return err; } snd_harmony_mixer_reset(h); return 0; } static int snd_harmony_free(struct snd_harmony *h) { if (h->gdma.addr) snd_dma_free_pages(&h->gdma); if (h->sdma.addr) snd_dma_free_pages(&h->sdma); if (h->irq >= 0) free_irq(h->irq, h); if (h->iobase) iounmap(h->iobase); parisc_set_drvdata(h->dev, NULL); kfree(h); return 0; } static int snd_harmony_dev_free(struct snd_device *dev) { struct snd_harmony *h = dev->device_data; return snd_harmony_free(h); } static int __devinit snd_harmony_create(struct snd_card *card, struct parisc_device *padev, struct snd_harmony **rchip) { int err; struct snd_harmony *h; static struct snd_device_ops ops = { .dev_free = snd_harmony_dev_free, }; *rchip = NULL; h = kzalloc(sizeof(*h), GFP_KERNEL); if (h == NULL) return -ENOMEM; h->hpa = padev->hpa.start; h->card = card; h->dev = padev; h->irq = -1; h->iobase = ioremap_nocache(padev->hpa.start, HARMONY_SIZE); if (h->iobase == NULL) { printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n", padev->hpa.start); err = -EBUSY; goto free_and_ret; } err = request_irq(padev->irq, snd_harmony_interrupt, 0, "harmony", h); if (err) { printk(KERN_ERR PFX "could not obtain interrupt %d", padev->irq); goto free_and_ret; } h->irq = padev->irq; spin_lock_init(&h->mixer_lock); spin_lock_init(&h->lock); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, h, &ops)) < 0) { goto free_and_ret; } snd_card_set_dev(card, &padev->dev); *rchip = h; return 0; free_and_ret: snd_harmony_free(h); return err; } static int __devinit snd_harmony_probe(struct parisc_device *padev) { int err; struct snd_card *card; struct snd_harmony *h; card = snd_card_new(index, id, THIS_MODULE, 0); if (card == NULL) return -ENOMEM; err = snd_harmony_create(card, padev, &h); if (err < 0) goto free_and_ret; err = snd_harmony_pcm_init(h); if (err < 0) goto free_and_ret; err = snd_harmony_mixer_init(h); if (err < 0) goto free_and_ret; strcpy(card->driver, "harmony"); strcpy(card->shortname, "Harmony"); sprintf(card->longname, "%s at 0x%lx, irq %i", card->shortname, h->hpa, h->irq); err = snd_card_register(card); if (err < 0) goto free_and_ret; parisc_set_drvdata(padev, card); return 0; free_and_ret: snd_card_free(card); return err; } static int __devexit snd_harmony_remove(struct parisc_device *padev) { snd_card_free(parisc_get_drvdata(padev)); parisc_set_drvdata(padev, NULL); return 0; } static struct parisc_driver snd_harmony_driver = { .name = "harmony", .id_table = snd_harmony_devtable, .probe = snd_harmony_probe, .remove = snd_harmony_remove, }; static int __init alsa_harmony_init(void) { return register_parisc_driver(&snd_harmony_driver); } static void __exit alsa_harmony_fini(void) { unregister_parisc_driver(&snd_harmony_driver); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>"); MODULE_DESCRIPTION("Harmony sound driver"); module_init(alsa_harmony_init); module_exit(alsa_harmony_fini);