/* * 2002-10-18 written by Jim Houston jim.houston@ccur.com * Copyright (C) 2002 by Concurrent Computer Corporation * Distributed under the GNU GPL license version 2. * * Modified by George Anzinger to reuse immediately and to use * find bit instructions. Also removed _irq on spinlocks. * * Small id to pointer translation service. * * It uses a radix tree like structure as a sparse array indexed * by the id to obtain the pointer. The bitmap makes allocating * a new id quick. * * You call it to allocate an id (an int) an associate with that id a * pointer or what ever, we treat it as a (void *). You can pass this * id to a user for him to pass back at a later time. You then pass * that id to this code and it returns your pointer. * You can release ids at any time. When all ids are released, most of * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we * don't need to go to the memory "store" during an id allocate, just * so you don't need to be too concerned about locking and conflicts * with the slab allocator. */ #ifndef TEST // to test in user space... #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #endif #include <linux/err.h> #include <linux/string.h> #include <linux/idr.h> static kmem_cache_t *idr_layer_cache; static struct idr_layer *alloc_layer(struct idr *idp) { struct idr_layer *p; spin_lock(&idp->lock); if ((p = idp->id_free)) { idp->id_free = p->ary[0]; idp->id_free_cnt--; p->ary[0] = NULL; } spin_unlock(&idp->lock); return(p); } /* only called when idp->lock is held */ static void __free_layer(struct idr *idp, struct idr_layer *p) { p->ary[0] = idp->id_free; idp->id_free = p; idp->id_free_cnt++; } static void free_layer(struct idr *idp, struct idr_layer *p) { /* * Depends on the return element being zeroed. */ spin_lock(&idp->lock); __free_layer(idp, p); spin_unlock(&idp->lock); } /** * idr_pre_get - reserver resources for idr allocation * @idp: idr handle * @gfp_mask: memory allocation flags * * This function should be called prior to locking and calling the * following function. It preallocates enough memory to satisfy * the worst possible allocation. * * If the system is REALLY out of memory this function returns 0, * otherwise 1. */ int idr_pre_get(struct idr *idp, gfp_t gfp_mask) { while (idp->id_free_cnt < IDR_FREE_MAX) { struct idr_layer *new; new = kmem_cache_alloc(idr_layer_cache, gfp_mask); if (new == NULL) return (0); free_layer(idp, new); } return 1; } EXPORT_SYMBOL(idr_pre_get); static int sub_alloc(struct idr *idp, void *ptr, int *starting_id) { int n, m, sh; struct idr_layer *p, *new; struct idr_layer *pa[MAX_LEVEL]; int l, id; long bm; id = *starting_id; p = idp->top; l = idp->layers; pa[l--] = NULL; while (1) { /* * We run around this while until we reach the leaf node... */ n = (id >> (IDR_BITS*l)) & IDR_MASK; bm = ~p->bitmap; m = find_next_bit(&bm, IDR_SIZE, n); if (m == IDR_SIZE) { /* no space available go back to previous layer. */ l++; id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; if (!(p = pa[l])) { *starting_id = id; return -2; } continue; } if (m != n) { sh = IDR_BITS*l; id = ((id >> sh) ^ n ^ m) << sh; } if ((id >= MAX_ID_BIT) || (id < 0)) return -3; if (l == 0) break; /* * Create the layer below if it is missing. */ if (!p->ary[m]) { if (!(new = alloc_layer(idp))) return -1; p->ary[m] = new; p->count++; } pa[l--] = p; p = p->ary[m]; } /* * We have reached the leaf node, plant the * users pointer and return the raw id. */ p->ary[m] = (struct idr_layer *)ptr; __set_bit(m, &p->bitmap); p->count++; /* * If this layer is full mark the bit in the layer above * to show that this part of the radix tree is full. * This may complete the layer above and require walking * up the radix tree. */ n = id; while (p->bitmap == IDR_FULL) { if (!(p = pa[++l])) break; n = n >> IDR_BITS; __set_bit((n & IDR_MASK), &p->bitmap); } return(id); } static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) { struct idr_layer *p, *new; int layers, v, id; id = starting_id; build_up: p = idp->top; layers = idp->layers; if (unlikely(!p)) { if (!(p = alloc_layer(idp))) return -1; layers = 1; } /* * Add a new layer to the top of the tree if the requested * id is larger than the currently allocated space. */ while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { layers++; if (!p->count) continue; if (!(new = alloc_layer(idp))) { /* * The allocation failed. If we built part of * the structure tear it down. */ spin_lock(&idp->lock); for (new = p; p && p != idp->top; new = p) { p = p->ary[0]; new->ary[0] = NULL; new->bitmap = new->count = 0; __free_layer(idp, new); } spin_unlock(&idp->lock); return -1; } new->ary[0] = p; new->count = 1; if (p->bitmap == IDR_FULL) __set_bit(0, &new->bitmap); p = new; } idp->top = p; idp->layers = layers; v = sub_alloc(idp, ptr, &id); if (v == -2) goto build_up; return(v); } /** * idr_get_new_above - allocate new idr entry above or equal to a start id * @idp: idr handle * @ptr: pointer you want associated with the ide * @start_id: id to start search at * @id: pointer to the allocated handle * * This is the allocate id function. It should be called with any * required locks. * * If memory is required, it will return -EAGAIN, you should unlock * and go back to the idr_pre_get() call. If the idr is full, it will * return -ENOSPC. * * @id returns a value in the range 0 ... 0x7fffffff */ int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) { int rv; rv = idr_get_new_above_int(idp, ptr, starting_id); /* * This is a cheap hack until the IDR code can be fixed to * return proper error values. */ if (rv < 0) { if (rv == -1) return -EAGAIN; else /* Will be -3 */ return -ENOSPC; } *id = rv; return 0; } EXPORT_SYMBOL(idr_get_new_above); /** * idr_get_new - allocate new idr entry * @idp: idr handle * @ptr: pointer you want associated with the ide * @id: pointer to the allocated handle * * This is the allocate id function. It should be called with any * required locks. * * If memory is required, it will return -EAGAIN, you should unlock * and go back to the idr_pre_get() call. If the idr is full, it will * return -ENOSPC. * * @id returns a value in the range 0 ... 0x7fffffff */ int idr_get_new(struct idr *idp, void *ptr, int *id) { int rv; rv = idr_get_new_above_int(idp, ptr, 0); /* * This is a cheap hack until the IDR code can be fixed to * return proper error values. */ if (rv < 0) { if (rv == -1) return -EAGAIN; else /* Will be -3 */ return -ENOSPC; } *id = rv; return 0; } EXPORT_SYMBOL(idr_get_new); static void idr_remove_warning(int id) { printk("idr_remove called for id=%d which is not allocated.\n", id); dump_stack(); } static void sub_remove(struct idr *idp, int shift, int id) { struct idr_layer *p = idp->top; struct idr_layer **pa[MAX_LEVEL]; struct idr_layer ***paa = &pa[0]; int n; *paa = NULL; *++paa = &idp->top; while ((shift > 0) && p) { n = (id >> shift) & IDR_MASK; __clear_bit(n, &p->bitmap); *++paa = &p->ary[n]; p = p->ary[n]; shift -= IDR_BITS; } n = id & IDR_MASK; if (likely(p != NULL && test_bit(n, &p->bitmap))){ __clear_bit(n, &p->bitmap); p->ary[n] = NULL; while(*paa && ! --((**paa)->count)){ free_layer(idp, **paa); **paa-- = NULL; } if (!*paa) idp->layers = 0; } else idr_remove_warning(id); } /** * idr_remove - remove the given id and free it's slot * idp: idr handle * id: uniqueue key */ void idr_remove(struct idr *idp, int id) { struct idr_layer *p; /* Mask off upper bits we don't use for the search. */ id &= MAX_ID_MASK; sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); if (idp->top && idp->top->count == 1 && (idp->layers > 1) && idp->top->ary[0]) { // We can drop a layer p = idp->top->ary[0]; idp->top->bitmap = idp->top->count = 0; free_layer(idp, idp->top); idp->top = p; --idp->layers; } while (idp->id_free_cnt >= IDR_FREE_MAX) { p = alloc_layer(idp); kmem_cache_free(idr_layer_cache, p); return; } } EXPORT_SYMBOL(idr_remove); /** * idr_destroy - release all cached layers within an idr tree * idp: idr handle */ void idr_destroy(struct idr *idp) { while (idp->id_free_cnt) { struct idr_layer *p = alloc_layer(idp); kmem_cache_free(idr_layer_cache, p); } } EXPORT_SYMBOL(idr_destroy); /** * idr_find - return pointer for given id * @idp: idr handle * @id: lookup key * * Return the pointer given the id it has been registered with. A %NULL * return indicates that @id is not valid or you passed %NULL in * idr_get_new(). * * The caller must serialize idr_find() vs idr_get_new() and idr_remove(). */ void *idr_find(struct idr *idp, int id) { int n; struct idr_layer *p; n = idp->layers * IDR_BITS; p = idp->top; /* Mask off upper bits we don't use for the search. */ id &= MAX_ID_MASK; if (id >= (1 << n)) return NULL; while (n > 0 && p) { n -= IDR_BITS; p = p->ary[(id >> n) & IDR_MASK]; } return((void *)p); } EXPORT_SYMBOL(idr_find); /** * idr_replace - replace pointer for given id * @idp: idr handle * @ptr: pointer you want associated with the id * @id: lookup key * * Replace the pointer registered with an id and return the old value. * A -ENOENT return indicates that @id was not found. * A -EINVAL return indicates that @id was not within valid constraints. * * The caller must serialize vs idr_find(), idr_get_new(), and idr_remove(). */ void *idr_replace(struct idr *idp, void *ptr, int id) { int n; struct idr_layer *p, *old_p; n = idp->layers * IDR_BITS; p = idp->top; id &= MAX_ID_MASK; if (id >= (1 << n)) return ERR_PTR(-EINVAL); n -= IDR_BITS; while ((n > 0) && p) { p = p->ary[(id >> n) & IDR_MASK]; n -= IDR_BITS; } n = id & IDR_MASK; if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) return ERR_PTR(-ENOENT); old_p = p->ary[n]; p->ary[n] = ptr; return old_p; } EXPORT_SYMBOL(idr_replace); static void idr_cache_ctor(void * idr_layer, kmem_cache_t *idr_layer_cache, unsigned long flags) { memset(idr_layer, 0, sizeof(struct idr_layer)); } static int init_id_cache(void) { if (!idr_layer_cache) idr_layer_cache = kmem_cache_create("idr_layer_cache", sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL); return 0; } /** * idr_init - initialize idr handle * @idp: idr handle * * This function is use to set up the handle (@idp) that you will pass * to the rest of the functions. */ void idr_init(struct idr *idp) { init_id_cache(); memset(idp, 0, sizeof(struct idr)); spin_lock_init(&idp->lock); } EXPORT_SYMBOL(idr_init);