/* * Driver for A2 audio system used in SGI machines * Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org> * * Based on Ulf Carlsson's code. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Supported devices: * /dev/dsp standard dsp device, (mostly) OSS compatible * /dev/mixer standard mixer device, (mostly) OSS compatible * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/sound.h> #include <linux/soundcard.h> #include <linux/mutex.h> #include <asm/io.h> #include <asm/sgi/hpc3.h> #include <asm/sgi/ip22.h> #include "hal2.h" #if 0 #define DEBUG(args...) printk(args) #else #define DEBUG(args...) #endif #if 0 #define DEBUG_MIX(args...) printk(args) #else #define DEBUG_MIX(args...) #endif /* * Before touching these look how it works. It is a bit unusual I know, * but it helps to keep things simple. This driver is considered complete * and I won't add any new features although hardware has many cool * capabilities. * (Historical note: HAL2 driver was first written by Ulf Carlsson - ALSA * 0.3 running with 2.2.x kernel. Then ALSA changed completely and it * seemed easier to me to write OSS driver from scratch - this one. Now * when ALSA is official part of 2.6 kernel it's time to write ALSA driver * using (hopefully) final version of ALSA interface) */ #define H2_BLOCK_SIZE 1024 #define H2_ADC_BUFSIZE 8192 #define H2_DAC_BUFSIZE 16834 struct hal2_pbus { struct hpc3_pbus_dmacregs *pbus; int pbusnr; unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */ }; struct hal2_desc { struct hpc_dma_desc desc; u32 cnt; /* don't touch, it is also padding */ }; struct hal2_codec { unsigned char *buffer; struct hal2_desc *desc; int desc_count; int tail, head; /* tail index, head index */ struct hal2_pbus pbus; unsigned int format; /* Audio data format */ int voices; /* mono/stereo */ unsigned int sample_rate; unsigned int master; /* Master frequency */ unsigned short mod; /* MOD value */ unsigned short inc; /* INC value */ wait_queue_head_t dma_wait; spinlock_t lock; struct mutex sem; int usecount; /* recording and playback are * independent */ }; #define H2_MIX_OUTPUT_ATT 0 #define H2_MIX_INPUT_GAIN 1 #define H2_MIXERS 2 struct hal2_mixer { int modcnt; unsigned int master; unsigned int volume[H2_MIXERS]; }; struct hal2_card { int dev_dsp; /* audio device */ int dev_mixer; /* mixer device */ int dev_midi; /* midi device */ struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */ struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */ struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */ struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */ struct hal2_codec dac; struct hal2_codec adc; struct hal2_mixer mixer; }; #define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS); #define H2_READ_ADDR(addr) (addr | (1<<7)) #define H2_WRITE_ADDR(addr) (addr) static char *hal2str = "HAL2"; /* * I doubt anyone has a machine with two HAL2 cards. It's possible to * have two HPC's, so it is probably possible to have two HAL2 cards. * Try to deal with it, but note that it is not tested. */ #define MAXCARDS 2 static struct hal2_card* hal2_card[MAXCARDS]; static const struct { unsigned char idx:4, avail:1; } mixtable[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_PCM] = { H2_MIX_OUTPUT_ATT, 1 }, /* voice */ [SOUND_MIXER_MIC] = { H2_MIX_INPUT_GAIN, 1 }, /* mic */ }; #define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE) static inline void hal2_isr_write(struct hal2_card *hal2, u16 val) { hal2->ctl_regs->isr = val; } static inline u16 hal2_isr_look(struct hal2_card *hal2) { return hal2->ctl_regs->isr; } static inline u16 hal2_rev_look(struct hal2_card *hal2) { return hal2->ctl_regs->rev; } #ifdef HAL2_DUMP_REGS static u16 hal2_i_look16(struct hal2_card *hal2, u16 addr) { struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); return regs->idr0; } #endif static u32 hal2_i_look32(struct hal2_card *hal2, u16 addr) { u32 ret; struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); ret = regs->idr0 & 0xffff; regs->iar = H2_READ_ADDR(addr | 0x1); H2_INDIRECT_WAIT(regs); ret |= (regs->idr0 & 0xffff) << 16; return ret; } static void hal2_i_write16(struct hal2_card *hal2, u16 addr, u16 val) { struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->idr0 = val; regs->idr1 = 0; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_write32(struct hal2_card *hal2, u16 addr, u32 val) { struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->idr0 = val & 0xffff; regs->idr1 = val >> 16; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_setbit16(struct hal2_card *hal2, u16 addr, u16 bit) { struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); regs->idr0 = (regs->idr0 & 0xffff) | bit; regs->idr1 = 0; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_setbit32(struct hal2_card *hal2, u16 addr, u32 bit) { u32 tmp; struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); tmp = (regs->idr0 & 0xffff) | (regs->idr1 << 16) | bit; regs->idr0 = tmp & 0xffff; regs->idr1 = tmp >> 16; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } static void hal2_i_clearbit16(struct hal2_card *hal2, u16 addr, u16 bit) { struct hal2_ctl_regs *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); regs->idr0 = (regs->idr0 & 0xffff) & ~bit; regs->idr1 = 0; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } #if 0 static void hal2_i_clearbit32(struct hal2_card *hal2, u16 addr, u32 bit) { u32 tmp; hal2_ctl_regs_t *regs = hal2->ctl_regs; regs->iar = H2_READ_ADDR(addr); H2_INDIRECT_WAIT(regs); tmp = ((regs->idr0 & 0xffff) | (regs->idr1 << 16)) & ~bit; regs->idr0 = tmp & 0xffff; regs->idr1 = tmp >> 16; regs->idr2 = 0; regs->idr3 = 0; regs->iar = H2_WRITE_ADDR(addr); H2_INDIRECT_WAIT(regs); } #endif #ifdef HAL2_DUMP_REGS static void hal2_dump_regs(struct hal2_card *hal2) { DEBUG("isr: %08hx ", hal2_isr_look(hal2)); DEBUG("rev: %08hx\n", hal2_rev_look(hal2)); DEBUG("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C)); DEBUG("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN)); DEBUG("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END)); DEBUG("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV)); DEBUG("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C)); DEBUG("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C)); DEBUG("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C)); DEBUG("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1)); DEBUG("dac ctl2: %08x ", hal2_i_look32(hal2, H2I_ADC_C2)); DEBUG("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1)); DEBUG("adc ctl2: %08x ", hal2_i_look32(hal2, H2I_DAC_C2)); DEBUG("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C)); DEBUG("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1)); DEBUG("bres1 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES1_C2)); DEBUG("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1)); DEBUG("bres2 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES2_C2)); DEBUG("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1)); DEBUG("bres3 ctl2: %04x\n", hal2_i_look32(hal2, H2I_BRES3_C2)); } #endif static struct hal2_card* hal2_dsp_find_card(int minor) { int i; for (i = 0; i < MAXCARDS; i++) if (hal2_card[i] != NULL && hal2_card[i]->dev_dsp == minor) return hal2_card[i]; return NULL; } static struct hal2_card* hal2_mixer_find_card(int minor) { int i; for (i = 0; i < MAXCARDS; i++) if (hal2_card[i] != NULL && hal2_card[i]->dev_mixer == minor) return hal2_card[i]; return NULL; } static void hal2_inc_head(struct hal2_codec *codec) { codec->head++; if (codec->head == codec->desc_count) codec->head = 0; } static void hal2_inc_tail(struct hal2_codec *codec) { codec->tail++; if (codec->tail == codec->desc_count) codec->tail = 0; } static void hal2_dac_interrupt(struct hal2_codec *dac) { int running; spin_lock(&dac->lock); /* if tail buffer contains zero samples DMA stream was already * stopped */ running = dac->desc[dac->tail].cnt; dac->desc[dac->tail].cnt = 0; dac->desc[dac->tail].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX; /* we just proccessed empty buffer, don't update tail pointer */ if (running) hal2_inc_tail(dac); spin_unlock(&dac->lock); wake_up(&dac->dma_wait); } static void hal2_adc_interrupt(struct hal2_codec *adc) { int running; spin_lock(&adc->lock); /* if head buffer contains nonzero samples DMA stream was already * stopped */ running = !adc->desc[adc->head].cnt; adc->desc[adc->head].cnt = H2_BLOCK_SIZE; adc->desc[adc->head].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOR; /* we just proccessed empty buffer, don't update head pointer */ if (running) hal2_inc_head(adc); spin_unlock(&adc->lock); wake_up(&adc->dma_wait); } static irqreturn_t hal2_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct hal2_card *hal2 = (struct hal2_card*)dev_id; irqreturn_t ret = IRQ_NONE; /* decide what caused this interrupt */ if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { hal2_dac_interrupt(&hal2->dac); ret = IRQ_HANDLED; } if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { hal2_adc_interrupt(&hal2->adc); ret = IRQ_HANDLED; } return ret; } static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate) { unsigned short mod; DEBUG("rate: %d\n", rate); if (rate < 4000) rate = 4000; else if (rate > 48000) rate = 48000; if (44100 % rate < 48000 % rate) { mod = 4 * 44100 / rate; codec->master = 44100; } else { mod = 4 * 48000 / rate; codec->master = 48000; } codec->inc = 4; codec->mod = mod; rate = 4 * codec->master / mod; DEBUG("real_rate: %d\n", rate); return rate; } static void hal2_set_dac_rate(struct hal2_card *hal2) { unsigned int master = hal2->dac.master; int inc = hal2->dac.inc; int mod = hal2->dac.mod; DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod); hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc); } static void hal2_set_adc_rate(struct hal2_card *hal2) { unsigned int master = hal2->adc.master; int inc = hal2->adc.inc; int mod = hal2->adc.mod; DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod); hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc); } static void hal2_setup_dac(struct hal2_card *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; struct hal2_pbus *pbus = &hal2->dac.pbus; DEBUG("hal2_setup_dac\n"); /* Now we set up some PBUS information. The PBUS needs information about * what portion of the fifo it will use. If it's receiving or * transmitting, and finally whether the stream is little endian or big * endian. The information is written later, on the start call. */ sample_size = 2 * hal2->dac.voices; /* Fifo should be set to hold exactly four samples. Highwater mark * should be set to two samples. */ highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = 0; /* playback is first */ fifoend = (sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24) | (hal2->dac.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0); /* We disable everything before we do anything at all */ pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); /* Setup the HAL2 for playback */ hal2_set_dac_rate(hal2); /* Set endianess */ if (hal2->dac.format & AFMT_S16_LE) hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); else hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); /* Set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* We are using 1st Bresenham clock generator for playback */ hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (1 << H2I_C1_CLKID_SHIFT) | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); } static void hal2_setup_adc(struct hal2_card *hal2) { unsigned int fifobeg, fifoend, highwater, sample_size; struct hal2_pbus *pbus = &hal2->adc.pbus; DEBUG("hal2_setup_adc\n"); sample_size = 2 * hal2->adc.voices; highwater = (sample_size * 2) >> 1; /* halfwords */ fifobeg = (4 * 4) >> 3; /* record is second */ fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | (highwater << 8) | (fifobeg << 16) | (fifoend << 24) | (hal2->adc.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0); pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); /* Setup the HAL2 for record */ hal2_set_adc_rate(hal2); /* Set endianess */ if (hal2->adc.format & AFMT_S16_LE) hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); else hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); /* Set DMA bus */ hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); /* We are using 2nd Bresenham clock generator for record */ hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) | (2 << H2I_C1_CLKID_SHIFT) | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); } static dma_addr_t hal2_desc_addr(struct hal2_codec *codec, int i) { if (--i < 0) i = codec->desc_count - 1; return codec->desc[i].desc.pnext; } static void hal2_start_dac(struct hal2_card *hal2) { struct hal2_codec *dac = &hal2->dac; struct hal2_pbus *pbus = &dac->pbus; pbus->pbus->pbdma_dptr = hal2_desc_addr(dac, dac->tail); pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* enable DAC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); } static void hal2_start_adc(struct hal2_card *hal2) { struct hal2_codec *adc = &hal2->adc; struct hal2_pbus *pbus = &adc->pbus; pbus->pbus->pbdma_dptr = hal2_desc_addr(adc, adc->head); pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; /* enable ADC */ hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); } static inline void hal2_stop_dac(struct hal2_card *hal2) { hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; /* The HAL2 itself may remain enabled safely */ } static inline void hal2_stop_adc(struct hal2_card *hal2) { hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; } static int hal2_alloc_dmabuf(struct hal2_codec *codec, int size, int count, int cntinfo, int dir) { struct hal2_desc *desc, *dma_addr; int i; DEBUG("allocating %dk DMA buffer.\n", size / 1024); codec->buffer = (unsigned char *)__get_free_pages(GFP_KERNEL | GFP_DMA, get_order(size)); if (!codec->buffer) return -ENOMEM; desc = dma_alloc_coherent(NULL, count * sizeof(struct hal2_desc), (dma_addr_t *)&dma_addr, GFP_KERNEL); if (!desc) { free_pages((unsigned long)codec->buffer, get_order(size)); return -ENOMEM; } codec->desc = desc; for (i = 0; i < count; i++) { desc->desc.pbuf = dma_map_single(NULL, (void *)(codec->buffer + i * H2_BLOCK_SIZE), H2_BLOCK_SIZE, dir); desc->desc.cntinfo = cntinfo; desc->desc.pnext = (i == count - 1) ? (u32)dma_addr : (u32)(dma_addr + i + 1); desc->cnt = 0; desc++; } codec->desc_count = count; codec->head = codec->tail = 0; return 0; } static int hal2_alloc_dac_dmabuf(struct hal2_codec *codec) { return hal2_alloc_dmabuf(codec, H2_DAC_BUFSIZE, H2_DAC_BUFSIZE / H2_BLOCK_SIZE, HPCDMA_XIE | HPCDMA_EOX, DMA_TO_DEVICE); } static int hal2_alloc_adc_dmabuf(struct hal2_codec *codec) { return hal2_alloc_dmabuf(codec, H2_ADC_BUFSIZE, H2_ADC_BUFSIZE / H2_BLOCK_SIZE, HPCDMA_XIE | H2_BLOCK_SIZE, DMA_TO_DEVICE); } static void hal2_free_dmabuf(struct hal2_codec *codec, int size, int dir) { dma_addr_t dma_addr; int i; dma_addr = codec->desc[codec->desc_count - 1].desc.pnext; for (i = 0; i < codec->desc_count; i++) dma_unmap_single(NULL, codec->desc[i].desc.pbuf, H2_BLOCK_SIZE, dir); dma_free_coherent(NULL, codec->desc_count * sizeof(struct hal2_desc), (void *)codec->desc, dma_addr); free_pages((unsigned long)codec->buffer, get_order(size)); } static void hal2_free_dac_dmabuf(struct hal2_codec *codec) { return hal2_free_dmabuf(codec, H2_DAC_BUFSIZE, DMA_TO_DEVICE); } static void hal2_free_adc_dmabuf(struct hal2_codec *codec) { return hal2_free_dmabuf(codec, H2_ADC_BUFSIZE, DMA_FROM_DEVICE); } /* * Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of * bytes added or -EFAULT if copy_from_user failed. */ static int hal2_get_buffer(struct hal2_card *hal2, char *buffer, int count) { unsigned long flags; int size, ret = 0; unsigned char *buf; struct hal2_desc *tail; struct hal2_codec *adc = &hal2->adc; DEBUG("getting %d bytes ", count); spin_lock_irqsave(&adc->lock, flags); tail = &adc->desc[adc->tail]; /* enable DMA stream if there are no data */ if (!tail->cnt && !(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT)) hal2_start_adc(hal2); while (tail->cnt > 0 && count > 0) { size = min((int)tail->cnt, count); buf = &adc->buffer[(adc->tail + 1) * H2_BLOCK_SIZE - tail->cnt]; spin_unlock_irqrestore(&adc->lock, flags); dma_sync_single(NULL, tail->desc.pbuf, size, DMA_FROM_DEVICE); if (copy_to_user(buffer, buf, size)) { ret = -EFAULT; goto out; } spin_lock_irqsave(&adc->lock, flags); tail->cnt -= size; /* buffer is empty, update tail pointer */ if (tail->cnt == 0) { tail->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE; hal2_inc_tail(adc); tail = &adc->desc[adc->tail]; /* enable DMA stream again if needed */ if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT)) hal2_start_adc(hal2); } buffer += size; ret += size; count -= size; DEBUG("(%d) ", size); } spin_unlock_irqrestore(&adc->lock, flags); out: DEBUG("\n"); return ret; } /* * Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of * bytes added or -EFAULT if copy_from_user failed. */ static int hal2_add_buffer(struct hal2_card *hal2, char *buffer, int count) { unsigned long flags; unsigned char *buf; int size, ret = 0; struct hal2_desc *head; struct hal2_codec *dac = &hal2->dac; DEBUG("adding %d bytes ", count); spin_lock_irqsave(&dac->lock, flags); head = &dac->desc[dac->head]; while (head->cnt == 0 && count > 0) { size = min((int)H2_BLOCK_SIZE, count); buf = &dac->buffer[dac->head * H2_BLOCK_SIZE]; spin_unlock_irqrestore(&dac->lock, flags); if (copy_from_user(buf, buffer, size)) { ret = -EFAULT; goto out; } dma_sync_single(NULL, head->desc.pbuf, size, DMA_TO_DEVICE); spin_lock_irqsave(&dac->lock, flags); head->desc.cntinfo = size | HPCDMA_XIE; head->cnt = size; buffer += size; ret += size; count -= size; hal2_inc_head(dac); head = &dac->desc[dac->head]; DEBUG("(%d) ", size); } if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0) hal2_start_dac(hal2); spin_unlock_irqrestore(&dac->lock, flags); out: DEBUG("\n"); return ret; } #define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1) #define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0) static void hal2_reset_pointer(struct hal2_card *hal2, int is_dac) { int i; struct hal2_codec *codec = (is_dac) ? &hal2->dac : &hal2->adc; DEBUG("hal2_reset_pointer\n"); for (i = 0; i < codec->desc_count; i++) { codec->desc[i].cnt = 0; codec->desc[i].desc.cntinfo = HPCDMA_XIE | (is_dac) ? HPCDMA_EOX : H2_BLOCK_SIZE; } codec->head = codec->tail = 0; } static int hal2_sync_dac(struct hal2_card *hal2) { DECLARE_WAITQUEUE(wait, current); struct hal2_codec *dac = &hal2->dac; int ret = 0; unsigned long flags; signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * dac->voices * HZ / dac->sample_rate / 900; while (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) { add_wait_queue(&dac->dma_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(timeout); spin_lock_irqsave(&dac->lock, flags); if (dac->desc[dac->tail].cnt) ret = -ETIME; spin_unlock_irqrestore(&dac->lock, flags); if (signal_pending(current)) ret = -ERESTARTSYS; if (ret) { hal2_stop_dac(hal2); hal2_reset_dac_pointer(hal2); } remove_wait_queue(&dac->dma_wait, &wait); } return ret; } static int hal2_write_mixer(struct hal2_card *hal2, int index, int vol) { unsigned int l, r, tmp; DEBUG_MIX("mixer %d write\n", index); if (index >= SOUND_MIXER_NRDEVICES || !mixtable[index].avail) return -EINVAL; r = (vol >> 8) & 0xff; if (r > 100) r = 100; l = vol & 0xff; if (l > 100) l = 100; hal2->mixer.volume[mixtable[index].idx] = l | (r << 8); switch (mixtable[index].idx) { case H2_MIX_OUTPUT_ATT: DEBUG_MIX("output attenuator %d,%d\n", l, r); if (r | l) { tmp = hal2_i_look32(hal2, H2I_DAC_C2); tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); /* Attenuator has five bits */ l = 31 * (100 - l) / 99; r = 31 * (100 - r) / 99; DEBUG_MIX("left: %d, right %d\n", l, r); tmp |= (l << H2I_C2_L_ATT_SHIFT) & H2I_C2_L_ATT_M; tmp |= (r << H2I_C2_R_ATT_SHIFT) & H2I_C2_R_ATT_M; hal2_i_write32(hal2, H2I_DAC_C2, tmp); } else hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE); break; case H2_MIX_INPUT_GAIN: DEBUG_MIX("input gain %d,%d\n", l, r); tmp = hal2_i_look32(hal2, H2I_ADC_C2); tmp &= ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M); /* Gain control has four bits */ l = 16 * l / 100; r = 16 * r / 100; DEBUG_MIX("left: %d, right %d\n", l, r); tmp |= (l << H2I_C2_L_GAIN_SHIFT) & H2I_C2_L_GAIN_M; tmp |= (r << H2I_C2_R_GAIN_SHIFT) & H2I_C2_R_GAIN_M; hal2_i_write32(hal2, H2I_ADC_C2, tmp); break; } return 0; } static void hal2_init_mixer(struct hal2_card *hal2) { int i; for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].avail) hal2->mixer.volume[mixtable[i].idx] = 100 | (100 << 8); /* disable attenuator */ hal2_i_write32(hal2, H2I_DAC_C2, 0); /* set max input gain */ hal2_i_write32(hal2, H2I_ADC_C2, H2I_C2_MUTE | (H2I_C2_L_GAIN_M << H2I_C2_L_GAIN_SHIFT) | (H2I_C2_R_GAIN_M << H2I_C2_R_GAIN_SHIFT)); /* set max volume */ hal2->mixer.master = 0xff; hal2->vol_regs->left = 0xff; hal2->vol_regs->right = 0xff; } /* * XXX: later i'll implement mixer for main volume which will be disabled * by default. enabling it users will be allowed to have master volume level * control on panel in their favourite X desktop */ static void hal2_volume_control(int direction) { unsigned int master = hal2_card[0]->mixer.master; struct hal2_vol_regs *vol = hal2_card[0]->vol_regs; /* volume up */ if (direction > 0 && master < 0xff) master++; /* volume down */ else if (direction < 0 && master > 0) master--; /* TODO: mute/unmute */ vol->left = master; vol->right = master; hal2_card[0]->mixer.master = master; } static int hal2_mixer_ioctl(struct hal2_card *hal2, unsigned int cmd, unsigned long arg) { int val; if (cmd == SOUND_MIXER_INFO) { mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, hal2str, sizeof(info.id)); strlcpy(info.name, hal2str, sizeof(info.name)); info.modify_counter = hal2->mixer.modcnt; if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; memset(&info, 0, sizeof(info)); strlcpy(info.id, hal2str, sizeof(info.id)); strlcpy(info.name, hal2str, sizeof(info.name)); if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *)arg); if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { /* Give the current record source */ case SOUND_MIXER_RECSRC: val = 0; /* FIXME */ break; /* Give the supported mixers, all of them support stereo */ case SOUND_MIXER_DEVMASK: case SOUND_MIXER_STEREODEVS: { int i; for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].avail) val |= 1 << i; break; } /* Arg contains a bit for each supported recording source */ case SOUND_MIXER_RECMASK: val = 0; break; case SOUND_MIXER_CAPS: val = 0; break; /* Read a specific mixer */ default: { int i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].avail) return -EINVAL; val = hal2->mixer.volume[mixtable[i].idx]; break; } } return put_user(val, (int *)arg); } if (_IOC_DIR(cmd) != (_IOC_WRITE|_IOC_READ)) return -EINVAL; hal2->mixer.modcnt++; if (get_user(val, (int *)arg)) return -EFAULT; switch (_IOC_NR(cmd)) { /* Arg contains a bit for each recording source */ case SOUND_MIXER_RECSRC: return 0; /* FIXME */ default: return hal2_write_mixer(hal2, _IOC_NR(cmd), val); } return 0; } static int hal2_open_mixdev(struct inode *inode, struct file *file) { struct hal2_card *hal2 = hal2_mixer_find_card(iminor(inode)); if (hal2) { file->private_data = hal2; return nonseekable_open(inode, file); } return -ENODEV; } static int hal2_release_mixdev(struct inode *inode, struct file *file) { return 0; } static int hal2_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return hal2_mixer_ioctl((struct hal2_card *)file->private_data, cmd, arg); } static int hal2_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int val; struct hal2_card *hal2 = (struct hal2_card *) file->private_data; switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return hal2_sync_dac(hal2); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_MULTI, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2_reset_adc_pointer(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2_reset_dac_pointer(hal2); } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, (int *)arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); val = hal2_compute_rate(&hal2->adc, val); hal2->adc.sample_rate = val; hal2_set_adc_rate(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); val = hal2_compute_rate(&hal2->dac, val); hal2->dac.sample_rate = val; hal2_set_dac_rate(hal2); } return put_user(val, (int *)arg); case SNDCTL_DSP_STEREO: if (get_user(val, (int *)arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2->adc.voices = (val) ? 2 : 1; hal2_setup_adc(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2->dac.voices = (val) ? 2 : 1; hal2_setup_dac(hal2); } return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, (int *)arg)) return -EFAULT; if (val != 0) { if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2->adc.voices = (val == 1) ? 1 : 2; hal2_setup_adc(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2->dac.voices = (val == 1) ? 1 : 2; hal2_setup_dac(hal2); } } val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.voices; if (file->f_mode & FMODE_WRITE) val = hal2->dac.voices; return put_user(val, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(H2_SUPPORTED_FORMATS, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ if (get_user(val, (int *)arg)) return -EFAULT; if (val != AFMT_QUERY) { if (!(val & H2_SUPPORTED_FORMATS)) return -EINVAL; if (file->f_mode & FMODE_READ) { hal2_stop_adc(hal2); hal2->adc.format = val; hal2_setup_adc(hal2); } if (file->f_mode & FMODE_WRITE) { hal2_stop_dac(hal2); hal2->dac.format = val; hal2_setup_dac(hal2); } } else { val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.format; if (file->f_mode & FMODE_WRITE) val = hal2->dac.format; } return put_user(val, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETOSPACE: { audio_buf_info info; int i; unsigned long flags; struct hal2_codec *dac = &hal2->dac; if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; info.fragments = 0; spin_lock_irqsave(&dac->lock, flags); for (i = 0; i < dac->desc_count; i++) if (dac->desc[i].cnt == 0) info.fragments++; spin_unlock_irqrestore(&dac->lock, flags); info.fragstotal = dac->desc_count; info.fragsize = H2_BLOCK_SIZE; info.bytes = info.fragsize * info.fragments; return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0; } case SNDCTL_DSP_GETISPACE: { audio_buf_info info; int i; unsigned long flags; struct hal2_codec *adc = &hal2->adc; if (!(file->f_mode & FMODE_READ)) return -EINVAL; info.fragments = 0; info.bytes = 0; spin_lock_irqsave(&adc->lock, flags); for (i = 0; i < adc->desc_count; i++) if (adc->desc[i].cnt > 0) { info.fragments++; info.bytes += adc->desc[i].cnt; } spin_unlock_irqrestore(&adc->lock, flags); info.fragstotal = adc->desc_count; info.fragsize = H2_BLOCK_SIZE; return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0; } case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETBLKSIZE: return put_user(H2_BLOCK_SIZE, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: return 0; case SOUND_PCM_READ_RATE: val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.sample_rate; if (file->f_mode & FMODE_WRITE) val = hal2->dac.sample_rate; return put_user(val, (int *)arg); case SOUND_PCM_READ_CHANNELS: val = -EINVAL; if (file->f_mode & FMODE_READ) val = hal2->adc.voices; if (file->f_mode & FMODE_WRITE) val = hal2->dac.voices; return put_user(val, (int *)arg); case SOUND_PCM_READ_BITS: return put_user(16, (int *)arg); } return hal2_mixer_ioctl(hal2, cmd, arg); } static ssize_t hal2_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { ssize_t err; struct hal2_card *hal2 = (struct hal2_card *) file->private_data; struct hal2_codec *adc = &hal2->adc; if (!count) return 0; if (mutex_lock_interruptible(&adc->sem)) return -EINTR; if (file->f_flags & O_NONBLOCK) { err = hal2_get_buffer(hal2, buffer, count); err = err == 0 ? -EAGAIN : err; } else { do { /* ~10% longer */ signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * adc->voices * HZ / adc->sample_rate / 900; unsigned long flags; DECLARE_WAITQUEUE(wait, current); ssize_t cnt = 0; err = hal2_get_buffer(hal2, buffer, count); if (err > 0) { count -= err; cnt += err; buffer += err; err = cnt; } if (count > 0 && err >= 0) { add_wait_queue(&adc->dma_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(timeout); spin_lock_irqsave(&adc->lock, flags); if (!adc->desc[adc->tail].cnt) err = -EAGAIN; spin_unlock_irqrestore(&adc->lock, flags); if (signal_pending(current)) err = -ERESTARTSYS; remove_wait_queue(&adc->dma_wait, &wait); if (err < 0) { hal2_stop_adc(hal2); hal2_reset_adc_pointer(hal2); } } } while (count > 0 && err >= 0); } mutex_unlock(&adc->sem); return err; } static ssize_t hal2_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { ssize_t err; char *buf = (char*) buffer; struct hal2_card *hal2 = (struct hal2_card *) file->private_data; struct hal2_codec *dac = &hal2->dac; if (!count) return 0; if (mutex_lock_interruptible(&dac->sem)) return -EINTR; if (file->f_flags & O_NONBLOCK) { err = hal2_add_buffer(hal2, buf, count); err = err == 0 ? -EAGAIN : err; } else { do { /* ~10% longer */ signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * dac->voices * HZ / dac->sample_rate / 900; unsigned long flags; DECLARE_WAITQUEUE(wait, current); ssize_t cnt = 0; err = hal2_add_buffer(hal2, buf, count); if (err > 0) { count -= err; cnt += err; buf += err; err = cnt; } if (count > 0 && err >= 0) { add_wait_queue(&dac->dma_wait, &wait); set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(timeout); spin_lock_irqsave(&dac->lock, flags); if (dac->desc[dac->head].cnt) err = -EAGAIN; spin_unlock_irqrestore(&dac->lock, flags); if (signal_pending(current)) err = -ERESTARTSYS; remove_wait_queue(&dac->dma_wait, &wait); if (err < 0) { hal2_stop_dac(hal2); hal2_reset_dac_pointer(hal2); } } } while (count > 0 && err >= 0); } mutex_unlock(&dac->sem); return err; } static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait) { unsigned long flags; unsigned int mask = 0; struct hal2_card *hal2 = (struct hal2_card *) file->private_data; if (file->f_mode & FMODE_READ) { struct hal2_codec *adc = &hal2->adc; poll_wait(file, &adc->dma_wait, wait); spin_lock_irqsave(&adc->lock, flags); if (adc->desc[adc->tail].cnt > 0) mask |= POLLIN; spin_unlock_irqrestore(&adc->lock, flags); } if (file->f_mode & FMODE_WRITE) { struct hal2_codec *dac = &hal2->dac; poll_wait(file, &dac->dma_wait, wait); spin_lock_irqsave(&dac->lock, flags); if (dac->desc[dac->head].cnt == 0) mask |= POLLOUT; spin_unlock_irqrestore(&dac->lock, flags); } return mask; } static int hal2_open(struct inode *inode, struct file *file) { int err; struct hal2_card *hal2 = hal2_dsp_find_card(iminor(inode)); if (!hal2) return -ENODEV; file->private_data = hal2; if (file->f_mode & FMODE_READ) { struct hal2_codec *adc = &hal2->adc; if (adc->usecount) return -EBUSY; /* OSS spec wanted us to use 8 bit, 8 kHz mono by default, * but HAL2 can't do 8bit audio */ adc->format = AFMT_S16_BE; adc->voices = 1; adc->sample_rate = hal2_compute_rate(adc, 8000); hal2_set_adc_rate(hal2); err = hal2_alloc_adc_dmabuf(adc); if (err) return err; hal2_setup_adc(hal2); adc->usecount++; } if (file->f_mode & FMODE_WRITE) { struct hal2_codec *dac = &hal2->dac; if (dac->usecount) return -EBUSY; dac->format = AFMT_S16_BE; dac->voices = 1; dac->sample_rate = hal2_compute_rate(dac, 8000); hal2_set_dac_rate(hal2); err = hal2_alloc_dac_dmabuf(dac); if (err) return err; hal2_setup_dac(hal2); dac->usecount++; } return nonseekable_open(inode, file); } static int hal2_release(struct inode *inode, struct file *file) { struct hal2_card *hal2 = (struct hal2_card *) file->private_data; if (file->f_mode & FMODE_READ) { struct hal2_codec *adc = &hal2->adc; mutex_lock(&adc->sem); hal2_stop_adc(hal2); hal2_free_adc_dmabuf(adc); adc->usecount--; mutex_unlock(&adc->sem); } if (file->f_mode & FMODE_WRITE) { struct hal2_codec *dac = &hal2->dac; mutex_lock(&dac->sem); hal2_sync_dac(hal2); hal2_free_dac_dmabuf(dac); dac->usecount--; mutex_unlock(&dac->sem); } return 0; } static struct file_operations hal2_audio_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = hal2_read, .write = hal2_write, .poll = hal2_poll, .ioctl = hal2_ioctl, .open = hal2_open, .release = hal2_release, }; static struct file_operations hal2_mixer_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .ioctl = hal2_ioctl_mixdev, .open = hal2_open_mixdev, .release = hal2_release_mixdev, }; static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3, int index) { codec->pbus.pbusnr = index; codec->pbus.pbus = &hpc3->pbdma[index]; init_waitqueue_head(&codec->dma_wait); mutex_init(&codec->sem); spin_lock_init(&codec->lock); } static int hal2_detect(struct hal2_card *hal2) { unsigned short board, major, minor; unsigned short rev; /* reset HAL2 */ hal2_isr_write(hal2, 0); /* release reset */ hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N); hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT) return -ENODEV; board = (rev & H2_REV_BOARD_M) >> 12; major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; minor = (rev & H2_REV_MINOR_CHIP_M); printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n", board, major, minor); return 0; } static int hal2_init_card(struct hal2_card **phal2, struct hpc3_regs *hpc3) { int ret = 0; struct hal2_card *hal2; hal2 = (struct hal2_card *) kmalloc(sizeof(struct hal2_card), GFP_KERNEL); if (!hal2) return -ENOMEM; memset(hal2, 0, sizeof(struct hal2_card)); hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0]; hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1]; hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2]; hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3]; if (hal2_detect(hal2) < 0) { ret = -ENODEV; goto free_card; } hal2_init_codec(&hal2->dac, hpc3, 0); hal2_init_codec(&hal2->adc, hpc3, 1); /* * All DMA channel interfaces in HAL2 are designed to operate with * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles * in D5. HAL2 is a 16-bit device which can accept both big and little * endian format. It assumes that even address bytes are on high * portion of PBUS (15:8) and assumes that HPC3 is programmed to * accept a live (unsynchronized) version of P_DREQ_N from HAL2. */ #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \ (2 << HPC3_DMACFG_D4R_SHIFT) | \ (2 << HPC3_DMACFG_D5R_SHIFT) | \ (0 << HPC3_DMACFG_D3W_SHIFT) | \ (2 << HPC3_DMACFG_D4W_SHIFT) | \ (2 << HPC3_DMACFG_D5W_SHIFT) | \ HPC3_DMACFG_DS16 | \ HPC3_DMACFG_EVENHI | \ HPC3_DMACFG_RTIME | \ (8 << HPC3_DMACFG_BURST_SHIFT) | \ HPC3_DMACFG_DRQLIVE) /* * Ignore what's mentioned in the specification and write value which * works in The Real World (TM) */ hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844; hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844; if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED, hal2str, hal2)) { printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ); ret = -EAGAIN; goto free_card; } hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1); if (hal2->dev_dsp < 0) { ret = hal2->dev_dsp; goto free_irq; } hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1); if (hal2->dev_mixer < 0) { ret = hal2->dev_mixer; goto unregister_dsp; } hal2_init_mixer(hal2); *phal2 = hal2; return 0; unregister_dsp: unregister_sound_dsp(hal2->dev_dsp); free_irq: free_irq(SGI_HPCDMA_IRQ, hal2); free_card: kfree(hal2); return ret; } extern void (*indy_volume_button)(int); /* * Assuming only one HAL2 card. Mail me if you ever meet machine with * more than one. */ static int __init init_hal2(void) { int i, error; for (i = 0; i < MAXCARDS; i++) hal2_card[i] = NULL; error = hal2_init_card(&hal2_card[0], hpc3c0); /* let Indy's volume buttons work */ if (!error && !ip22_is_fullhouse()) indy_volume_button = hal2_volume_control; return error; } static void __exit exit_hal2(void) { int i; /* unregister volume butons callback function */ indy_volume_button = NULL; for (i = 0; i < MAXCARDS; i++) if (hal2_card[i]) { free_irq(SGI_HPCDMA_IRQ, hal2_card[i]); unregister_sound_dsp(hal2_card[i]->dev_dsp); unregister_sound_mixer(hal2_card[i]->dev_mixer); kfree(hal2_card[i]); } } module_init(init_hal2); module_exit(exit_hal2); MODULE_DESCRIPTION("OSS compatible driver for SGI HAL2 audio"); MODULE_AUTHOR("Ladislav Michl"); MODULE_LICENSE("GPL");