/* * kernel/sched.c * * Kernel scheduler and related syscalls * * Copyright (C) 1991-2002 Linus Torvalds * * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and * make semaphores SMP safe * 1998-11-19 Implemented schedule_timeout() and related stuff * by Andrea Arcangeli * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: * hybrid priority-list and round-robin design with * an array-switch method of distributing timeslices * and per-CPU runqueues. Cleanups and useful suggestions * by Davide Libenzi, preemptible kernel bits by Robert Love. * 2003-09-03 Interactivity tuning by Con Kolivas. * 2004-04-02 Scheduler domains code by Nick Piggin * 2007-04-15 Work begun on replacing all interactivity tuning with a * fair scheduling design by Con Kolivas. * 2007-05-05 Load balancing (smp-nice) and other improvements * by Peter Williams * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, * Thomas Gleixner, Mike Kravetz */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sched_cpupri.h" #define CREATE_TRACE_POINTS #include /* * Convert user-nice values [ -20 ... 0 ... 19 ] * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], * and back. */ #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) /* * 'User priority' is the nice value converted to something we * can work with better when scaling various scheduler parameters, * it's a [ 0 ... 39 ] range. */ #define USER_PRIO(p) ((p)-MAX_RT_PRIO) #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) /* * Helpers for converting nanosecond timing to jiffy resolution */ #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) #define NICE_0_LOAD SCHED_LOAD_SCALE #define NICE_0_SHIFT SCHED_LOAD_SHIFT /* * These are the 'tuning knobs' of the scheduler: * * default timeslice is 100 msecs (used only for SCHED_RR tasks). * Timeslices get refilled after they expire. */ #define DEF_TIMESLICE (100 * HZ / 1000) /* * single value that denotes runtime == period, ie unlimited time. */ #define RUNTIME_INF ((u64)~0ULL) static inline int rt_policy(int policy) { if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) return 1; return 0; } static inline int task_has_rt_policy(struct task_struct *p) { return rt_policy(p->policy); } /* * This is the priority-queue data structure of the RT scheduling class: */ struct rt_prio_array { DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ struct list_head queue[MAX_RT_PRIO]; }; struct rt_bandwidth { /* nests inside the rq lock: */ spinlock_t rt_runtime_lock; ktime_t rt_period; u64 rt_runtime; struct hrtimer rt_period_timer; }; static struct rt_bandwidth def_rt_bandwidth; static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) { struct rt_bandwidth *rt_b = container_of(timer, struct rt_bandwidth, rt_period_timer); ktime_t now; int overrun; int idle = 0; for (;;) { now = hrtimer_cb_get_time(timer); overrun = hrtimer_forward(timer, now, rt_b->rt_period); if (!overrun) break; idle = do_sched_rt_period_timer(rt_b, overrun); } return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; } static void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) { rt_b->rt_period = ns_to_ktime(period); rt_b->rt_runtime = runtime; spin_lock_init(&rt_b->rt_runtime_lock); hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rt_b->rt_period_timer.function = sched_rt_period_timer; } static inline int rt_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; } static void start_rt_bandwidth(struct rt_bandwidth *rt_b) { ktime_t now; if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) return; if (hrtimer_active(&rt_b->rt_period_timer)) return; spin_lock(&rt_b->rt_runtime_lock); for (;;) { unsigned long delta; ktime_t soft, hard; if (hrtimer_active(&rt_b->rt_period_timer)) break; now = hrtimer_cb_get_time(&rt_b->rt_period_timer); hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); hard = hrtimer_get_expires(&rt_b->rt_period_timer); delta = ktime_to_ns(ktime_sub(hard, soft)); __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, HRTIMER_MODE_ABS_PINNED, 0); } spin_unlock(&rt_b->rt_runtime_lock); } #ifdef CONFIG_RT_GROUP_SCHED static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) { hrtimer_cancel(&rt_b->rt_period_timer); } #endif /* * sched_domains_mutex serializes calls to arch_init_sched_domains, * detach_destroy_domains and partition_sched_domains. */ static DEFINE_MUTEX(sched_domains_mutex); #ifdef CONFIG_GROUP_SCHED #include struct cfs_rq; static LIST_HEAD(task_groups); /* task group related information */ struct task_group { #ifdef CONFIG_CGROUP_SCHED struct cgroup_subsys_state css; #endif #ifdef CONFIG_USER_SCHED uid_t uid; #endif #ifdef CONFIG_FAIR_GROUP_SCHED /* schedulable entities of this group on each cpu */ struct sched_entity **se; /* runqueue "owned" by this group on each cpu */ struct cfs_rq **cfs_rq; unsigned long shares; #endif #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity **rt_se; struct rt_rq **rt_rq; struct rt_bandwidth rt_bandwidth; #endif struct rcu_head rcu; struct list_head list; struct task_group *parent; struct list_head siblings; struct list_head children; }; #ifdef CONFIG_USER_SCHED /* Helper function to pass uid information to create_sched_user() */ void set_tg_uid(struct user_struct *user) { user->tg->uid = user->uid; } /* * Root task group. * Every UID task group (including init_task_group aka UID-0) will * be a child to this group. */ struct task_group root_task_group; #ifdef CONFIG_FAIR_GROUP_SCHED /* Default task group's sched entity on each cpu */ static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); /* Default task group's cfs_rq on each cpu */ static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq); #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq); #endif /* CONFIG_RT_GROUP_SCHED */ #else /* !CONFIG_USER_SCHED */ #define root_task_group init_task_group #endif /* CONFIG_USER_SCHED */ /* task_group_lock serializes add/remove of task groups and also changes to * a task group's cpu shares. */ static DEFINE_SPINLOCK(task_group_lock); #ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_SMP static int root_task_group_empty(void) { return list_empty(&root_task_group.children); } #endif #ifdef CONFIG_USER_SCHED # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) #else /* !CONFIG_USER_SCHED */ # define INIT_TASK_GROUP_LOAD NICE_0_LOAD #endif /* CONFIG_USER_SCHED */ /* * A weight of 0 or 1 can cause arithmetics problems. * A weight of a cfs_rq is the sum of weights of which entities * are queued on this cfs_rq, so a weight of a entity should not be * too large, so as the shares value of a task group. * (The default weight is 1024 - so there's no practical * limitation from this.) */ #define MIN_SHARES 2 #define MAX_SHARES (1UL << 18) static int init_task_group_load = INIT_TASK_GROUP_LOAD; #endif /* Default task group. * Every task in system belong to this group at bootup. */ struct task_group init_task_group; /* return group to which a task belongs */ static inline struct task_group *task_group(struct task_struct *p) { struct task_group *tg; #ifdef CONFIG_USER_SCHED rcu_read_lock(); tg = __task_cred(p)->user->tg; rcu_read_unlock(); #elif defined(CONFIG_CGROUP_SCHED) tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), struct task_group, css); #else tg = &init_task_group; #endif return tg; } /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { #ifdef CONFIG_FAIR_GROUP_SCHED p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; p->se.parent = task_group(p)->se[cpu]; #endif #ifdef CONFIG_RT_GROUP_SCHED p->rt.rt_rq = task_group(p)->rt_rq[cpu]; p->rt.parent = task_group(p)->rt_se[cpu]; #endif } #else static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } static inline struct task_group *task_group(struct task_struct *p) { return NULL; } #endif /* CONFIG_GROUP_SCHED */ /* CFS-related fields in a runqueue */ struct cfs_rq { struct load_weight load; unsigned long nr_running; u64 exec_clock; u64 min_vruntime; struct rb_root tasks_timeline; struct rb_node *rb_leftmost; struct list_head tasks; struct list_head *balance_iterator; /* * 'curr' points to currently running entity on this cfs_rq. * It is set to NULL otherwise (i.e when none are currently running). */ struct sched_entity *curr, *next, *last; unsigned int nr_spread_over; #ifdef CONFIG_FAIR_GROUP_SCHED struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ /* * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in * a hierarchy). Non-leaf lrqs hold other higher schedulable entities * (like users, containers etc.) * * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This * list is used during load balance. */ struct list_head leaf_cfs_rq_list; struct task_group *tg; /* group that "owns" this runqueue */ #ifdef CONFIG_SMP /* * the part of load.weight contributed by tasks */ unsigned long task_weight; /* * h_load = weight * f(tg) * * Where f(tg) is the recursive weight fraction assigned to * this group. */ unsigned long h_load; /* * this cpu's part of tg->shares */ unsigned long shares; /* * load.weight at the time we set shares */ unsigned long rq_weight; #endif #endif }; /* Real-Time classes' related field in a runqueue: */ struct rt_rq { struct rt_prio_array active; unsigned long rt_nr_running; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED struct { int curr; /* highest queued rt task prio */ #ifdef CONFIG_SMP int next; /* next highest */ #endif } highest_prio; #endif #ifdef CONFIG_SMP unsigned long rt_nr_migratory; unsigned long rt_nr_total; int overloaded; struct plist_head pushable_tasks; #endif int rt_throttled; u64 rt_time; u64 rt_runtime; /* Nests inside the rq lock: */ spinlock_t rt_runtime_lock; #ifdef CONFIG_RT_GROUP_SCHED unsigned long rt_nr_boosted; struct rq *rq; struct list_head leaf_rt_rq_list; struct task_group *tg; struct sched_rt_entity *rt_se; #endif }; #ifdef CONFIG_SMP /* * We add the notion of a root-domain which will be used to define per-domain * variables. Each exclusive cpuset essentially defines an island domain by * fully partitioning the member cpus from any other cpuset. Whenever a new * exclusive cpuset is created, we also create and attach a new root-domain * object. * */ struct root_domain { atomic_t refcount; cpumask_var_t span; cpumask_var_t online; /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. */ cpumask_var_t rto_mask; atomic_t rto_count; #ifdef CONFIG_SMP struct cpupri cpupri; #endif }; /* * By default the system creates a single root-domain with all cpus as * members (mimicking the global state we have today). */ static struct root_domain def_root_domain; #endif /* * This is the main, per-CPU runqueue data structure. * * Locking rule: those places that want to lock multiple runqueues * (such as the load balancing or the thread migration code), lock * acquire operations must be ordered by ascending &runqueue. */ struct rq { /* runqueue lock: */ spinlock_t lock; /* * nr_running and cpu_load should be in the same cacheline because * remote CPUs use both these fields when doing load calculation. */ unsigned long nr_running; #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; #ifdef CONFIG_NO_HZ unsigned long last_tick_seen; unsigned char in_nohz_recently; #endif /* capture load from *all* tasks on this cpu: */ struct load_weight load; unsigned long nr_load_updates; u64 nr_switches; u64 nr_migrations_in; struct cfs_rq cfs; struct rt_rq rt; #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this cpu: */ struct list_head leaf_cfs_rq_list; #endif #ifdef CONFIG_RT_GROUP_SCHED struct list_head leaf_rt_rq_list; #endif /* * This is part of a global counter where only the total sum * over all CPUs matters. A task can increase this counter on * one CPU and if it got migrated afterwards it may decrease * it on another CPU. Always updated under the runqueue lock: */ unsigned long nr_uninterruptible; struct task_struct *curr, *idle; unsigned long next_balance; struct mm_struct *prev_mm; u64 clock; atomic_t nr_iowait; #ifdef CONFIG_SMP struct root_domain *rd; struct sched_domain *sd; unsigned char idle_at_tick; /* For active balancing */ int post_schedule; int active_balance; int push_cpu; /* cpu of this runqueue: */ int cpu; int online; unsigned long avg_load_per_task; struct task_struct *migration_thread; struct list_head migration_queue; u64 rt_avg; u64 age_stamp; u64 idle_stamp; u64 avg_idle; #endif /* calc_load related fields */ unsigned long calc_load_update; long calc_load_active; #ifdef CONFIG_SCHED_HRTICK #ifdef CONFIG_SMP int hrtick_csd_pending; struct call_single_data hrtick_csd; #endif struct hrtimer hrtick_timer; #endif #ifdef CONFIG_SCHEDSTATS /* latency stats */ struct sched_info rq_sched_info; unsigned long long rq_cpu_time; /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ unsigned int yld_count; /* schedule() stats */ unsigned int sched_switch; unsigned int sched_count; unsigned int sched_goidle; /* try_to_wake_up() stats */ unsigned int ttwu_count; unsigned int ttwu_local; /* BKL stats */ unsigned int bkl_count; #endif }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) { rq->curr->sched_class->check_preempt_curr(rq, p, flags); } static inline int cpu_of(struct rq *rq) { #ifdef CONFIG_SMP return rq->cpu; #else return 0; #endif } /* * The domain tree (rq->sd) is protected by RCU's quiescent state transition. * See detach_destroy_domains: synchronize_sched for details. * * The domain tree of any CPU may only be accessed from within * preempt-disabled sections. */ #define for_each_domain(cpu, __sd) \ for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) #define this_rq() (&__get_cpu_var(runqueues)) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) #define raw_rq() (&__raw_get_cpu_var(runqueues)) inline void update_rq_clock(struct rq *rq) { rq->clock = sched_clock_cpu(cpu_of(rq)); } /* * Tunables that become constants when CONFIG_SCHED_DEBUG is off: */ #ifdef CONFIG_SCHED_DEBUG # define const_debug __read_mostly #else # define const_debug static const #endif /** * runqueue_is_locked * @cpu: the processor in question. * * Returns true if the current cpu runqueue is locked. * This interface allows printk to be called with the runqueue lock * held and know whether or not it is OK to wake up the klogd. */ int runqueue_is_locked(int cpu) { return spin_is_locked(&cpu_rq(cpu)->lock); } /* * Debugging: various feature bits */ #define SCHED_FEAT(name, enabled) \ __SCHED_FEAT_##name , enum { #include "sched_features.h" }; #undef SCHED_FEAT #define SCHED_FEAT(name, enabled) \ (1UL << __SCHED_FEAT_##name) * enabled | const_debug unsigned int sysctl_sched_features = #include "sched_features.h" 0; #undef SCHED_FEAT #ifdef CONFIG_SCHED_DEBUG #define SCHED_FEAT(name, enabled) \ #name , static __read_mostly char *sched_feat_names[] = { #include "sched_features.h" NULL }; #undef SCHED_FEAT static int sched_feat_show(struct seq_file *m, void *v) { int i; for (i = 0; sched_feat_names[i]; i++) { if (!(sysctl_sched_features & (1UL << i))) seq_puts(m, "NO_"); seq_printf(m, "%s ", sched_feat_names[i]); } seq_puts(m, "\n"); return 0; } static ssize_t sched_feat_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { char buf[64]; char *cmp = buf; int neg = 0; int i; if (cnt > 63) cnt = 63; if (copy_from_user(&buf, ubuf, cnt)) return -EFAULT; buf[cnt] = 0; if (strncmp(buf, "NO_", 3) == 0) { neg = 1; cmp += 3; } for (i = 0; sched_feat_names[i]; i++) { int len = strlen(sched_feat_names[i]); if (strncmp(cmp, sched_feat_names[i], len) == 0) { if (neg) sysctl_sched_features &= ~(1UL << i); else sysctl_sched_features |= (1UL << i); break; } } if (!sched_feat_names[i]) return -EINVAL; filp->f_pos += cnt; return cnt; } static int sched_feat_open(struct inode *inode, struct file *filp) { return single_open(filp, sched_feat_show, NULL); } static const struct file_operations sched_feat_fops = { .open = sched_feat_open, .write = sched_feat_write, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static __init int sched_init_debug(void) { debugfs_create_file("sched_features", 0644, NULL, NULL, &sched_feat_fops); return 0; } late_initcall(sched_init_debug); #endif #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) /* * Number of tasks to iterate in a single balance run. * Limited because this is done with IRQs disabled. */ const_debug unsigned int sysctl_sched_nr_migrate = 32; /* * ratelimit for updating the group shares. * default: 0.25ms */ unsigned int sysctl_sched_shares_ratelimit = 250000; /* * Inject some fuzzyness into changing the per-cpu group shares * this avoids remote rq-locks at the expense of fairness. * default: 4 */ unsigned int sysctl_sched_shares_thresh = 4; /* * period over which we average the RT time consumption, measured * in ms. * * default: 1s */ const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; /* * period over which we measure -rt task cpu usage in us. * default: 1s */ unsigned int sysctl_sched_rt_period = 1000000; static __read_mostly int scheduler_running; /* * part of the period that we allow rt tasks to run in us. * default: 0.95s */ int sysctl_sched_rt_runtime = 950000; static inline u64 global_rt_period(void) { return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; } static inline u64 global_rt_runtime(void) { if (sysctl_sched_rt_runtime < 0) return RUNTIME_INF; return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; } #ifndef prepare_arch_switch # define prepare_arch_switch(next) do { } while (0) #endif #ifndef finish_arch_switch # define finish_arch_switch(prev) do { } while (0) #endif static inline int task_current(struct rq *rq, struct task_struct *p) { return rq->curr == p; } #ifndef __ARCH_WANT_UNLOCKED_CTXSW static inline int task_running(struct rq *rq, struct task_struct *p) { return task_current(rq, p); } static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) { } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) { #ifdef CONFIG_DEBUG_SPINLOCK /* this is a valid case when another task releases the spinlock */ rq->lock.owner = current; #endif /* * If we are tracking spinlock dependencies then we have to * fix up the runqueue lock - which gets 'carried over' from * prev into current: */ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); spin_unlock_irq(&rq->lock); } #else /* __ARCH_WANT_UNLOCKED_CTXSW */ static inline int task_running(struct rq *rq, struct task_struct *p) { #ifdef CONFIG_SMP return p->oncpu; #else return task_current(rq, p); #endif } static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) { #ifdef CONFIG_SMP /* * We can optimise this out completely for !SMP, because the * SMP rebalancing from interrupt is the only thing that cares * here. */ next->oncpu = 1; #endif #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW spin_unlock_irq(&rq->lock); #else spin_unlock(&rq->lock); #endif } static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) { #ifdef CONFIG_SMP /* * After ->oncpu is cleared, the task can be moved to a different CPU. * We must ensure this doesn't happen until the switch is completely * finished. */ smp_wmb(); prev->oncpu = 0; #endif #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW local_irq_enable(); #endif } #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ /* * __task_rq_lock - lock the runqueue a given task resides on. * Must be called interrupts disabled. */ static inline struct rq *__task_rq_lock(struct task_struct *p) __acquires(rq->lock) { for (;;) { struct rq *rq = task_rq(p); spin_lock(&rq->lock); if (likely(rq == task_rq(p))) return rq; spin_unlock(&rq->lock); } } /* * task_rq_lock - lock the runqueue a given task resides on and disable * interrupts. Note the ordering: we can safely lookup the task_rq without * explicitly disabling preemption. */ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) __acquires(rq->lock) { struct rq *rq; for (;;) { local_irq_save(*flags); rq = task_rq(p); spin_lock(&rq->lock); if (likely(rq == task_rq(p))) return rq; spin_unlock_irqrestore(&rq->lock, *flags); } } void task_rq_unlock_wait(struct task_struct *p) { struct rq *rq = task_rq(p); smp_mb(); /* spin-unlock-wait is not a full memory barrier */ spin_unlock_wait(&rq->lock); } static void __task_rq_unlock(struct rq *rq) __releases(rq->lock) { spin_unlock(&rq->lock); } static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) __releases(rq->lock) { spin_unlock_irqrestore(&rq->lock, *flags); } /* * this_rq_lock - lock this runqueue and disable interrupts. */ static struct rq *this_rq_lock(void) __acquires(rq->lock) { struct rq *rq; local_irq_disable(); rq = this_rq(); spin_lock(&rq->lock); return rq; } #ifdef CONFIG_SCHED_HRTICK /* * Use HR-timers to deliver accurate preemption points. * * Its all a bit involved since we cannot program an hrt while holding the * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a * reschedule event. * * When we get rescheduled we reprogram the hrtick_timer outside of the * rq->lock. */ /* * Use hrtick when: * - enabled by features * - hrtimer is actually high res */ static inline int hrtick_enabled(struct rq *rq) { if (!sched_feat(HRTICK)) return 0; if (!cpu_active(cpu_of(rq))) return 0; return hrtimer_is_hres_active(&rq->hrtick_timer); } static void hrtick_clear(struct rq *rq) { if (hrtimer_active(&rq->hrtick_timer)) hrtimer_cancel(&rq->hrtick_timer); } /* * High-resolution timer tick. * Runs from hardirq context with interrupts disabled. */ static enum hrtimer_restart hrtick(struct hrtimer *timer) { struct rq *rq = container_of(timer, struct rq, hrtick_timer); WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); spin_lock(&rq->lock); update_rq_clock(rq); rq->curr->sched_class->task_tick(rq, rq->curr, 1); spin_unlock(&rq->lock); return HRTIMER_NORESTART; } #ifdef CONFIG_SMP /* * called from hardirq (IPI) context */ static void __hrtick_start(void *arg) { struct rq *rq = arg; spin_lock(&rq->lock); hrtimer_restart(&rq->hrtick_timer); rq->hrtick_csd_pending = 0; spin_unlock(&rq->lock); } /* * Called to set the hrtick timer state. * * called with rq->lock held and irqs disabled */ static void hrtick_start(struct rq *rq, u64 delay) { struct hrtimer *timer = &rq->hrtick_timer; ktime_t time = ktime_add_ns(timer->base->get_time(), delay); hrtimer_set_expires(timer, time); if (rq == this_rq()) { hrtimer_restart(timer); } else if (!rq->hrtick_csd_pending) { __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); rq->hrtick_csd_pending = 1; } } static int hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (int)(long)hcpu; switch (action) { case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: hrtick_clear(cpu_rq(cpu)); return NOTIFY_OK; } return NOTIFY_DONE; } static __init void init_hrtick(void) { hotcpu_notifier(hotplug_hrtick, 0); } #else /* * Called to set the hrtick timer state. * * called with rq->lock held and irqs disabled */ static void hrtick_start(struct rq *rq, u64 delay) { __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, HRTIMER_MODE_REL_PINNED, 0); } static inline void init_hrtick(void) { } #endif /* CONFIG_SMP */ static void init_rq_hrtick(struct rq *rq) { #ifdef CONFIG_SMP rq->hrtick_csd_pending = 0; rq->hrtick_csd.flags = 0; rq->hrtick_csd.func = __hrtick_start; rq->hrtick_csd.info = rq; #endif hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); rq->hrtick_timer.function = hrtick; } #else /* CONFIG_SCHED_HRTICK */ static inline void hrtick_clear(struct rq *rq) { } static inline void init_rq_hrtick(struct rq *rq) { } static inline void init_hrtick(void) { } #endif /* CONFIG_SCHED_HRTICK */ /* * resched_task - mark a task 'to be rescheduled now'. * * On UP this means the setting of the need_resched flag, on SMP it * might also involve a cross-CPU call to trigger the scheduler on * the target CPU. */ #ifdef CONFIG_SMP #ifndef tsk_is_polling #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) #endif static void resched_task(struct task_struct *p) { int cpu; assert_spin_locked(&task_rq(p)->lock); if (test_tsk_need_resched(p)) return; set_tsk_need_resched(p); cpu = task_cpu(p); if (cpu == smp_processor_id()) return; /* NEED_RESCHED must be visible before we test polling */ smp_mb(); if (!tsk_is_polling(p)) smp_send_reschedule(cpu); } static void resched_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; if (!spin_trylock_irqsave(&rq->lock, flags)) return; resched_task(cpu_curr(cpu)); spin_unlock_irqrestore(&rq->lock, flags); } #ifdef CONFIG_NO_HZ /* * When add_timer_on() enqueues a timer into the timer wheel of an * idle CPU then this timer might expire before the next timer event * which is scheduled to wake up that CPU. In case of a completely * idle system the next event might even be infinite time into the * future. wake_up_idle_cpu() ensures that the CPU is woken up and * leaves the inner idle loop so the newly added timer is taken into * account when the CPU goes back to idle and evaluates the timer * wheel for the next timer event. */ void wake_up_idle_cpu(int cpu) { struct rq *rq = cpu_rq(cpu); if (cpu == smp_processor_id()) return; /* * This is safe, as this function is called with the timer * wheel base lock of (cpu) held. When the CPU is on the way * to idle and has not yet set rq->curr to idle then it will * be serialized on the timer wheel base lock and take the new * timer into account automatically. */ if (rq->curr != rq->idle) return; /* * We can set TIF_RESCHED on the idle task of the other CPU * lockless. The worst case is that the other CPU runs the * idle task through an additional NOOP schedule() */ set_tsk_need_resched(rq->idle); /* NEED_RESCHED must be visible before we test polling */ smp_mb(); if (!tsk_is_polling(rq->idle)) smp_send_reschedule(cpu); } #endif /* CONFIG_NO_HZ */ static u64 sched_avg_period(void) { return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; } static void sched_avg_update(struct rq *rq) { s64 period = sched_avg_period(); while ((s64)(rq->clock - rq->age_stamp) > period) { rq->age_stamp += period; rq->rt_avg /= 2; } } static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { rq->rt_avg += rt_delta; sched_avg_update(rq); } #else /* !CONFIG_SMP */ static void resched_task(struct task_struct *p) { assert_spin_locked(&task_rq(p)->lock); set_tsk_need_resched(p); } static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } #endif /* CONFIG_SMP */ #if BITS_PER_LONG == 32 # define WMULT_CONST (~0UL) #else # define WMULT_CONST (1UL << 32) #endif #define WMULT_SHIFT 32 /* * Shift right and round: */ #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) /* * delta *= weight / lw */ static unsigned long calc_delta_mine(unsigned long delta_exec, unsigned long weight, struct load_weight *lw) { u64 tmp; if (!lw->inv_weight) { if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) lw->inv_weight = 1; else lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) / (lw->weight+1); } tmp = (u64)delta_exec * weight; /* * Check whether we'd overflow the 64-bit multiplication: */ if (unlikely(tmp > WMULT_CONST)) tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, WMULT_SHIFT/2); else tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); } static inline void update_load_add(struct load_weight *lw, unsigned long inc) { lw->weight += inc; lw->inv_weight = 0; } static inline void update_load_sub(struct load_weight *lw, unsigned long dec) { lw->weight -= dec; lw->inv_weight = 0; } /* * To aid in avoiding the subversion of "niceness" due to uneven distribution * of tasks with abnormal "nice" values across CPUs the contribution that * each task makes to its run queue's load is weighted according to its * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a * scaled version of the new time slice allocation that they receive on time * slice expiry etc. */ #define WEIGHT_IDLEPRIO 3 #define WMULT_IDLEPRIO 1431655765 /* * Nice levels are multiplicative, with a gentle 10% change for every * nice level changed. I.e. when a CPU-bound task goes from nice 0 to * nice 1, it will get ~10% less CPU time than another CPU-bound task * that remained on nice 0. * * The "10% effect" is relative and cumulative: from _any_ nice level, * if you go up 1 level, it's -10% CPU usage, if you go down 1 level * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. * If a task goes up by ~10% and another task goes down by ~10% then * the relative distance between them is ~25%.) */ static const int prio_to_weight[40] = { /* -20 */ 88761, 71755, 56483, 46273, 36291, /* -15 */ 29154, 23254, 18705, 14949, 11916, /* -10 */ 9548, 7620, 6100, 4904, 3906, /* -5 */ 3121, 2501, 1991, 1586, 1277, /* 0 */ 1024, 820, 655, 526, 423, /* 5 */ 335, 272, 215, 172, 137, /* 10 */ 110, 87, 70, 56, 45, /* 15 */ 36, 29, 23, 18, 15, }; /* * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. * * In cases where the weight does not change often, we can use the * precalculated inverse to speed up arithmetics by turning divisions * into multiplications: */ static const u32 prio_to_wmult[40] = { /* -20 */ 48388, 59856, 76040, 92818, 118348, /* -15 */ 147320, 184698, 229616, 287308, 360437, /* -10 */ 449829, 563644, 704093, 875809, 1099582, /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, }; static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); /* * runqueue iterator, to support SMP load-balancing between different * scheduling classes, without having to expose their internal data * structures to the load-balancing proper: */ struct rq_iterator { void *arg; struct task_struct *(*start)(void *); struct task_struct *(*next)(void *); }; #ifdef CONFIG_SMP static unsigned long balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, unsigned long max_load_move, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, struct rq_iterator *iterator); static int iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, struct sched_domain *sd, enum cpu_idle_type idle, struct rq_iterator *iterator); #endif /* Time spent by the tasks of the cpu accounting group executing in ... */ enum cpuacct_stat_index { CPUACCT_STAT_USER, /* ... user mode */ CPUACCT_STAT_SYSTEM, /* ... kernel mode */ CPUACCT_STAT_NSTATS, }; #ifdef CONFIG_CGROUP_CPUACCT static void cpuacct_charge(struct task_struct *tsk, u64 cputime); static void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val); #else static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} static inline void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val) {} #endif static inline void inc_cpu_load(struct rq *rq, unsigned long load) { update_load_add(&rq->load, load); } static inline void dec_cpu_load(struct rq *rq, unsigned long load) { update_load_sub(&rq->load, load); } #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) typedef int (*tg_visitor)(struct task_group *, void *); /* * Iterate the full tree, calling @down when first entering a node and @up when * leaving it for the final time. */ static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) { struct task_group *parent, *child; int ret; rcu_read_lock(); parent = &root_task_group; down: ret = (*down)(parent, data); if (ret) goto out_unlock; list_for_each_entry_rcu(child, &parent->children, siblings) { parent = child; goto down; up: continue; } ret = (*up)(parent, data); if (ret) goto out_unlock; child = parent; parent = parent->parent; if (parent) goto up; out_unlock: rcu_read_unlock(); return ret; } static int tg_nop(struct task_group *tg, void *data) { return 0; } #endif #ifdef CONFIG_SMP /* Used instead of source_load when we know the type == 0 */ static unsigned long weighted_cpuload(const int cpu) { return cpu_rq(cpu)->load.weight; } /* * Return a low guess at the load of a migration-source cpu weighted * according to the scheduling class and "nice" value. * * We want to under-estimate the load of migration sources, to * balance conservatively. */ static unsigned long source_load(int cpu, int type) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); if (type == 0 || !sched_feat(LB_BIAS)) return total; return min(rq->cpu_load[type-1], total); } /* * Return a high guess at the load of a migration-target cpu weighted * according to the scheduling class and "nice" value. */ static unsigned long target_load(int cpu, int type) { struct rq *rq = cpu_rq(cpu); unsigned long total = weighted_cpuload(cpu); if (type == 0 || !sched_feat(LB_BIAS)) return total; return max(rq->cpu_load[type-1], total); } static struct sched_group *group_of(int cpu) { struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); if (!sd) return NULL; return sd->groups; } static unsigned long power_of(int cpu) { struct sched_group *group = group_of(cpu); if (!group) return SCHED_LOAD_SCALE; return group->cpu_power; } static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); static unsigned long cpu_avg_load_per_task(int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long nr_running = ACCESS_ONCE(rq->nr_running); if (nr_running) rq->avg_load_per_task = rq->load.weight / nr_running; else rq->avg_load_per_task = 0; return rq->avg_load_per_task; } #ifdef CONFIG_FAIR_GROUP_SCHED static __read_mostly unsigned long *update_shares_data; static void __set_se_shares(struct sched_entity *se, unsigned long shares); /* * Calculate and set the cpu's group shares. */ static void update_group_shares_cpu(struct task_group *tg, int cpu, unsigned long sd_shares, unsigned long sd_rq_weight, unsigned long *usd_rq_weight) { unsigned long shares, rq_weight; int boost = 0; rq_weight = usd_rq_weight[cpu]; if (!rq_weight) { boost = 1; rq_weight = NICE_0_LOAD; } /* * \Sum_j shares_j * rq_weight_i * shares_i = ----------------------------- * \Sum_j rq_weight_j */ shares = (sd_shares * rq_weight) / sd_rq_weight; shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); if (abs(shares - tg->se[cpu]->load.weight) > sysctl_sched_shares_thresh) { struct rq *rq = cpu_rq(cpu); unsigned long flags; spin_lock_irqsave(&rq->lock, flags); tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight; tg->cfs_rq[cpu]->shares = boost ? 0 : shares; __set_se_shares(tg->se[cpu], shares); spin_unlock_irqrestore(&rq->lock, flags); } } /* * Re-compute the task group their per cpu shares over the given domain. * This needs to be done in a bottom-up fashion because the rq weight of a * parent group depends on the shares of its child groups. */ static int tg_shares_up(struct task_group *tg, void *data) { unsigned long weight, rq_weight = 0, shares = 0; unsigned long *usd_rq_weight; struct sched_domain *sd = data; unsigned long flags; int i; if (!tg->se[0]) return 0; local_irq_save(flags); usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id()); for_each_cpu(i, sched_domain_span(sd)) { weight = tg->cfs_rq[i]->load.weight; usd_rq_weight[i] = weight; /* * If there are currently no tasks on the cpu pretend there * is one of average load so that when a new task gets to * run here it will not get delayed by group starvation. */ if (!weight) weight = NICE_0_LOAD; rq_weight += weight; shares += tg->cfs_rq[i]->shares; } if ((!shares && rq_weight) || shares > tg->shares) shares = tg->shares; if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) shares = tg->shares; for_each_cpu(i, sched_domain_span(sd)) update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight); local_irq_restore(flags); return 0; } /* * Compute the cpu's hierarchical load factor for each task group. * This needs to be done in a top-down fashion because the load of a child * group is a fraction of its parents load. */ static int tg_load_down(struct task_group *tg, void *data) { unsigned long load; long cpu = (long)data; if (!tg->parent) { load = cpu_rq(cpu)->load.weight; } else { load = tg->parent->cfs_rq[cpu]->h_load; load *= tg->cfs_rq[cpu]->shares; load /= tg->parent->cfs_rq[cpu]->load.weight + 1; } tg->cfs_rq[cpu]->h_load = load; return 0; } static void update_shares(struct sched_domain *sd) { s64 elapsed; u64 now; if (root_task_group_empty()) return; now = cpu_clock(raw_smp_processor_id()); elapsed = now - sd->last_update; if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { sd->last_update = now; walk_tg_tree(tg_nop, tg_shares_up, sd); } } static void update_shares_locked(struct rq *rq, struct sched_domain *sd) { if (root_task_group_empty()) return; spin_unlock(&rq->lock); update_shares(sd); spin_lock(&rq->lock); } static void update_h_load(long cpu) { if (root_task_group_empty()) return; walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); } #else static inline void update_shares(struct sched_domain *sd) { } static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) { } #endif #ifdef CONFIG_PREEMPT static void double_rq_lock(struct rq *rq1, struct rq *rq2); /* * fair double_lock_balance: Safely acquires both rq->locks in a fair * way at the expense of forcing extra atomic operations in all * invocations. This assures that the double_lock is acquired using the * same underlying policy as the spinlock_t on this architecture, which * reduces latency compared to the unfair variant below. However, it * also adds more overhead and therefore may reduce throughput. */ static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { spin_unlock(&this_rq->lock); double_rq_lock(this_rq, busiest); return 1; } #else /* * Unfair double_lock_balance: Optimizes throughput at the expense of * latency by eliminating extra atomic operations when the locks are * already in proper order on entry. This favors lower cpu-ids and will * grant the double lock to lower cpus over higher ids under contention, * regardless of entry order into the function. */ static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { int ret = 0; if (unlikely(!spin_trylock(&busiest->lock))) { if (busiest < this_rq) { spin_unlock(&this_rq->lock); spin_lock(&busiest->lock); spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); ret = 1; } else spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); } return ret; } #endif /* CONFIG_PREEMPT */ /* * double_lock_balance - lock the busiest runqueue, this_rq is locked already. */ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) { if (unlikely(!irqs_disabled())) { /* printk() doesn't work good under rq->lock */ spin_unlock(&this_rq->lock); BUG_ON(1); } return _double_lock_balance(this_rq, busiest); } static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { spin_unlock(&busiest->lock); lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); } #endif #ifdef CONFIG_FAIR_GROUP_SCHED static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) { #ifdef CONFIG_SMP cfs_rq->shares = shares; #endif } #endif static void calc_load_account_active(struct rq *this_rq); #include "sched_stats.h" #include "sched_idletask.c" #include "sched_fair.c" #include "sched_rt.c" #ifdef CONFIG_SCHED_DEBUG # include "sched_debug.c" #endif #define sched_class_highest (&rt_sched_class) #define for_each_class(class) \ for (class = sched_class_highest; class; class = class->next) static void inc_nr_running(struct rq *rq) { rq->nr_running++; } static void dec_nr_running(struct rq *rq) { rq->nr_running--; } static void set_load_weight(struct task_struct *p) { if (task_has_rt_policy(p)) { p->se.load.weight = prio_to_weight[0] * 2; p->se.load.inv_weight = prio_to_wmult[0] >> 1; return; } /* * SCHED_IDLE tasks get minimal weight: */ if (p->policy == SCHED_IDLE) { p->se.load.weight = WEIGHT_IDLEPRIO; p->se.load.inv_weight = WMULT_IDLEPRIO; return; } p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; } static void update_avg(u64 *avg, u64 sample) { s64 diff = sample - *avg; *avg += diff >> 3; } static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) { if (wakeup) p->se.start_runtime = p->se.sum_exec_runtime; sched_info_queued(p); p->sched_class->enqueue_task(rq, p, wakeup); p->se.on_rq = 1; } static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) { if (sleep) { if (p->se.last_wakeup) { update_avg(&p->se.avg_overlap, p->se.sum_exec_runtime - p->se.last_wakeup); p->se.last_wakeup = 0; } else { update_avg(&p->se.avg_wakeup, sysctl_sched_wakeup_granularity); } } sched_info_dequeued(p); p->sched_class->dequeue_task(rq, p, sleep); p->se.on_rq = 0; } /* * __normal_prio - return the priority that is based on the static prio */ static inline int __normal_prio(struct task_struct *p) { return p->static_prio; } /* * Calculate the expected normal priority: i.e. priority * without taking RT-inheritance into account. Might be * boosted by interactivity modifiers. Changes upon fork, * setprio syscalls, and whenever the interactivity * estimator recalculates. */ static inline int normal_prio(struct task_struct *p) { int prio; if (task_has_rt_policy(p)) prio = MAX_RT_PRIO-1 - p->rt_priority; else prio = __normal_prio(p); return prio; } /* * Calculate the current priority, i.e. the priority * taken into account by the scheduler. This value might * be boosted by RT tasks, or might be boosted by * interactivity modifiers. Will be RT if the task got * RT-boosted. If not then it returns p->normal_prio. */ static int effective_prio(struct task_struct *p) { p->normal_prio = normal_prio(p); /* * If we are RT tasks or we were boosted to RT priority, * keep the priority unchanged. Otherwise, update priority * to the normal priority: */ if (!rt_prio(p->prio)) return p->normal_prio; return p->prio; } /* * activate_task - move a task to the runqueue. */ static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) { if (task_contributes_to_load(p)) rq->nr_uninterruptible--; enqueue_task(rq, p, wakeup); inc_nr_running(rq); } /* * deactivate_task - remove a task from the runqueue. */ static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) { if (task_contributes_to_load(p)) rq->nr_uninterruptible++; dequeue_task(rq, p, sleep); dec_nr_running(rq); } /** * task_curr - is this task currently executing on a CPU? * @p: the task in question. */ inline int task_curr(const struct task_struct *p) { return cpu_curr(task_cpu(p)) == p; } static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) { set_task_rq(p, cpu); #ifdef CONFIG_SMP /* * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be * successfuly executed on another CPU. We must ensure that updates of * per-task data have been completed by this moment. */ smp_wmb(); task_thread_info(p)->cpu = cpu; #endif } static inline void check_class_changed(struct rq *rq, struct task_struct *p, const struct sched_class *prev_class, int oldprio, int running) { if (prev_class != p->sched_class) { if (prev_class->switched_from) prev_class->switched_from(rq, p, running); p->sched_class->switched_to(rq, p, running); } else p->sched_class->prio_changed(rq, p, oldprio, running); } /** * kthread_bind - bind a just-created kthread to a cpu. * @p: thread created by kthread_create(). * @cpu: cpu (might not be online, must be possible) for @k to run on. * * Description: This function is equivalent to set_cpus_allowed(), * except that @cpu doesn't need to be online, and the thread must be * stopped (i.e., just returned from kthread_create()). * * Function lives here instead of kthread.c because it messes with * scheduler internals which require locking. */ void kthread_bind(struct task_struct *p, unsigned int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; /* Must have done schedule() in kthread() before we set_task_cpu */ if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) { WARN_ON(1); return; } spin_lock_irqsave(&rq->lock, flags); set_task_cpu(p, cpu); p->cpus_allowed = cpumask_of_cpu(cpu); p->rt.nr_cpus_allowed = 1; p->flags |= PF_THREAD_BOUND; spin_unlock_irqrestore(&rq->lock, flags); } EXPORT_SYMBOL(kthread_bind); #ifdef CONFIG_SMP /* * Is this task likely cache-hot: */ static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) { s64 delta; if (p->sched_class != &fair_sched_class) return 0; /* * Buddy candidates are cache hot: */ if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && (&p->se == cfs_rq_of(&p->se)->next || &p->se == cfs_rq_of(&p->se)->last)) return 1; if (sysctl_sched_migration_cost == -1) return 1; if (sysctl_sched_migration_cost == 0) return 0; delta = now - p->se.exec_start; return delta < (s64)sysctl_sched_migration_cost; } void set_task_cpu(struct task_struct *p, unsigned int new_cpu) { int old_cpu = task_cpu(p); struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); struct cfs_rq *old_cfsrq = task_cfs_rq(p), *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); u64 clock_offset; clock_offset = old_rq->clock - new_rq->clock; trace_sched_migrate_task(p, new_cpu); #ifdef CONFIG_SCHEDSTATS if (p->se.wait_start) p->se.wait_start -= clock_offset; if (p->se.sleep_start) p->se.sleep_start -= clock_offset; if (p->se.block_start) p->se.block_start -= clock_offset; #endif if (old_cpu != new_cpu) { p->se.nr_migrations++; new_rq->nr_migrations_in++; #ifdef CONFIG_SCHEDSTATS if (task_hot(p, old_rq->clock, NULL)) schedstat_inc(p, se.nr_forced2_migrations); #endif perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); } p->se.vruntime -= old_cfsrq->min_vruntime - new_cfsrq->min_vruntime; __set_task_cpu(p, new_cpu); } struct migration_req { struct list_head list; struct task_struct *task; int dest_cpu; struct completion done; }; /* * The task's runqueue lock must be held. * Returns true if you have to wait for migration thread. */ static int migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) { struct rq *rq = task_rq(p); /* * If the task is not on a runqueue (and not running), then * it is sufficient to simply update the task's cpu field. */ if (!p->se.on_rq && !task_running(rq, p)) { set_task_cpu(p, dest_cpu); return 0; } init_completion(&req->done); req->task = p; req->dest_cpu = dest_cpu; list_add(&req->list, &rq->migration_queue); return 1; } /* * wait_task_context_switch - wait for a thread to complete at least one * context switch. * * @p must not be current. */ void wait_task_context_switch(struct task_struct *p) { unsigned long nvcsw, nivcsw, flags; int running; struct rq *rq; nvcsw = p->nvcsw; nivcsw = p->nivcsw; for (;;) { /* * The runqueue is assigned before the actual context * switch. We need to take the runqueue lock. * * We could check initially without the lock but it is * very likely that we need to take the lock in every * iteration. */ rq = task_rq_lock(p, &flags); running = task_running(rq, p); task_rq_unlock(rq, &flags); if (likely(!running)) break; /* * The switch count is incremented before the actual * context switch. We thus wait for two switches to be * sure at least one completed. */ if ((p->nvcsw - nvcsw) > 1) break; if ((p->nivcsw - nivcsw) > 1) break; cpu_relax(); } } /* * wait_task_inactive - wait for a thread to unschedule. * * If @match_state is nonzero, it's the @p->state value just checked and * not expected to change. If it changes, i.e. @p might have woken up, * then return zero. When we succeed in waiting for @p to be off its CPU, * we return a positive number (its total switch count). If a second call * a short while later returns the same number, the caller can be sure that * @p has remained unscheduled the whole time. * * The caller must ensure that the task *will* unschedule sometime soon, * else this function might spin for a *long* time. This function can't * be called with interrupts off, or it may introduce deadlock with * smp_call_function() if an IPI is sent by the same process we are * waiting to become inactive. */ unsigned long wait_task_inactive(struct task_struct *p, long match_state) { unsigned long flags; int running, on_rq; unsigned long ncsw; struct rq *rq; for (;;) { /* * We do the initial early heuristics without holding * any task-queue locks at all. We'll only try to get * the runqueue lock when things look like they will * work out! */ rq = task_rq(p); /* * If the task is actively running on another CPU * still, just relax and busy-wait without holding * any locks. * * NOTE! Since we don't hold any locks, it's not * even sure that "rq" stays as the right runqueue! * But we don't care, since "task_running()" will * return false if the runqueue has changed and p * is actually now running somewhere else! */ while (task_running(rq, p)) { if (match_state && unlikely(p->state != match_state)) return 0; cpu_relax(); } /* * Ok, time to look more closely! We need the rq * lock now, to be *sure*. If we're wrong, we'll * just go back and repeat. */ rq = task_rq_lock(p, &flags); trace_sched_wait_task(rq, p); running = task_running(rq, p); on_rq = p->se.on_rq; ncsw = 0; if (!match_state || p->state == match_state) ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ task_rq_unlock(rq, &flags); /* * If it changed from the expected state, bail out now. */ if (unlikely(!ncsw)) break; /* * Was it really running after all now that we * checked with the proper locks actually held? * * Oops. Go back and try again.. */ if (unlikely(running)) { cpu_relax(); continue; } /* * It's not enough that it's not actively running, * it must be off the runqueue _entirely_, and not * preempted! * * So if it was still runnable (but just not actively * running right now), it's preempted, and we should * yield - it could be a while. */ if (unlikely(on_rq)) { schedule_timeout_uninterruptible(1); continue; } /* * Ahh, all good. It wasn't running, and it wasn't * runnable, which means that it will never become * running in the future either. We're all done! */ break; } return ncsw; } /*** * kick_process - kick a running thread to enter/exit the kernel * @p: the to-be-kicked thread * * Cause a process which is running on another CPU to enter * kernel-mode, without any delay. (to get signals handled.) * * NOTE: this function doesnt have to take the runqueue lock, * because all it wants to ensure is that the remote task enters * the kernel. If the IPI races and the task has been migrated * to another CPU then no harm is done and the purpose has been * achieved as well. */ void kick_process(struct task_struct *p) { int cpu; preempt_disable(); cpu = task_cpu(p); if ((cpu != smp_processor_id()) && task_curr(p)) smp_send_reschedule(cpu); preempt_enable(); } EXPORT_SYMBOL_GPL(kick_process); #endif /* CONFIG_SMP */ /** * task_oncpu_function_call - call a function on the cpu on which a task runs * @p: the task to evaluate * @func: the function to be called * @info: the function call argument * * Calls the function @func when the task is currently running. This might * be on the current CPU, which just calls the function directly */ void task_oncpu_function_call(struct task_struct *p, void (*func) (void *info), void *info) { int cpu; preempt_disable(); cpu = task_cpu(p); if (task_curr(p)) smp_call_function_single(cpu, func, info, 1); preempt_enable(); } /*** * try_to_wake_up - wake up a thread * @p: the to-be-woken-up thread * @state: the mask of task states that can be woken * @sync: do a synchronous wakeup? * * Put it on the run-queue if it's not already there. The "current" * thread is always on the run-queue (except when the actual * re-schedule is in progress), and as such you're allowed to do * the simpler "current->state = TASK_RUNNING" to mark yourself * runnable without the overhead of this. * * returns failure only if the task is already active. */ static int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) { int cpu, orig_cpu, this_cpu, success = 0; unsigned long flags; struct rq *rq, *orig_rq; if (!sched_feat(SYNC_WAKEUPS)) wake_flags &= ~WF_SYNC; this_cpu = get_cpu(); smp_wmb(); rq = orig_rq = task_rq_lock(p, &flags); update_rq_clock(rq); if (!(p->state & state)) goto out; if (p->se.on_rq) goto out_running; cpu = task_cpu(p); orig_cpu = cpu; #ifdef CONFIG_SMP if (unlikely(task_running(rq, p))) goto out_activate; /* * In order to handle concurrent wakeups and release the rq->lock * we put the task in TASK_WAKING state. * * First fix up the nr_uninterruptible count: */ if (task_contributes_to_load(p)) rq->nr_uninterruptible--; p->state = TASK_WAKING; task_rq_unlock(rq, &flags); cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); if (cpu != orig_cpu) set_task_cpu(p, cpu); rq = task_rq_lock(p, &flags); if (rq != orig_rq) update_rq_clock(rq); WARN_ON(p->state != TASK_WAKING); cpu = task_cpu(p); #ifdef CONFIG_SCHEDSTATS schedstat_inc(rq, ttwu_count); if (cpu == this_cpu) schedstat_inc(rq, ttwu_local); else { struct sched_domain *sd; for_each_domain(this_cpu, sd) { if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { schedstat_inc(sd, ttwu_wake_remote); break; } } } #endif /* CONFIG_SCHEDSTATS */ out_activate: #endif /* CONFIG_SMP */ schedstat_inc(p, se.nr_wakeups); if (wake_flags & WF_SYNC) schedstat_inc(p, se.nr_wakeups_sync); if (orig_cpu != cpu) schedstat_inc(p, se.nr_wakeups_migrate); if (cpu == this_cpu) schedstat_inc(p, se.nr_wakeups_local); else schedstat_inc(p, se.nr_wakeups_remote); activate_task(rq, p, 1); success = 1; /* * Only attribute actual wakeups done by this task. */ if (!in_interrupt()) { struct sched_entity *se = ¤t->se; u64 sample = se->sum_exec_runtime; if (se->last_wakeup) sample -= se->last_wakeup; else sample -= se->start_runtime; update_avg(&se->avg_wakeup, sample); se->last_wakeup = se->sum_exec_runtime; } out_running: trace_sched_wakeup(rq, p, success); check_preempt_curr(rq, p, wake_flags); p->state = TASK_RUNNING; #ifdef CONFIG_SMP if (p->sched_class->task_wake_up) p->sched_class->task_wake_up(rq, p); if (unlikely(rq->idle_stamp)) { u64 delta = rq->clock - rq->idle_stamp; u64 max = 2*sysctl_sched_migration_cost; if (delta > max) rq->avg_idle = max; else update_avg(&rq->avg_idle, delta); rq->idle_stamp = 0; } #endif out: task_rq_unlock(rq, &flags); put_cpu(); return success; } /** * wake_up_process - Wake up a specific process * @p: The process to be woken up. * * Attempt to wake up the nominated process and move it to the set of runnable * processes. Returns 1 if the process was woken up, 0 if it was already * running. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ int wake_up_process(struct task_struct *p) { return try_to_wake_up(p, TASK_ALL, 0); } EXPORT_SYMBOL(wake_up_process); int wake_up_state(struct task_struct *p, unsigned int state) { return try_to_wake_up(p, state, 0); } /* * Perform scheduler related setup for a newly forked process p. * p is forked by current. * * __sched_fork() is basic setup used by init_idle() too: */ static void __sched_fork(struct task_struct *p) { p->se.exec_start = 0; p->se.sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0; p->se.nr_migrations = 0; p->se.last_wakeup = 0; p->se.avg_overlap = 0; p->se.start_runtime = 0; p->se.avg_wakeup = sysctl_sched_wakeup_granularity; p->se.avg_running = 0; #ifdef CONFIG_SCHEDSTATS p->se.wait_start = 0; p->se.wait_max = 0; p->se.wait_count = 0; p->se.wait_sum = 0; p->se.sleep_start = 0; p->se.sleep_max = 0; p->se.sum_sleep_runtime = 0; p->se.block_start = 0; p->se.block_max = 0; p->se.exec_max = 0; p->se.slice_max = 0; p->se.nr_migrations_cold = 0; p->se.nr_failed_migrations_affine = 0; p->se.nr_failed_migrations_running = 0; p->se.nr_failed_migrations_hot = 0; p->se.nr_forced_migrations = 0; p->se.nr_forced2_migrations = 0; p->se.nr_wakeups = 0; p->se.nr_wakeups_sync = 0; p->se.nr_wakeups_migrate = 0; p->se.nr_wakeups_local = 0; p->se.nr_wakeups_remote = 0; p->se.nr_wakeups_affine = 0; p->se.nr_wakeups_affine_attempts = 0; p->se.nr_wakeups_passive = 0; p->se.nr_wakeups_idle = 0; #endif INIT_LIST_HEAD(&p->rt.run_list); p->se.on_rq = 0; INIT_LIST_HEAD(&p->se.group_node); #ifdef CONFIG_PREEMPT_NOTIFIERS INIT_HLIST_HEAD(&p->preempt_notifiers); #endif /* * We mark the process as running here, but have not actually * inserted it onto the runqueue yet. This guarantees that * nobody will actually run it, and a signal or other external * event cannot wake it up and insert it on the runqueue either. */ p->state = TASK_RUNNING; } /* * fork()/clone()-time setup: */ void sched_fork(struct task_struct *p, int clone_flags) { int cpu = get_cpu(); __sched_fork(p); /* * Revert to default priority/policy on fork if requested. */ if (unlikely(p->sched_reset_on_fork)) { if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { p->policy = SCHED_NORMAL; p->normal_prio = p->static_prio; } if (PRIO_TO_NICE(p->static_prio) < 0) { p->static_prio = NICE_TO_PRIO(0); p->normal_prio = p->static_prio; set_load_weight(p); } /* * We don't need the reset flag anymore after the fork. It has * fulfilled its duty: */ p->sched_reset_on_fork = 0; } /* * Make sure we do not leak PI boosting priority to the child. */ p->prio = current->normal_prio; if (!rt_prio(p->prio)) p->sched_class = &fair_sched_class; #ifdef CONFIG_SMP cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); #endif set_task_cpu(p, cpu); #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) if (likely(sched_info_on())) memset(&p->sched_info, 0, sizeof(p->sched_info)); #endif #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) p->oncpu = 0; #endif #ifdef CONFIG_PREEMPT /* Want to start with kernel preemption disabled. */ task_thread_info(p)->preempt_count = 1; #endif plist_node_init(&p->pushable_tasks, MAX_PRIO); put_cpu(); } /* * wake_up_new_task - wake up a newly created task for the first time. * * This function will do some initial scheduler statistics housekeeping * that must be done for every newly created context, then puts the task * on the runqueue and wakes it. */ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) { unsigned long flags; struct rq *rq; rq = task_rq_lock(p, &flags); BUG_ON(p->state != TASK_RUNNING); update_rq_clock(rq); if (!p->sched_class->task_new || !current->se.on_rq) { activate_task(rq, p, 0); } else { /* * Let the scheduling class do new task startup * management (if any): */ p->sched_class->task_new(rq, p); inc_nr_running(rq); } trace_sched_wakeup_new(rq, p, 1); check_preempt_curr(rq, p, WF_FORK); #ifdef CONFIG_SMP if (p->sched_class->task_wake_up) p->sched_class->task_wake_up(rq, p); #endif task_rq_unlock(rq, &flags); } #ifdef CONFIG_PREEMPT_NOTIFIERS /** * preempt_notifier_register - tell me when current is being preempted & rescheduled * @notifier: notifier struct to register */ void preempt_notifier_register(struct preempt_notifier *notifier) { hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); } EXPORT_SYMBOL_GPL(preempt_notifier_register); /** * preempt_notifier_unregister - no longer interested in preemption notifications * @notifier: notifier struct to unregister * * This is safe to call from within a preemption notifier. */ void preempt_notifier_unregister(struct preempt_notifier *notifier) { hlist_del(¬ifier->link); } EXPORT_SYMBOL_GPL(preempt_notifier_unregister); static void fire_sched_in_preempt_notifiers(struct task_struct *curr) { struct preempt_notifier *notifier; struct hlist_node *node; hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) notifier->ops->sched_in(notifier, raw_smp_processor_id()); } static void fire_sched_out_preempt_notifiers(struct task_struct *curr, struct task_struct *next) { struct preempt_notifier *notifier; struct hlist_node *node; hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) notifier->ops->sched_out(notifier, next); } #else /* !CONFIG_PREEMPT_NOTIFIERS */ static void fire_sched_in_preempt_notifiers(struct task_struct *curr) { } static void fire_sched_out_preempt_notifiers(struct task_struct *curr, struct task_struct *next) { } #endif /* CONFIG_PREEMPT_NOTIFIERS */ /** * prepare_task_switch - prepare to switch tasks * @rq: the runqueue preparing to switch * @prev: the current task that is being switched out * @next: the task we are going to switch to. * * This is called with the rq lock held and interrupts off. It must * be paired with a subsequent finish_task_switch after the context * switch. * * prepare_task_switch sets up locking and calls architecture specific * hooks. */ static inline void prepare_task_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { fire_sched_out_preempt_notifiers(prev, next); prepare_lock_switch(rq, next); prepare_arch_switch(next); } /** * finish_task_switch - clean up after a task-switch * @rq: runqueue associated with task-switch * @prev: the thread we just switched away from. * * finish_task_switch must be called after the context switch, paired * with a prepare_task_switch call before the context switch. * finish_task_switch will reconcile locking set up by prepare_task_switch, * and do any other architecture-specific cleanup actions. * * Note that we may have delayed dropping an mm in context_switch(). If * so, we finish that here outside of the runqueue lock. (Doing it * with the lock held can cause deadlocks; see schedule() for * details.) */ static void finish_task_switch(struct rq *rq, struct task_struct *prev) __releases(rq->lock) { struct mm_struct *mm = rq->prev_mm; long prev_state; rq->prev_mm = NULL; /* * A task struct has one reference for the use as "current". * If a task dies, then it sets TASK_DEAD in tsk->state and calls * schedule one last time. The schedule call will never return, and * the scheduled task must drop that reference. * The test for TASK_DEAD must occur while the runqueue locks are * still held, otherwise prev could be scheduled on another cpu, die * there before we look at prev->state, and then the reference would * be dropped twice. * Manfred Spraul */ prev_state = prev->state; finish_arch_switch(prev); perf_event_task_sched_in(current, cpu_of(rq)); finish_lock_switch(rq, prev); fire_sched_in_preempt_notifiers(current); if (mm) mmdrop(mm); if (unlikely(prev_state == TASK_DEAD)) { /* * Remove function-return probe instances associated with this * task and put them back on the free list. */ kprobe_flush_task(prev); put_task_struct(prev); } } #ifdef CONFIG_SMP /* assumes rq->lock is held */ static inline void pre_schedule(struct rq *rq, struct task_struct *prev) { if (prev->sched_class->pre_schedule) prev->sched_class->pre_schedule(rq, prev); } /* rq->lock is NOT held, but preemption is disabled */ static inline void post_schedule(struct rq *rq) { if (rq->post_schedule) { unsigned long flags; spin_lock_irqsave(&rq->lock, flags); if (rq->curr->sched_class->post_schedule) rq->curr->sched_class->post_schedule(rq); spin_unlock_irqrestore(&rq->lock, flags); rq->post_schedule = 0; } } #else static inline void pre_schedule(struct rq *rq, struct task_struct *p) { } static inline void post_schedule(struct rq *rq) { } #endif /** * schedule_tail - first thing a freshly forked thread must call. * @prev: the thread we just switched away from. */ asmlinkage void schedule_tail(struct task_struct *prev) __releases(rq->lock) { struct rq *rq = this_rq(); finish_task_switch(rq, prev); /* * FIXME: do we need to worry about rq being invalidated by the * task_switch? */ post_schedule(rq); #ifdef __ARCH_WANT_UNLOCKED_CTXSW /* In this case, finish_task_switch does not reenable preemption */ preempt_enable(); #endif if (current->set_child_tid) put_user(task_pid_vnr(current), current->set_child_tid); } /* * context_switch - switch to the new MM and the new * thread's register state. */ static inline void context_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { struct mm_struct *mm, *oldmm; prepare_task_switch(rq, prev, next); trace_sched_switch(rq, prev, next); mm = next->mm; oldmm = prev->active_mm; /* * For paravirt, this is coupled with an exit in switch_to to * combine the page table reload and the switch backend into * one hypercall. */ arch_start_context_switch(prev); if (unlikely(!mm)) { next->active_mm = oldmm; atomic_inc(&oldmm->mm_count); enter_lazy_tlb(oldmm, next); } else switch_mm(oldmm, mm, next); if (unlikely(!prev->mm)) { prev->active_mm = NULL; rq->prev_mm = oldmm; } /* * Since the runqueue lock will be released by the next * task (which is an invalid locking op but in the case * of the scheduler it's an obvious special-case), so we * do an early lockdep release here: */ #ifndef __ARCH_WANT_UNLOCKED_CTXSW spin_release(&rq->lock.dep_map, 1, _THIS_IP_); #endif /* Here we just switch the register state and the stack. */ switch_to(prev, next, prev); barrier(); /* * this_rq must be evaluated again because prev may have moved * CPUs since it called schedule(), thus the 'rq' on its stack * frame will be invalid. */ finish_task_switch(this_rq(), prev); } /* * nr_running, nr_uninterruptible and nr_context_switches: * * externally visible scheduler statistics: current number of runnable * threads, current number of uninterruptible-sleeping threads, total * number of context switches performed since bootup. */ unsigned long nr_running(void) { unsigned long i, sum = 0; for_each_online_cpu(i) sum += cpu_rq(i)->nr_running; return sum; } unsigned long nr_uninterruptible(void) { unsigned long i, sum = 0; for_each_possible_cpu(i) sum += cpu_rq(i)->nr_uninterruptible; /* * Since we read the counters lockless, it might be slightly * inaccurate. Do not allow it to go below zero though: */ if (unlikely((long)sum < 0)) sum = 0; return sum; } unsigned long long nr_context_switches(void) { int i; unsigned long long sum = 0; for_each_possible_cpu(i) sum += cpu_rq(i)->nr_switches; return sum; } unsigned long nr_iowait(void) { unsigned long i, sum = 0; for_each_possible_cpu(i) sum += atomic_read(&cpu_rq(i)->nr_iowait); return sum; } unsigned long nr_iowait_cpu(void) { struct rq *this = this_rq(); return atomic_read(&this->nr_iowait); } unsigned long this_cpu_load(void) { struct rq *this = this_rq(); return this->cpu_load[0]; } /* Variables and functions for calc_load */ static atomic_long_t calc_load_tasks; static unsigned long calc_load_update; unsigned long avenrun[3]; EXPORT_SYMBOL(avenrun); /** * get_avenrun - get the load average array * @loads: pointer to dest load array * @offset: offset to add * @shift: shift count to shift the result left * * These values are estimates at best, so no need for locking. */ void get_avenrun(unsigned long *loads, unsigned long offset, int shift) { loads[0] = (avenrun[0] + offset) << shift; loads[1] = (avenrun[1] + offset) << shift; loads[2] = (avenrun[2] + offset) << shift; } static unsigned long calc_load(unsigned long load, unsigned long exp, unsigned long active) { load *= exp; load += active * (FIXED_1 - exp); return load >> FSHIFT; } /* * calc_load - update the avenrun load estimates 10 ticks after the * CPUs have updated calc_load_tasks. */ void calc_global_load(void) { unsigned long upd = calc_load_update + 10; long active; if (time_before(jiffies, upd)) return; active = atomic_long_read(&calc_load_tasks); active = active > 0 ? active * FIXED_1 : 0; avenrun[0] = calc_load(avenrun[0], EXP_1, active); avenrun[1] = calc_load(avenrun[1], EXP_5, active); avenrun[2] = calc_load(avenrun[2], EXP_15, active); calc_load_update += LOAD_FREQ; } /* * Either called from update_cpu_load() or from a cpu going idle */ static void calc_load_account_active(struct rq *this_rq) { long nr_active, delta; nr_active = this_rq->nr_running; nr_active += (long) this_rq->nr_uninterruptible; if (nr_active != this_rq->calc_load_active) { delta = nr_active - this_rq->calc_load_active; this_rq->calc_load_active = nr_active; atomic_long_add(delta, &calc_load_tasks); } } /* * Externally visible per-cpu scheduler statistics: * cpu_nr_migrations(cpu) - number of migrations into that cpu */ u64 cpu_nr_migrations(int cpu) { return cpu_rq(cpu)->nr_migrations_in; } /* * Update rq->cpu_load[] statistics. This function is usually called every * scheduler tick (TICK_NSEC). */ static void update_cpu_load(struct rq *this_rq) { unsigned long this_load = this_rq->load.weight; int i, scale; this_rq->nr_load_updates++; /* Update our load: */ for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { unsigned long old_load, new_load; /* scale is effectively 1 << i now, and >> i divides by scale */ old_load = this_rq->cpu_load[i]; new_load = this_load; /* * Round up the averaging division if load is increasing. This * prevents us from getting stuck on 9 if the load is 10, for * example. */ if (new_load > old_load) new_load += scale-1; this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; } if (time_after_eq(jiffies, this_rq->calc_load_update)) { this_rq->calc_load_update += LOAD_FREQ; calc_load_account_active(this_rq); } } #ifdef CONFIG_SMP /* * double_rq_lock - safely lock two runqueues * * Note this does not disable interrupts like task_rq_lock, * you need to do so manually before calling. */ static void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock) { BUG_ON(!irqs_disabled()); if (rq1 == rq2) { spin_lock(&rq1->lock); __acquire(rq2->lock); /* Fake it out ;) */ } else { if (rq1 < rq2) { spin_lock(&rq1->lock); spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); } else { spin_lock(&rq2->lock); spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); } } update_rq_clock(rq1); update_rq_clock(rq2); } /* * double_rq_unlock - safely unlock two runqueues * * Note this does not restore interrupts like task_rq_unlock, * you need to do so manually after calling. */ static void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock) { spin_unlock(&rq1->lock); if (rq1 != rq2) spin_unlock(&rq2->lock); else __release(rq2->lock); } /* * If dest_cpu is allowed for this process, migrate the task to it. * This is accomplished by forcing the cpu_allowed mask to only * allow dest_cpu, which will force the cpu onto dest_cpu. Then * the cpu_allowed mask is restored. */ static void sched_migrate_task(struct task_struct *p, int dest_cpu) { struct migration_req req; unsigned long flags; struct rq *rq; rq = task_rq_lock(p, &flags); if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) || unlikely(!cpu_active(dest_cpu))) goto out; /* force the process onto the specified CPU */ if (migrate_task(p, dest_cpu, &req)) { /* Need to wait for migration thread (might exit: take ref). */ struct task_struct *mt = rq->migration_thread; get_task_struct(mt); task_rq_unlock(rq, &flags); wake_up_process(mt); put_task_struct(mt); wait_for_completion(&req.done); return; } out: task_rq_unlock(rq, &flags); } /* * sched_exec - execve() is a valuable balancing opportunity, because at * this point the task has the smallest effective memory and cache footprint. */ void sched_exec(void) { int new_cpu, this_cpu = get_cpu(); new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); put_cpu(); if (new_cpu != this_cpu) sched_migrate_task(current, new_cpu); } /* * pull_task - move a task from a remote runqueue to the local runqueue. * Both runqueues must be locked. */ static void pull_task(struct rq *src_rq, struct task_struct *p, struct rq *this_rq, int this_cpu) { deactivate_task(src_rq, p, 0); set_task_cpu(p, this_cpu); activate_task(this_rq, p, 0); /* * Note that idle threads have a prio of MAX_PRIO, for this test * to be always true for them. */ check_preempt_curr(this_rq, p, 0); } /* * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? */ static int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned) { int tsk_cache_hot = 0; /* * We do not migrate tasks that are: * 1) running (obviously), or * 2) cannot be migrated to this CPU due to cpus_allowed, or * 3) are cache-hot on their current CPU. */ if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { schedstat_inc(p, se.nr_failed_migrations_affine); return 0; } *all_pinned = 0; if (task_running(rq, p)) { schedstat_inc(p, se.nr_failed_migrations_running); return 0; } /* * Aggressive migration if: * 1) task is cache cold, or * 2) too many balance attempts have failed. */ tsk_cache_hot = task_hot(p, rq->clock, sd); if (!tsk_cache_hot || sd->nr_balance_failed > sd->cache_nice_tries) { #ifdef CONFIG_SCHEDSTATS if (tsk_cache_hot) { schedstat_inc(sd, lb_hot_gained[idle]); schedstat_inc(p, se.nr_forced_migrations); } #endif return 1; } if (tsk_cache_hot) { schedstat_inc(p, se.nr_failed_migrations_hot); return 0; } return 1; } static unsigned long balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, unsigned long max_load_move, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned, int *this_best_prio, struct rq_iterator *iterator) { int loops = 0, pulled = 0, pinned = 0; struct task_struct *p; long rem_load_move = max_load_move; if (max_load_move == 0) goto out; pinned = 1; /* * Start the load-balancing iterator: */ p = iterator->start(iterator->arg); next: if (!p || loops++ > sysctl_sched_nr_migrate) goto out; if ((p->se.load.weight >> 1) > rem_load_move || !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { p = iterator->next(iterator->arg); goto next; } pull_task(busiest, p, this_rq, this_cpu); pulled++; rem_load_move -= p->se.load.weight; #ifdef CONFIG_PREEMPT /* * NEWIDLE balancing is a source of latency, so preemptible kernels * will stop after the first task is pulled to minimize the critical * section. */ if (idle == CPU_NEWLY_IDLE) goto out; #endif /* * We only want to steal up to the prescribed amount of weighted load. */ if (rem_load_move > 0) { if (p->prio < *this_best_prio) *this_best_prio = p->prio; p = iterator->next(iterator->arg); goto next; } out: /* * Right now, this is one of only two places pull_task() is called, * so we can safely collect pull_task() stats here rather than * inside pull_task(). */ schedstat_add(sd, lb_gained[idle], pulled); if (all_pinned) *all_pinned = pinned; return max_load_move - rem_load_move; } /* * move_tasks tries to move up to max_load_move weighted load from busiest to * this_rq, as part of a balancing operation within domain "sd". * Returns 1 if successful and 0 otherwise. * * Called with both runqueues locked. */ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, unsigned long max_load_move, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned) { const struct sched_class *class = sched_class_highest; unsigned long total_load_moved = 0; int this_best_prio = this_rq->curr->prio; do { total_load_moved += class->load_balance(this_rq, this_cpu, busiest, max_load_move - total_load_moved, sd, idle, all_pinned, &this_best_prio); class = class->next; #ifdef CONFIG_PREEMPT /* * NEWIDLE balancing is a source of latency, so preemptible * kernels will stop after the first task is pulled to minimize * the critical section. */ if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) break; #endif } while (class && max_load_move > total_load_moved); return total_load_moved > 0; } static int iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, struct sched_domain *sd, enum cpu_idle_type idle, struct rq_iterator *iterator) { struct task_struct *p = iterator->start(iterator->arg); int pinned = 0; while (p) { if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { pull_task(busiest, p, this_rq, this_cpu); /* * Right now, this is only the second place pull_task() * is called, so we can safely collect pull_task() * stats here rather than inside pull_task(). */ schedstat_inc(sd, lb_gained[idle]); return 1; } p = iterator->next(iterator->arg); } return 0; } /* * move_one_task tries to move exactly one task from busiest to this_rq, as * part of active balancing operations within "domain". * Returns 1 if successful and 0 otherwise. * * Called with both runqueues locked. */ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, struct sched_domain *sd, enum cpu_idle_type idle) { const struct sched_class *class; for_each_class(class) { if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) return 1; } return 0; } /********** Helpers for find_busiest_group ************************/ /* * sd_lb_stats - Structure to store the statistics of a sched_domain * during load balancing. */ struct sd_lb_stats { struct sched_group *busiest; /* Busiest group in this sd */ struct sched_group *this; /* Local group in this sd */ unsigned long total_load; /* Total load of all groups in sd */ unsigned long total_pwr; /* Total power of all groups in sd */ unsigned long avg_load; /* Average load across all groups in sd */ /** Statistics of this group */ unsigned long this_load; unsigned long this_load_per_task; unsigned long this_nr_running; /* Statistics of the busiest group */ unsigned long max_load; unsigned long busiest_load_per_task; unsigned long busiest_nr_running; int group_imb; /* Is there imbalance in this sd */ #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) int power_savings_balance; /* Is powersave balance needed for this sd */ struct sched_group *group_min; /* Least loaded group in sd */ struct sched_group *group_leader; /* Group which relieves group_min */ unsigned long min_load_per_task; /* load_per_task in group_min */ unsigned long leader_nr_running; /* Nr running of group_leader */ unsigned long min_nr_running; /* Nr running of group_min */ #endif }; /* * sg_lb_stats - stats of a sched_group required for load_balancing */ struct sg_lb_stats { unsigned long avg_load; /*Avg load across the CPUs of the group */ unsigned long group_load; /* Total load over the CPUs of the group */ unsigned long sum_nr_running; /* Nr tasks running in the group */ unsigned long sum_weighted_load; /* Weighted load of group's tasks */ unsigned long group_capacity; int group_imb; /* Is there an imbalance in the group ? */ }; /** * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. * @group: The group whose first cpu is to be returned. */ static inline unsigned int group_first_cpu(struct sched_group *group) { return cpumask_first(sched_group_cpus(group)); } /** * get_sd_load_idx - Obtain the load index for a given sched domain. * @sd: The sched_domain whose load_idx is to be obtained. * @idle: The Idle status of the CPU for whose sd load_icx is obtained. */ static inline int get_sd_load_idx(struct sched_domain *sd, enum cpu_idle_type idle) { int load_idx; switch (idle) { case CPU_NOT_IDLE: load_idx = sd->busy_idx; break; case CPU_NEWLY_IDLE: load_idx = sd->newidle_idx; break; default: load_idx = sd->idle_idx; break; } return load_idx; } #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) /** * init_sd_power_savings_stats - Initialize power savings statistics for * the given sched_domain, during load balancing. * * @sd: Sched domain whose power-savings statistics are to be initialized. * @sds: Variable containing the statistics for sd. * @idle: Idle status of the CPU at which we're performing load-balancing. */ static inline void init_sd_power_savings_stats(struct sched_domain *sd, struct sd_lb_stats *sds, enum cpu_idle_type idle) { /* * Busy processors will not participate in power savings * balance. */ if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) sds->power_savings_balance = 0; else { sds->power_savings_balance = 1; sds->min_nr_running = ULONG_MAX; sds->leader_nr_running = 0; } } /** * update_sd_power_savings_stats - Update the power saving stats for a * sched_domain while performing load balancing. * * @group: sched_group belonging to the sched_domain under consideration. * @sds: Variable containing the statistics of the sched_domain * @local_group: Does group contain the CPU for which we're performing * load balancing ? * @sgs: Variable containing the statistics of the group. */ static inline void update_sd_power_savings_stats(struct sched_group *group, struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) { if (!sds->power_savings_balance) return; /* * If the local group is idle or completely loaded * no need to do power savings balance at this domain */ if (local_group && (sds->this_nr_running >= sgs->group_capacity || !sds->this_nr_running)) sds->power_savings_balance = 0; /* * If a group is already running at full capacity or idle, * don't include that group in power savings calculations */ if (!sds->power_savings_balance || sgs->sum_nr_running >= sgs->group_capacity || !sgs->sum_nr_running) return; /* * Calculate the group which has the least non-idle load. * This is the group from where we need to pick up the load * for saving power */ if ((sgs->sum_nr_running < sds->min_nr_running) || (sgs->sum_nr_running == sds->min_nr_running && group_first_cpu(group) > group_first_cpu(sds->group_min))) { sds->group_min = group; sds->min_nr_running = sgs->sum_nr_running; sds->min_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; } /* * Calculate the group which is almost near its * capacity but still has some space to pick up some load * from other group and save more power */ if (sgs->sum_nr_running + 1 > sgs->group_capacity) return; if (sgs->sum_nr_running > sds->leader_nr_running || (sgs->sum_nr_running == sds->leader_nr_running && group_first_cpu(group) < group_first_cpu(sds->group_leader))) { sds->group_leader = group; sds->leader_nr_running = sgs->sum_nr_running; } } /** * check_power_save_busiest_group - see if there is potential for some power-savings balance * @sds: Variable containing the statistics of the sched_domain * under consideration. * @this_cpu: Cpu at which we're currently performing load-balancing. * @imbalance: Variable to store the imbalance. * * Description: * Check if we have potential to perform some power-savings balance. * If yes, set the busiest group to be the least loaded group in the * sched_domain, so that it's CPUs can be put to idle. * * Returns 1 if there is potential to perform power-savings balance. * Else returns 0. */ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, int this_cpu, unsigned long *imbalance) { if (!sds->power_savings_balance) return 0; if (sds->this != sds->group_leader || sds->group_leader == sds->group_min) return 0; *imbalance = sds->min_load_per_task; sds->busiest = sds->group_min; return 1; } #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ static inline void init_sd_power_savings_stats(struct sched_domain *sd, struct sd_lb_stats *sds, enum cpu_idle_type idle) { return; } static inline void update_sd_power_savings_stats(struct sched_group *group, struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) { return; } static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, int this_cpu, unsigned long *imbalance) { return 0; } #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) { return SCHED_LOAD_SCALE; } unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) { return default_scale_freq_power(sd, cpu); } unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) { unsigned long weight = cpumask_weight(sched_domain_span(sd)); unsigned long smt_gain = sd->smt_gain; smt_gain /= weight; return smt_gain; } unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) { return default_scale_smt_power(sd, cpu); } unsigned long scale_rt_power(int cpu) { struct rq *rq = cpu_rq(cpu); u64 total, available; sched_avg_update(rq); total = sched_avg_period() + (rq->clock - rq->age_stamp); available = total - rq->rt_avg; if (unlikely((s64)total < SCHED_LOAD_SCALE)) total = SCHED_LOAD_SCALE; total >>= SCHED_LOAD_SHIFT; return div_u64(available, total); } static void update_cpu_power(struct sched_domain *sd, int cpu) { unsigned long weight = cpumask_weight(sched_domain_span(sd)); unsigned long power = SCHED_LOAD_SCALE; struct sched_group *sdg = sd->groups; if (sched_feat(ARCH_POWER)) power *= arch_scale_freq_power(sd, cpu); else power *= default_scale_freq_power(sd, cpu); power >>= SCHED_LOAD_SHIFT; if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { if (sched_feat(ARCH_POWER)) power *= arch_scale_smt_power(sd, cpu); else power *= default_scale_smt_power(sd, cpu); power >>= SCHED_LOAD_SHIFT; } power *= scale_rt_power(cpu); power >>= SCHED_LOAD_SHIFT; if (!power) power = 1; sdg->cpu_power = power; } static void update_group_power(struct sched_domain *sd, int cpu) { struct sched_domain *child = sd->child; struct sched_group *group, *sdg = sd->groups; unsigned long power; if (!child) { update_cpu_power(sd, cpu); return; } power = 0; group = child->groups; do { power += group->cpu_power; group = group->next; } while (group != child->groups); sdg->cpu_power = power; } /** * update_sg_lb_stats - Update sched_group's statistics for load balancing. * @sd: The sched_domain whose statistics are to be updated. * @group: sched_group whose statistics are to be updated. * @this_cpu: Cpu for which load balance is currently performed. * @idle: Idle status of this_cpu * @load_idx: Load index of sched_domain of this_cpu for load calc. * @sd_idle: Idle status of the sched_domain containing group. * @local_group: Does group contain this_cpu. * @cpus: Set of cpus considered for load balancing. * @balance: Should we balance. * @sgs: variable to hold the statistics for this group. */ static inline void update_sg_lb_stats(struct sched_domain *sd, struct sched_group *group, int this_cpu, enum cpu_idle_type idle, int load_idx, int *sd_idle, int local_group, const struct cpumask *cpus, int *balance, struct sg_lb_stats *sgs) { unsigned long load, max_cpu_load, min_cpu_load; int i; unsigned int balance_cpu = -1, first_idle_cpu = 0; unsigned long sum_avg_load_per_task; unsigned long avg_load_per_task; if (local_group) { balance_cpu = group_first_cpu(group); if (balance_cpu == this_cpu) update_group_power(sd, this_cpu); } /* Tally up the load of all CPUs in the group */ sum_avg_load_per_task = avg_load_per_task = 0; max_cpu_load = 0; min_cpu_load = ~0UL; for_each_cpu_and(i, sched_group_cpus(group), cpus) { struct rq *rq = cpu_rq(i); if (*sd_idle && rq->nr_running) *sd_idle = 0; /* Bias balancing toward cpus of our domain */ if (local_group) { if (idle_cpu(i) && !first_idle_cpu) { first_idle_cpu = 1; balance_cpu = i; } load = target_load(i, load_idx); } else { load = source_load(i, load_idx); if (load > max_cpu_load) max_cpu_load = load; if (min_cpu_load > load) min_cpu_load = load; } sgs->group_load += load; sgs->sum_nr_running += rq->nr_running; sgs->sum_weighted_load += weighted_cpuload(i); sum_avg_load_per_task += cpu_avg_load_per_task(i); } /* * First idle cpu or the first cpu(busiest) in this sched group * is eligible for doing load balancing at this and above * domains. In the newly idle case, we will allow all the cpu's * to do the newly idle load balance. */ if (idle != CPU_NEWLY_IDLE && local_group && balance_cpu != this_cpu && balance) { *balance = 0; return; } /* Adjust by relative CPU power of the group */ sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; /* * Consider the group unbalanced when the imbalance is larger * than the average weight of two tasks. * * APZ: with cgroup the avg task weight can vary wildly and * might not be a suitable number - should we keep a * normalized nr_running number somewhere that negates * the hierarchy? */ avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) / group->cpu_power; if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) sgs->group_imb = 1; sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); } /** * update_sd_lb_stats - Update sched_group's statistics for load balancing. * @sd: sched_domain whose statistics are to be updated. * @this_cpu: Cpu for which load balance is currently performed. * @idle: Idle status of this_cpu * @sd_idle: Idle status of the sched_domain containing group. * @cpus: Set of cpus considered for load balancing. * @balance: Should we balance. * @sds: variable to hold the statistics for this sched_domain. */ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, enum cpu_idle_type idle, int *sd_idle, const struct cpumask *cpus, int *balance, struct sd_lb_stats *sds) { struct sched_domain *child = sd->child; struct sched_group *group = sd->groups; struct sg_lb_stats sgs; int load_idx, prefer_sibling = 0; if (child && child->flags & SD_PREFER_SIBLING) prefer_sibling = 1; init_sd_power_savings_stats(sd, sds, idle); load_idx = get_sd_load_idx(sd, idle); do { int local_group; local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(group)); memset(&sgs, 0, sizeof(sgs)); update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle, local_group, cpus, balance, &sgs); if (local_group && balance && !(*balance)) return; sds->total_load += sgs.group_load; sds->total_pwr += group->cpu_power; /* * In case the child domain prefers tasks go to siblings * first, lower the group capacity to one so that we'll try * and move all the excess tasks away. */ if (prefer_sibling) sgs.group_capacity = min(sgs.group_capacity, 1UL); if (local_group) { sds->this_load = sgs.avg_load; sds->this = group; sds->this_nr_running = sgs.sum_nr_running; sds->this_load_per_task = sgs.sum_weighted_load; } else if (sgs.avg_load > sds->max_load && (sgs.sum_nr_running > sgs.group_capacity || sgs.group_imb)) { sds->max_load = sgs.avg_load; sds->busiest = group; sds->busiest_nr_running = sgs.sum_nr_running; sds->busiest_load_per_task = sgs.sum_weighted_load; sds->group_imb = sgs.group_imb; } update_sd_power_savings_stats(group, sds, local_group, &sgs); group = group->next; } while (group != sd->groups); } /** * fix_small_imbalance - Calculate the minor imbalance that exists * amongst the groups of a sched_domain, during * load balancing. * @sds: Statistics of the sched_domain whose imbalance is to be calculated. * @this_cpu: The cpu at whose sched_domain we're performing load-balance. * @imbalance: Variable to store the imbalance. */ static inline void fix_small_imbalance(struct sd_lb_stats *sds, int this_cpu, unsigned long *imbalance) { unsigned long tmp, pwr_now = 0, pwr_move = 0; unsigned int imbn = 2; if (sds->this_nr_running) { sds->this_load_per_task /= sds->this_nr_running; if (sds->busiest_load_per_task > sds->this_load_per_task) imbn = 1; } else sds->this_load_per_task = cpu_avg_load_per_task(this_cpu); if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= sds->busiest_load_per_task * imbn) { *imbalance = sds->busiest_load_per_task; return; } /* * OK, we don't have enough imbalance to justify moving tasks, * however we may be able to increase total CPU power used by * moving them. */ pwr_now += sds->busiest->cpu_power * min(sds->busiest_load_per_task, sds->max_load); pwr_now += sds->this->cpu_power * min(sds->this_load_per_task, sds->this_load); pwr_now /= SCHED_LOAD_SCALE; /* Amount of load we'd subtract */ tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / sds->busiest->cpu_power; if (sds->max_load > tmp) pwr_move += sds->busiest->cpu_power * min(sds->busiest_load_per_task, sds->max_load - tmp); /* Amount of load we'd add */ if (sds->max_load * sds->busiest->cpu_power < sds->busiest_load_per_task * SCHED_LOAD_SCALE) tmp = (sds->max_load * sds->busiest->cpu_power) / sds->this->cpu_power; else tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / sds->this->cpu_power; pwr_move += sds->this->cpu_power * min(sds->this_load_per_task, sds->this_load + tmp); pwr_move /= SCHED_LOAD_SCALE; /* Move if we gain throughput */ if (pwr_move > pwr_now) *imbalance = sds->busiest_load_per_task; } /** * calculate_imbalance - Calculate the amount of imbalance present within the * groups of a given sched_domain during load balance. * @sds: statistics of the sched_domain whose imbalance is to be calculated. * @this_cpu: Cpu for which currently load balance is being performed. * @imbalance: The variable to store the imbalance. */ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, unsigned long *imbalance) { unsigned long max_pull; /* * In the presence of smp nice balancing, certain scenarios can have * max load less than avg load(as we skip the groups at or below * its cpu_power, while calculating max_load..) */ if (sds->max_load < sds->avg_load) { *imbalance = 0; return fix_small_imbalance(sds, this_cpu, imbalance); } /* Don't want to pull so many tasks that a group would go idle */ max_pull = min(sds->max_load - sds->avg_load, sds->max_load - sds->busiest_load_per_task); /* How much load to actually move to equalise the imbalance */ *imbalance = min(max_pull * sds->busiest->cpu_power, (sds->avg_load - sds->this_load) * sds->this->cpu_power) / SCHED_LOAD_SCALE; /* * if *imbalance is less than the average load per runnable task * there is no gaurantee that any tasks will be moved so we'll have * a think about bumping its value to force at least one task to be * moved */ if (*imbalance < sds->busiest_load_per_task) return fix_small_imbalance(sds, this_cpu, imbalance); } /******* find_busiest_group() helpers end here *********************/ /** * find_busiest_group - Returns the busiest group within the sched_domain * if there is an imbalance. If there isn't an imbalance, and * the user has opted for power-savings, it returns a group whose * CPUs can be put to idle by rebalancing those tasks elsewhere, if * such a group exists. * * Also calculates the amount of weighted load which should be moved * to restore balance. * * @sd: The sched_domain whose busiest group is to be returned. * @this_cpu: The cpu for which load balancing is currently being performed. * @imbalance: Variable which stores amount of weighted load which should * be moved to restore balance/put a group to idle. * @idle: The idle status of this_cpu. * @sd_idle: The idleness of sd * @cpus: The set of CPUs under consideration for load-balancing. * @balance: Pointer to a variable indicating if this_cpu * is the appropriate cpu to perform load balancing at this_level. * * Returns: - the busiest group if imbalance exists. * - If no imbalance and user has opted for power-savings balance, * return the least loaded group whose CPUs can be * put to idle by rebalancing its tasks onto our group. */ static struct sched_group * find_busiest_group(struct sched_domain *sd, int this_cpu, unsigned long *imbalance, enum cpu_idle_type idle, int *sd_idle, const struct cpumask *cpus, int *balance) { struct sd_lb_stats sds; memset(&sds, 0, sizeof(sds)); /* * Compute the various statistics relavent for load balancing at * this level. */ update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, balance, &sds); /* Cases where imbalance does not exist from POV of this_cpu */ /* 1) this_cpu is not the appropriate cpu to perform load balancing * at this level. * 2) There is no busy sibling group to pull from. * 3) This group is the busiest group. * 4) This group is more busy than the avg busieness at this * sched_domain. * 5) The imbalance is within the specified limit. * 6) Any rebalance would lead to ping-pong */ if (balance && !(*balance)) goto ret; if (!sds.busiest || sds.busiest_nr_running == 0) goto out_balanced; if (sds.this_load >= sds.max_load) goto out_balanced; sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; if (sds.this_load >= sds.avg_load) goto out_balanced; if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) goto out_balanced; sds.busiest_load_per_task /= sds.busiest_nr_running; if (sds.group_imb) sds.busiest_load_per_task = min(sds.busiest_load_per_task, sds.avg_load); /* * We're trying to get all the cpus to the average_load, so we don't * want to push ourselves above the average load, nor do we wish to * reduce the max loaded cpu below the average load, as either of these * actions would just result in more rebalancing later, and ping-pong * tasks around. Thus we look for the minimum possible imbalance. * Negative imbalances (*we* are more loaded than anyone else) will * be counted as no imbalance for these purposes -- we can't fix that * by pulling tasks to us. Be careful of negative numbers as they'll * appear as very large values with unsigned longs. */ if (sds.max_load <= sds.busiest_load_per_task) goto out_balanced; /* Looks like there is an imbalance. Compute it */ calculate_imbalance(&sds, this_cpu, imbalance); return sds.busiest; out_balanced: /* * There is no obvious imbalance. But check if we can do some balancing * to save power. */ if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) return sds.busiest; ret: *imbalance = 0; return NULL; } /* * find_busiest_queue - find the busiest runqueue among the cpus in group. */ static struct rq * find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, unsigned long imbalance, const struct cpumask *cpus) { struct rq *busiest = NULL, *rq; unsigned long max_load = 0; int i; for_each_cpu(i, sched_group_cpus(group)) { unsigned long power = power_of(i); unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); unsigned long wl; if (!cpumask_test_cpu(i, cpus)) continue; rq = cpu_rq(i); wl = weighted_cpuload(i) * SCHED_LOAD_SCALE; wl /= power; if (capacity && rq->nr_running == 1 && wl > imbalance) continue; if (wl > max_load) { max_load = wl; busiest = rq; } } return busiest; } /* * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but * so long as it is large enough. */ #define MAX_PINNED_INTERVAL 512 /* Working cpumask for load_balance and load_balance_newidle. */ static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); /* * Check this_cpu to ensure it is balanced within domain. Attempt to move * tasks if there is an imbalance. */ static int load_balance(int this_cpu, struct rq *this_rq, struct sched_domain *sd, enum cpu_idle_type idle, int *balance) { int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; struct sched_group *group; unsigned long imbalance; struct rq *busiest; unsigned long flags; struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); cpumask_copy(cpus, cpu_online_mask); /* * When power savings policy is enabled for the parent domain, idle * sibling can pick up load irrespective of busy siblings. In this case, * let the state of idle sibling percolate up as CPU_IDLE, instead of * portraying it as CPU_NOT_IDLE. */ if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) sd_idle = 1; schedstat_inc(sd, lb_count[idle]); redo: update_shares(sd); group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, cpus, balance); if (*balance == 0) goto out_balanced; if (!group) { schedstat_inc(sd, lb_nobusyg[idle]); goto out_balanced; } busiest = find_busiest_queue(group, idle, imbalance, cpus); if (!busiest) { schedstat_inc(sd, lb_nobusyq[idle]); goto out_balanced; } BUG_ON(busiest == this_rq); schedstat_add(sd, lb_imbalance[idle], imbalance); ld_moved = 0; if (busiest->nr_running > 1) { /* * Attempt to move tasks. If find_busiest_group has found * an imbalance but busiest->nr_running <= 1, the group is * still unbalanced. ld_moved simply stays zero, so it is * correctly treated as an imbalance. */ local_irq_save(flags); double_rq_lock(this_rq, busiest); ld_moved = move_tasks(this_rq, this_cpu, busiest, imbalance, sd, idle, &all_pinned); double_rq_unlock(this_rq, busiest); local_irq_restore(flags); /* * some other cpu did the load balance for us. */ if (ld_moved && this_cpu != smp_processor_id()) resched_cpu(this_cpu); /* All tasks on this runqueue were pinned by CPU affinity */ if (unlikely(all_pinned)) { cpumask_clear_cpu(cpu_of(busiest), cpus); if (!cpumask_empty(cpus)) goto redo; goto out_balanced; } } if (!ld_moved) { schedstat_inc(sd, lb_failed[idle]); sd->nr_balance_failed++; if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { spin_lock_irqsave(&busiest->lock, flags); /* don't kick the migration_thread, if the curr * task on busiest cpu can't be moved to this_cpu */ if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { spin_unlock_irqrestore(&busiest->lock, flags); all_pinned = 1; goto out_one_pinned; } if (!busiest->active_balance) { busiest->active_balance = 1; busiest->push_cpu = this_cpu; active_balance = 1; } spin_unlock_irqrestore(&busiest->lock, flags); if (active_balance) wake_up_process(busiest->migration_thread); /* * We've kicked active balancing, reset the failure * counter. */ sd->nr_balance_failed = sd->cache_nice_tries+1; } } else sd->nr_balance_failed = 0; if (likely(!active_balance)) { /* We were unbalanced, so reset the balancing interval */ sd->balance_interval = sd->min_interval; } else { /* * If we've begun active balancing, start to back off. This * case may not be covered by the all_pinned logic if there * is only 1 task on the busy runqueue (because we don't call * move_tasks). */ if (sd->balance_interval < sd->max_interval) sd->balance_interval *= 2; } if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) ld_moved = -1; goto out; out_balanced: schedstat_inc(sd, lb_balanced[idle]); sd->nr_balance_failed = 0; out_one_pinned: /* tune up the balancing interval */ if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || (sd->balance_interval < sd->max_interval)) sd->balance_interval *= 2; if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) ld_moved = -1; else ld_moved = 0; out: if (ld_moved) update_shares(sd); return ld_moved; } /* * Check this_cpu to ensure it is balanced within domain. Attempt to move * tasks if there is an imbalance. * * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). * this_rq is locked. */ static int load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) { struct sched_group *group; struct rq *busiest = NULL; unsigned long imbalance; int ld_moved = 0; int sd_idle = 0; int all_pinned = 0; struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); cpumask_copy(cpus, cpu_online_mask); /* * When power savings policy is enabled for the parent domain, idle * sibling can pick up load irrespective of busy siblings. In this case, * let the state of idle sibling percolate up as IDLE, instead of * portraying it as CPU_NOT_IDLE. */ if (sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) sd_idle = 1; schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); redo: update_shares_locked(this_rq, sd); group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, &sd_idle, cpus, NULL); if (!group) { schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); goto out_balanced; } busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); if (!busiest) { schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); goto out_balanced; } BUG_ON(busiest == this_rq); schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); ld_moved = 0; if (busiest->nr_running > 1) { /* Attempt to move tasks */ double_lock_balance(this_rq, busiest); /* this_rq->clock is already updated */ update_rq_clock(busiest); ld_moved = move_tasks(this_rq, this_cpu, busiest, imbalance, sd, CPU_NEWLY_IDLE, &all_pinned); double_unlock_balance(this_rq, busiest); if (unlikely(all_pinned)) { cpumask_clear_cpu(cpu_of(busiest), cpus); if (!cpumask_empty(cpus)) goto redo; } } if (!ld_moved) { int active_balance = 0; schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) return -1; if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) return -1; if (sd->nr_balance_failed++ < 2) return -1; /* * The only task running in a non-idle cpu can be moved to this * cpu in an attempt to completely freeup the other CPU * package. The same method used to move task in load_balance() * have been extended for load_balance_newidle() to speedup * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) * * The package power saving logic comes from * find_busiest_group(). If there are no imbalance, then * f_b_g() will return NULL. However when sched_mc={1,2} then * f_b_g() will select a group from which a running task may be * pulled to this cpu in order to make the other package idle. * If there is no opportunity to make a package idle and if * there are no imbalance, then f_b_g() will return NULL and no * action will be taken in load_balance_newidle(). * * Under normal task pull operation due to imbalance, there * will be more than one task in the source run queue and * move_tasks() will succeed. ld_moved will be true and this * active balance code will not be triggered. */ /* Lock busiest in correct order while this_rq is held */ double_lock_balance(this_rq, busiest); /* * don't kick the migration_thread, if the curr * task on busiest cpu can't be moved to this_cpu */ if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { double_unlock_balance(this_rq, busiest); all_pinned = 1; return ld_moved; } if (!busiest->active_balance) { busiest->active_balance = 1; busiest->push_cpu = this_cpu; active_balance = 1; } double_unlock_balance(this_rq, busiest); /* * Should not call ttwu while holding a rq->lock */ spin_unlock(&this_rq->lock); if (active_balance) wake_up_process(busiest->migration_thread); spin_lock(&this_rq->lock); } else sd->nr_balance_failed = 0; update_shares_locked(this_rq, sd); return ld_moved; out_balanced: schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) return -1; sd->nr_balance_failed = 0; return 0; } /* * idle_balance is called by schedule() if this_cpu is about to become * idle. Attempts to pull tasks from other CPUs. */ static void idle_balance(int this_cpu, struct rq *this_rq) { struct sched_domain *sd; int pulled_task = 0; unsigned long next_balance = jiffies + HZ; this_rq->idle_stamp = this_rq->clock; if (this_rq->avg_idle < sysctl_sched_migration_cost) return; for_each_domain(this_cpu, sd) { unsigned long interval; if (!(sd->flags & SD_LOAD_BALANCE)) continue; if (sd->flags & SD_BALANCE_NEWIDLE) /* If we've pulled tasks over stop searching: */ pulled_task = load_balance_newidle(this_cpu, this_rq, sd); interval = msecs_to_jiffies(sd->balance_interval); if (time_after(next_balance, sd->last_balance + interval)) next_balance = sd->last_balance + interval; if (pulled_task) { this_rq->idle_stamp = 0; break; } } if (pulled_task || time_after(jiffies, this_rq->next_balance)) { /* * We are going idle. next_balance may be set based on * a busy processor. So reset next_balance. */ this_rq->next_balance = next_balance; } } /* * active_load_balance is run by migration threads. It pushes running tasks * off the busiest CPU onto idle CPUs. It requires at least 1 task to be * running on each physical CPU where possible, and avoids physical / * logical imbalances. * * Called with busiest_rq locked. */ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) { int target_cpu = busiest_rq->push_cpu; struct sched_domain *sd; struct rq *target_rq; /* Is there any task to move? */ if (busiest_rq->nr_running <= 1) return; target_rq = cpu_rq(target_cpu); /* * This condition is "impossible", if it occurs * we need to fix it. Originally reported by * Bjorn Helgaas on a 128-cpu setup. */ BUG_ON(busiest_rq == target_rq); /* move a task from busiest_rq to target_rq */ double_lock_balance(busiest_rq, target_rq); update_rq_clock(busiest_rq); update_rq_clock(target_rq); /* Search for an sd spanning us and the target CPU. */ for_each_domain(target_cpu, sd) { if ((sd->flags & SD_LOAD_BALANCE) && cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) break; } if (likely(sd)) { schedstat_inc(sd, alb_count); if (move_one_task(target_rq, target_cpu, busiest_rq, sd, CPU_IDLE)) schedstat_inc(sd, alb_pushed); else schedstat_inc(sd, alb_failed); } double_unlock_balance(busiest_rq, target_rq); } #ifdef CONFIG_NO_HZ static struct { atomic_t load_balancer; cpumask_var_t cpu_mask; cpumask_var_t ilb_grp_nohz_mask; } nohz ____cacheline_aligned = { .load_balancer = ATOMIC_INIT(-1), }; int get_nohz_load_balancer(void) { return atomic_read(&nohz.load_balancer); } #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) /** * lowest_flag_domain - Return lowest sched_domain containing flag. * @cpu: The cpu whose lowest level of sched domain is to * be returned. * @flag: The flag to check for the lowest sched_domain * for the given cpu. * * Returns the lowest sched_domain of a cpu which contains the given flag. */ static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) { struct sched_domain *sd; for_each_domain(cpu, sd) if (sd && (sd->flags & flag)) break; return sd; } /** * for_each_flag_domain - Iterates over sched_domains containing the flag. * @cpu: The cpu whose domains we're iterating over. * @sd: variable holding the value of the power_savings_sd * for cpu. * @flag: The flag to filter the sched_domains to be iterated. * * Iterates over all the scheduler domains for a given cpu that has the 'flag' * set, starting from the lowest sched_domain to the highest. */ #define for_each_flag_domain(cpu, sd, flag) \ for (sd = lowest_flag_domain(cpu, flag); \ (sd && (sd->flags & flag)); sd = sd->parent) /** * is_semi_idle_group - Checks if the given sched_group is semi-idle. * @ilb_group: group to be checked for semi-idleness * * Returns: 1 if the group is semi-idle. 0 otherwise. * * We define a sched_group to be semi idle if it has atleast one idle-CPU * and atleast one non-idle CPU. This helper function checks if the given * sched_group is semi-idle or not. */ static inline int is_semi_idle_group(struct sched_group *ilb_group) { cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, sched_group_cpus(ilb_group)); /* * A sched_group is semi-idle when it has atleast one busy cpu * and atleast one idle cpu. */ if (cpumask_empty(nohz.ilb_grp_nohz_mask)) return 0; if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) return 0; return 1; } /** * find_new_ilb - Finds the optimum idle load balancer for nomination. * @cpu: The cpu which is nominating a new idle_load_balancer. * * Returns: Returns the id of the idle load balancer if it exists, * Else, returns >= nr_cpu_ids. * * This algorithm picks the idle load balancer such that it belongs to a * semi-idle powersavings sched_domain. The idea is to try and avoid * completely idle packages/cores just for the purpose of idle load balancing * when there are other idle cpu's which are better suited for that job. */ static int find_new_ilb(int cpu) { struct sched_domain *sd; struct sched_group *ilb_group; /* * Have idle load balancer selection from semi-idle packages only * when power-aware load balancing is enabled */ if (!(sched_smt_power_savings || sched_mc_power_savings)) goto out_done; /* * Optimize for the case when we have no idle CPUs or only one * idle CPU. Don't walk the sched_domain hierarchy in such cases */ if (cpumask_weight(nohz.cpu_mask) < 2) goto out_done; for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { ilb_group = sd->groups; do { if (is_semi_idle_group(ilb_group)) return cpumask_first(nohz.ilb_grp_nohz_mask); ilb_group = ilb_group->next; } while (ilb_group != sd->groups); } out_done: return cpumask_first(nohz.cpu_mask); } #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ static inline int find_new_ilb(int call_cpu) { return cpumask_first(nohz.cpu_mask); } #endif /* * This routine will try to nominate the ilb (idle load balancing) * owner among the cpus whose ticks are stopped. ilb owner will do the idle * load balancing on behalf of all those cpus. If all the cpus in the system * go into this tickless mode, then there will be no ilb owner (as there is * no need for one) and all the cpus will sleep till the next wakeup event * arrives... * * For the ilb owner, tick is not stopped. And this tick will be used * for idle load balancing. ilb owner will still be part of * nohz.cpu_mask.. * * While stopping the tick, this cpu will become the ilb owner if there * is no other owner. And will be the owner till that cpu becomes busy * or if all cpus in the system stop their ticks at which point * there is no need for ilb owner. * * When the ilb owner becomes busy, it nominates another owner, during the * next busy scheduler_tick() */ int select_nohz_load_balancer(int stop_tick) { int cpu = smp_processor_id(); if (stop_tick) { cpu_rq(cpu)->in_nohz_recently = 1; if (!cpu_active(cpu)) { if (atomic_read(&nohz.load_balancer) != cpu) return 0; /* * If we are going offline and still the leader, * give up! */ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) BUG(); return 0; } cpumask_set_cpu(cpu, nohz.cpu_mask); /* time for ilb owner also to sleep */ if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { if (atomic_read(&nohz.load_balancer) == cpu) atomic_set(&nohz.load_balancer, -1); return 0; } if (atomic_read(&nohz.load_balancer) == -1) { /* make me the ilb owner */ if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) return 1; } else if (atomic_read(&nohz.load_balancer) == cpu) { int new_ilb; if (!(sched_smt_power_savings || sched_mc_power_savings)) return 1; /* * Check to see if there is a more power-efficient * ilb. */ new_ilb = find_new_ilb(cpu); if (new_ilb < nr_cpu_ids && new_ilb != cpu) { atomic_set(&nohz.load_balancer, -1); resched_cpu(new_ilb); return 0; } return 1; } } else { if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) return 0; cpumask_clear_cpu(cpu, nohz.cpu_mask); if (atomic_read(&nohz.load_balancer) == cpu) if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) BUG(); } return 0; } #endif static DEFINE_SPINLOCK(balancing); /* * It checks each scheduling domain to see if it is due to be balanced, * and initiates a balancing operation if so. * * Balancing parameters are set up in arch_init_sched_domains. */ static void rebalance_domains(int cpu, enum cpu_idle_type idle) { int balance = 1; struct rq *rq = cpu_rq(cpu); unsigned long interval; struct sched_domain *sd; /* Earliest time when we have to do rebalance again */ unsigned long next_balance = jiffies + 60*HZ; int update_next_balance = 0; int need_serialize; for_each_domain(cpu, sd) { if (!(sd->flags & SD_LOAD_BALANCE)) continue; interval = sd->balance_interval; if (idle != CPU_IDLE) interval *= sd->busy_factor; /* scale ms to jiffies */ interval = msecs_to_jiffies(interval); if (unlikely(!interval)) interval = 1; if (interval > HZ*NR_CPUS/10) interval = HZ*NR_CPUS/10; need_serialize = sd->flags & SD_SERIALIZE; if (need_serialize) { if (!spin_trylock(&balancing)) goto out; } if (time_after_eq(jiffies, sd->last_balance + interval)) { if (load_balance(cpu, rq, sd, idle, &balance)) { /* * We've pulled tasks over so either we're no * longer idle, or one of our SMT siblings is * not idle. */ idle = CPU_NOT_IDLE; } sd->last_balance = jiffies; } if (need_serialize) spin_unlock(&balancing); out: if (time_after(next_balance, sd->last_balance + interval)) { next_balance = sd->last_balance + interval; update_next_balance = 1; } /* * Stop the load balance at this level. There is another * CPU in our sched group which is doing load balancing more * actively. */ if (!balance) break; } /* * next_balance will be updated only when there is a need. * When the cpu is attached to null domain for ex, it will not be * updated. */ if (likely(update_next_balance)) rq->next_balance = next_balance; } /* * run_rebalance_domains is triggered when needed from the scheduler tick. * In CONFIG_NO_HZ case, the idle load balance owner will do the * rebalancing for all the cpus for whom scheduler ticks are stopped. */ static void run_rebalance_domains(struct softirq_action *h) { int this_cpu = smp_processor_id(); struct rq *this_rq = cpu_rq(this_cpu); enum cpu_idle_type idle = this_rq->idle_at_tick ? CPU_IDLE : CPU_NOT_IDLE; rebalance_domains(this_cpu, idle); #ifdef CONFIG_NO_HZ /* * If this cpu is the owner for idle load balancing, then do the * balancing on behalf of the other idle cpus whose ticks are * stopped. */ if (this_rq->idle_at_tick && atomic_read(&nohz.load_balancer) == this_cpu) { struct rq *rq; int balance_cpu; for_each_cpu(balance_cpu, nohz.cpu_mask) { if (balance_cpu == this_cpu) continue; /* * If this cpu gets work to do, stop the load balancing * work being done for other cpus. Next load * balancing owner will pick it up. */ if (need_resched()) break; rebalance_domains(balance_cpu, CPU_IDLE); rq = cpu_rq(balance_cpu); if (time_after(this_rq->next_balance, rq->next_balance)) this_rq->next_balance = rq->next_balance; } } #endif } static inline int on_null_domain(int cpu) { return !rcu_dereference(cpu_rq(cpu)->sd); } /* * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. * * In case of CONFIG_NO_HZ, this is the place where we nominate a new * idle load balancing owner or decide to stop the periodic load balancing, * if the whole system is idle. */ static inline void trigger_load_balance(struct rq *rq, int cpu) { #ifdef CONFIG_NO_HZ /* * If we were in the nohz mode recently and busy at the current * scheduler tick, then check if we need to nominate new idle * load balancer. */ if (rq->in_nohz_recently && !rq->idle_at_tick) { rq->in_nohz_recently = 0; if (atomic_read(&nohz.load_balancer) == cpu) { cpumask_clear_cpu(cpu, nohz.cpu_mask); atomic_set(&nohz.load_balancer, -1); } if (atomic_read(&nohz.load_balancer) == -1) { int ilb = find_new_ilb(cpu); if (ilb < nr_cpu_ids) resched_cpu(ilb); } } /* * If this cpu is idle and doing idle load balancing for all the * cpus with ticks stopped, is it time for that to stop? */ if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { resched_cpu(cpu); return; } /* * If this cpu is idle and the idle load balancing is done by * someone else, then no need raise the SCHED_SOFTIRQ */ if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && cpumask_test_cpu(cpu, nohz.cpu_mask)) return; #endif /* Don't need to rebalance while attached to NULL domain */ if (time_after_eq(jiffies, rq->next_balance) && likely(!on_null_domain(cpu))) raise_softirq(SCHED_SOFTIRQ); } #else /* CONFIG_SMP */ /* * on UP we do not need to balance between CPUs: */ static inline void idle_balance(int cpu, struct rq *rq) { } #endif DEFINE_PER_CPU(struct kernel_stat, kstat); EXPORT_PER_CPU_SYMBOL(kstat); /* * Return any ns on the sched_clock that have not yet been accounted in * @p in case that task is currently running. * * Called with task_rq_lock() held on @rq. */ static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) { u64 ns = 0; if (task_current(rq, p)) { update_rq_clock(rq); ns = rq->clock - p->se.exec_start; if ((s64)ns < 0) ns = 0; } return ns; } unsigned long long task_delta_exec(struct task_struct *p) { unsigned long flags; struct rq *rq; u64 ns = 0; rq = task_rq_lock(p, &flags); ns = do_task_delta_exec(p, rq); task_rq_unlock(rq, &flags); return ns; } /* * Return accounted runtime for the task. * In case the task is currently running, return the runtime plus current's * pending runtime that have not been accounted yet. */ unsigned long long task_sched_runtime(struct task_struct *p) { unsigned long flags; struct rq *rq; u64 ns = 0; rq = task_rq_lock(p, &flags); ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); task_rq_unlock(rq, &flags); return ns; } /* * Return sum_exec_runtime for the thread group. * In case the task is currently running, return the sum plus current's * pending runtime that have not been accounted yet. * * Note that the thread group might have other running tasks as well, * so the return value not includes other pending runtime that other * running tasks might have. */ unsigned long long thread_group_sched_runtime(struct task_struct *p) { struct task_cputime totals; unsigned long flags; struct rq *rq; u64 ns; rq = task_rq_lock(p, &flags); thread_group_cputime(p, &totals); ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); task_rq_unlock(rq, &flags); return ns; } /* * Account user cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in user space since the last update * @cputime_scaled: cputime scaled by cpu frequency */ void account_user_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t tmp; /* Add user time to process. */ p->utime = cputime_add(p->utime, cputime); p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); account_group_user_time(p, cputime); /* Add user time to cpustat. */ tmp = cputime_to_cputime64(cputime); if (TASK_NICE(p) > 0) cpustat->nice = cputime64_add(cpustat->nice, tmp); else cpustat->user = cputime64_add(cpustat->user, tmp); cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); /* Account for user time used */ acct_update_integrals(p); } /* * Account guest cpu time to a process. * @p: the process that the cpu time gets accounted to * @cputime: the cpu time spent in virtual machine since the last update * @cputime_scaled: cputime scaled by cpu frequency */ static void account_guest_time(struct task_struct *p, cputime_t cputime, cputime_t cputime_scaled) { cputime64_t tmp; struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; tmp = cputime_to_cputime64(cputime); /* Add guest time to process. */ p->utime = cputime_add(p->utime, cputime); p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); account_group_user_time(p, cputime); p->gtime = cputime_add(p->gtime, cputime); /* Add guest time to cpustat. */ cpustat->user = cputime64_add(cpustat->user, tmp); cpustat->guest = cputime64_add(cpustat->guest, tmp); } /* * Account system cpu time to a process. * @p: the process that the cpu time gets accounted to * @hardirq_offset: the offset to subtract from hardirq_count() * @cputime: the cpu time spent in kernel space since the last update * @cputime_scaled: cputime scaled by cpu frequency */ void account_system_time(struct task_struct *p, int hardirq_offset, cputime_t cputime, cputime_t cputime_scaled) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t tmp; if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { account_guest_time(p, cputime, cputime_scaled); return; } /* Add system time to process. */ p->stime = cputime_add(p->stime, cputime); p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); account_group_system_time(p, cputime); /* Add system time to cpustat. */ tmp = cputime_to_cputime64(cputime); if (hardirq_count() - hardirq_offset) cpustat->irq = cputime64_add(cpustat->irq, tmp); else if (softirq_count()) cpustat->softirq = cputime64_add(cpustat->softirq, tmp); else cpustat->system = cputime64_add(cpustat->system, tmp); cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); /* Account for system time used */ acct_update_integrals(p); } /* * Account for involuntary wait time. * @steal: the cpu time spent in involuntary wait */ void account_steal_time(cputime_t cputime) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t cputime64 = cputime_to_cputime64(cputime); cpustat->steal = cputime64_add(cpustat->steal, cputime64); } /* * Account for idle time. * @cputime: the cpu time spent in idle wait */ void account_idle_time(cputime_t cputime) { struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; cputime64_t cputime64 = cputime_to_cputime64(cputime); struct rq *rq = this_rq(); if (atomic_read(&rq->nr_iowait) > 0) cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); else cpustat->idle = cputime64_add(cpustat->idle, cputime64); } #ifndef CONFIG_VIRT_CPU_ACCOUNTING /* * Account a single tick of cpu time. * @p: the process that the cpu time gets accounted to * @user_tick: indicates if the tick is a user or a system tick */ void account_process_tick(struct task_struct *p, int user_tick) { cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); struct rq *rq = this_rq(); if (user_tick) account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, one_jiffy_scaled); else account_idle_time(cputime_one_jiffy); } /* * Account multiple ticks of steal time. * @p: the process from which the cpu time has been stolen * @ticks: number of stolen ticks */ void account_steal_ticks(unsigned long ticks) { account_steal_time(jiffies_to_cputime(ticks)); } /* * Account multiple ticks of idle time. * @ticks: number of stolen ticks */ void account_idle_ticks(unsigned long ticks) { account_idle_time(jiffies_to_cputime(ticks)); } #endif /* * Use precise platform statistics if available: */ #ifdef CONFIG_VIRT_CPU_ACCOUNTING cputime_t task_utime(struct task_struct *p) { return p->utime; } cputime_t task_stime(struct task_struct *p) { return p->stime; } #else cputime_t task_utime(struct task_struct *p) { clock_t utime = cputime_to_clock_t(p->utime), total = utime + cputime_to_clock_t(p->stime); u64 temp; /* * Use CFS's precise accounting: */ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); if (total) { temp *= utime; do_div(temp, total); } utime = (clock_t)temp; p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); return p->prev_utime; } cputime_t task_stime(struct task_struct *p) { clock_t stime; /* * Use CFS's precise accounting. (we subtract utime from * the total, to make sure the total observed by userspace * grows monotonically - apps rely on that): */ stime = nsec_to_clock_t(p->se.sum_exec_runtime) - cputime_to_clock_t(task_utime(p)); if (stime >= 0) p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); return p->prev_stime; } #endif inline cputime_t task_gtime(struct task_struct *p) { return p->gtime; } /* * This function gets called by the timer code, with HZ frequency. * We call it with interrupts disabled. * * It also gets called by the fork code, when changing the parent's * timeslices. */ void scheduler_tick(void) { int cpu = smp_processor_id(); struct rq *rq = cpu_rq(cpu); struct task_struct *curr = rq->curr; sched_clock_tick(); spin_lock(&rq->lock); update_rq_clock(rq); update_cpu_load(rq); curr->sched_class->task_tick(rq, curr, 0); spin_unlock(&rq->lock); perf_event_task_tick(curr, cpu); #ifdef CONFIG_SMP rq->idle_at_tick = idle_cpu(cpu); trigger_load_balance(rq, cpu); #endif } notrace unsigned long get_parent_ip(unsigned long addr) { if (in_lock_functions(addr)) { addr = CALLER_ADDR2; if (in_lock_functions(addr)) addr = CALLER_ADDR3; } return addr; } #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ defined(CONFIG_PREEMPT_TRACER)) void __kprobes add_preempt_count(int val) { #ifdef CONFIG_DEBUG_PREEMPT /* * Underflow? */ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) return; #endif preempt_count() += val; #ifdef CONFIG_DEBUG_PREEMPT /* * Spinlock count overflowing soon? */ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK - 10); #endif if (preempt_count() == val) trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); } EXPORT_SYMBOL(add_preempt_count); void __kprobes sub_preempt_count(int val) { #ifdef CONFIG_DEBUG_PREEMPT /* * Underflow? */ if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) return; /* * Is the spinlock portion underflowing? */ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK))) return; #endif if (preempt_count() == val) trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); preempt_count() -= val; } EXPORT_SYMBOL(sub_preempt_count); #endif /* * Print scheduling while atomic bug: */ static noinline void __schedule_bug(struct task_struct *prev) { struct pt_regs *regs = get_irq_regs(); printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", prev->comm, prev->pid, preempt_count()); debug_show_held_locks(prev); print_modules(); if (irqs_disabled()) print_irqtrace_events(prev); if (regs) show_regs(regs); else dump_stack(); } /* * Various schedule()-time debugging checks and statistics: */ static inline void schedule_debug(struct task_struct *prev) { /* * Test if we are atomic. Since do_exit() needs to call into * schedule() atomically, we ignore that path for now. * Otherwise, whine if we are scheduling when we should not be. */ if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) __schedule_bug(prev); profile_hit(SCHED_PROFILING, __builtin_return_address(0)); schedstat_inc(this_rq(), sched_count); #ifdef CONFIG_SCHEDSTATS if (unlikely(prev->lock_depth >= 0)) { schedstat_inc(this_rq(), bkl_count); schedstat_inc(prev, sched_info.bkl_count); } #endif } static void put_prev_task(struct rq *rq, struct task_struct *p) { u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; update_avg(&p->se.avg_running, runtime); if (p->state == TASK_RUNNING) { /* * In order to avoid avg_overlap growing stale when we are * indeed overlapping and hence not getting put to sleep, grow * the avg_overlap on preemption. * * We use the average preemption runtime because that * correlates to the amount of cache footprint a task can * build up. */ runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); update_avg(&p->se.avg_overlap, runtime); } else { update_avg(&p->se.avg_running, 0); } p->sched_class->put_prev_task(rq, p); } /* * Pick up the highest-prio task: */ static inline struct task_struct * pick_next_task(struct rq *rq) { const struct sched_class *class; struct task_struct *p; /* * Optimization: we know that if all tasks are in * the fair class we can call that function directly: */ if (likely(rq->nr_running == rq->cfs.nr_running)) { p = fair_sched_class.pick_next_task(rq); if (likely(p)) return p; } class = sched_class_highest; for ( ; ; ) { p = class->pick_next_task(rq); if (p) return p; /* * Will never be NULL as the idle class always * returns a non-NULL p: */ class = class->next; } } /* * schedule() is the main scheduler function. */ asmlinkage void __sched schedule(void) { struct task_struct *prev, *next; unsigned long *switch_count; struct rq *rq; int cpu; need_resched: preempt_disable(); cpu = smp_processor_id(); rq = cpu_rq(cpu); rcu_sched_qs(cpu); prev = rq->curr; switch_count = &prev->nivcsw; release_kernel_lock(prev); need_resched_nonpreemptible: schedule_debug(prev); if (sched_feat(HRTICK)) hrtick_clear(rq); spin_lock_irq(&rq->lock); update_rq_clock(rq); clear_tsk_need_resched(prev); if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { if (unlikely(signal_pending_state(prev->state, prev))) prev->state = TASK_RUNNING; else deactivate_task(rq, prev, 1); switch_count = &prev->nvcsw; } pre_schedule(rq, prev); if (unlikely(!rq->nr_running)) idle_balance(cpu, rq); put_prev_task(rq, prev); next = pick_next_task(rq); if (likely(prev != next)) { sched_info_switch(prev, next); perf_event_task_sched_out(prev, next, cpu); rq->nr_switches++; rq->curr = next; ++*switch_count; context_switch(rq, prev, next); /* unlocks the rq */ /* * the context switch might have flipped the stack from under * us, hence refresh the local variables. */ cpu = smp_processor_id(); rq = cpu_rq(cpu); } else spin_unlock_irq(&rq->lock); post_schedule(rq); if (unlikely(reacquire_kernel_lock(current) < 0)) goto need_resched_nonpreemptible; preempt_enable_no_resched(); if (need_resched()) goto need_resched; } EXPORT_SYMBOL(schedule); #ifdef CONFIG_SMP /* * Look out! "owner" is an entirely speculative pointer * access and not reliable. */ int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) { unsigned int cpu; struct rq *rq; if (!sched_feat(OWNER_SPIN)) return 0; #ifdef CONFIG_DEBUG_PAGEALLOC /* * Need to access the cpu field knowing that * DEBUG_PAGEALLOC could have unmapped it if * the mutex owner just released it and exited. */ if (probe_kernel_address(&owner->cpu, cpu)) goto out; #else cpu = owner->cpu; #endif /* * Even if the access succeeded (likely case), * the cpu field may no longer be valid. */ if (cpu >= nr_cpumask_bits) goto out; /* * We need to validate that we can do a * get_cpu() and that we have the percpu area. */ if (!cpu_online(cpu)) goto out; rq = cpu_rq(cpu); for (;;) { /* * Owner changed, break to re-assess state. */ if (lock->owner != owner) break; /* * Is that owner really running on that cpu? */ if (task_thread_info(rq->curr) != owner || need_resched()) return 0; cpu_relax(); } out: return 1; } #endif #ifdef CONFIG_PREEMPT /* * this is the entry point to schedule() from in-kernel preemption * off of preempt_enable. Kernel preemptions off return from interrupt * occur there and call schedule directly. */ asmlinkage void __sched preempt_schedule(void) { struct thread_info *ti = current_thread_info(); /* * If there is a non-zero preempt_count or interrupts are disabled, * we do not want to preempt the current task. Just return.. */ if (likely(ti->preempt_count || irqs_disabled())) return; do { add_preempt_count(PREEMPT_ACTIVE); schedule(); sub_preempt_count(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity * between schedule and now. */ barrier(); } while (need_resched()); } EXPORT_SYMBOL(preempt_schedule); /* * this is the entry point to schedule() from kernel preemption * off of irq context. * Note, that this is called and return with irqs disabled. This will * protect us against recursive calling from irq. */ asmlinkage void __sched preempt_schedule_irq(void) { struct thread_info *ti = current_thread_info(); /* Catch callers which need to be fixed */ BUG_ON(ti->preempt_count || !irqs_disabled()); do { add_preempt_count(PREEMPT_ACTIVE); local_irq_enable(); schedule(); local_irq_disable(); sub_preempt_count(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity * between schedule and now. */ barrier(); } while (need_resched()); } #endif /* CONFIG_PREEMPT */ int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, void *key) { return try_to_wake_up(curr->private, mode, wake_flags); } EXPORT_SYMBOL(default_wake_function); /* * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve * number) then we wake all the non-exclusive tasks and one exclusive task. * * There are circumstances in which we can try to wake a task which has already * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns * zero in this (rare) case, and we handle it by continuing to scan the queue. */ static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, int wake_flags, void *key) { wait_queue_t *curr, *next; list_for_each_entry_safe(curr, next, &q->task_list, task_list) { unsigned flags = curr->flags; if (curr->func(curr, mode, wake_flags, key) && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) break; } } /** * __wake_up - wake up threads blocked on a waitqueue. * @q: the waitqueue * @mode: which threads * @nr_exclusive: how many wake-one or wake-many threads to wake up * @key: is directly passed to the wakeup function * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; spin_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr_exclusive, 0, key); spin_unlock_irqrestore(&q->lock, flags); } EXPORT_SYMBOL(__wake_up); /* * Same as __wake_up but called with the spinlock in wait_queue_head_t held. */ void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) { __wake_up_common(q, mode, 1, 0, NULL); } void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) { __wake_up_common(q, mode, 1, 0, key); } /** * __wake_up_sync_key - wake up threads blocked on a waitqueue. * @q: the waitqueue * @mode: which threads * @nr_exclusive: how many wake-one or wake-many threads to wake up * @key: opaque value to be passed to wakeup targets * * The sync wakeup differs that the waker knows that it will schedule * away soon, so while the target thread will be woken up, it will not * be migrated to another CPU - ie. the two threads are 'synchronized' * with each other. This can prevent needless bouncing between CPUs. * * On UP it can prevent extra preemption. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr_exclusive, void *key) { unsigned long flags; int wake_flags = WF_SYNC; if (unlikely(!q)) return; if (unlikely(!nr_exclusive)) wake_flags = 0; spin_lock_irqsave(&q->lock, flags); __wake_up_common(q, mode, nr_exclusive, wake_flags, key); spin_unlock_irqrestore(&q->lock, flags); } EXPORT_SYMBOL_GPL(__wake_up_sync_key); /* * __wake_up_sync - see __wake_up_sync_key() */ void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) { __wake_up_sync_key(q, mode, nr_exclusive, NULL); } EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ /** * complete: - signals a single thread waiting on this completion * @x: holds the state of this particular completion * * This will wake up a single thread waiting on this completion. Threads will be * awakened in the same order in which they were queued. * * See also complete_all(), wait_for_completion() and related routines. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void complete(struct completion *x) { unsigned long flags; spin_lock_irqsave(&x->wait.lock, flags); x->done++; __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); spin_unlock_irqrestore(&x->wait.lock, flags); } EXPORT_SYMBOL(complete); /** * complete_all: - signals all threads waiting on this completion * @x: holds the state of this particular completion * * This will wake up all threads waiting on this particular completion event. * * It may be assumed that this function implies a write memory barrier before * changing the task state if and only if any tasks are woken up. */ void complete_all(struct completion *x) { unsigned long flags; spin_lock_irqsave(&x->wait.lock, flags); x->done += UINT_MAX/2; __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); spin_unlock_irqrestore(&x->wait.lock, flags); } EXPORT_SYMBOL(complete_all); static inline long __sched do_wait_for_common(struct completion *x, long timeout, int state) { if (!x->done) { DECLARE_WAITQUEUE(wait, current); wait.flags |= WQ_FLAG_EXCLUSIVE; __add_wait_queue_tail(&x->wait, &wait); do { if (signal_pending_state(state, current)) { timeout = -ERESTARTSYS; break; } __set_current_state(state); spin_unlock_irq(&x->wait.lock); timeout = schedule_timeout(timeout); spin_lock_irq(&x->wait.lock); } while (!x->done && timeout); __remove_wait_queue(&x->wait, &wait); if (!x->done) return timeout; } x->done--; return timeout ?: 1; } static long __sched wait_for_common(struct completion *x, long timeout, int state) { might_sleep(); spin_lock_irq(&x->wait.lock); timeout = do_wait_for_common(x, timeout, state); spin_unlock_irq(&x->wait.lock); return timeout; } /** * wait_for_completion: - waits for completion of a task * @x: holds the state of this particular completion * * This waits to be signaled for completion of a specific task. It is NOT * interruptible and there is no timeout. * * See also similar routines (i.e. wait_for_completion_timeout()) with timeout * and interrupt capability. Also see complete(). */ void __sched wait_for_completion(struct completion *x) { wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion); /** * wait_for_completion_timeout: - waits for completion of a task (w/timeout) * @x: holds the state of this particular completion * @timeout: timeout value in jiffies * * This waits for either a completion of a specific task to be signaled or for a * specified timeout to expire. The timeout is in jiffies. It is not * interruptible. */ unsigned long __sched wait_for_completion_timeout(struct completion *x, unsigned long timeout) { return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion_timeout); /** * wait_for_completion_interruptible: - waits for completion of a task (w/intr) * @x: holds the state of this particular completion * * This waits for completion of a specific task to be signaled. It is * interruptible. */ int __sched wait_for_completion_interruptible(struct completion *x) { long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); if (t == -ERESTARTSYS) return t; return 0; } EXPORT_SYMBOL(wait_for_completion_interruptible); /** * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) * @x: holds the state of this particular completion * @timeout: timeout value in jiffies * * This waits for either a completion of a specific task to be signaled or for a * specified timeout to expire. It is interruptible. The timeout is in jiffies. */ unsigned long __sched wait_for_completion_interruptible_timeout(struct completion *x, unsigned long timeout) { return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); } EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); /** * wait_for_completion_killable: - waits for completion of a task (killable) * @x: holds the state of this particular completion * * This waits to be signaled for completion of a specific task. It can be * interrupted by a kill signal. */ int __sched wait_for_completion_killable(struct completion *x) { long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); if (t == -ERESTARTSYS) return t; return 0; } EXPORT_SYMBOL(wait_for_completion_killable); /** * try_wait_for_completion - try to decrement a completion without blocking * @x: completion structure * * Returns: 0 if a decrement cannot be done without blocking * 1 if a decrement succeeded. * * If a completion is being used as a counting completion, * attempt to decrement the counter without blocking. This * enables us to avoid waiting if the resource the completion * is protecting is not available. */ bool try_wait_for_completion(struct completion *x) { int ret = 1; spin_lock_irq(&x->wait.lock); if (!x->done) ret = 0; else x->done--; spin_unlock_irq(&x->wait.lock); return ret; } EXPORT_SYMBOL(try_wait_for_completion); /** * completion_done - Test to see if a completion has any waiters * @x: completion structure * * Returns: 0 if there are waiters (wait_for_completion() in progress) * 1 if there are no waiters. * */ bool completion_done(struct completion *x) { int ret = 1; spin_lock_irq(&x->wait.lock); if (!x->done) ret = 0; spin_unlock_irq(&x->wait.lock); return ret; } EXPORT_SYMBOL(completion_done); static long __sched sleep_on_common(wait_queue_head_t *q, int state, long timeout) { unsigned long flags; wait_queue_t wait; init_waitqueue_entry(&wait, current); __set_current_state(state); spin_lock_irqsave(&q->lock, flags); __add_wait_queue(q, &wait); spin_unlock(&q->lock); timeout = schedule_timeout(timeout); spin_lock_irq(&q->lock); __remove_wait_queue(q, &wait); spin_unlock_irqrestore(&q->lock, flags); return timeout; } void __sched interruptible_sleep_on(wait_queue_head_t *q) { sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } EXPORT_SYMBOL(interruptible_sleep_on); long __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) { return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); } EXPORT_SYMBOL(interruptible_sleep_on_timeout); void __sched sleep_on(wait_queue_head_t *q) { sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); } EXPORT_SYMBOL(sleep_on); long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) { return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); } EXPORT_SYMBOL(sleep_on_timeout); #ifdef CONFIG_RT_MUTEXES /* * rt_mutex_setprio - set the current priority of a task * @p: task * @prio: prio value (kernel-internal form) * * This function changes the 'effective' priority of a task. It does * not touch ->normal_prio like __setscheduler(). * * Used by the rt_mutex code to implement priority inheritance logic. */ void rt_mutex_setprio(struct task_struct *p, int prio) { unsigned long flags; int oldprio, on_rq, running; struct rq *rq; const struct sched_class *prev_class = p->sched_class; BUG_ON(prio < 0 || prio > MAX_PRIO); rq = task_rq_lock(p, &flags); update_rq_clock(rq); oldprio = p->prio; on_rq = p->se.on_rq; running = task_current(rq, p); if (on_rq) dequeue_task(rq, p, 0); if (running) p->sched_class->put_prev_task(rq, p); if (rt_prio(prio)) p->sched_class = &rt_sched_class; else p->sched_class = &fair_sched_class; p->prio = prio; if (running) p->sched_class->set_curr_task(rq); if (on_rq) { enqueue_task(rq, p, 0); check_class_changed(rq, p, prev_class, oldprio, running); } task_rq_unlock(rq, &flags); } #endif void set_user_nice(struct task_struct *p, long nice) { int old_prio, delta, on_rq; unsigned long flags; struct rq *rq; if (TASK_NICE(p) == nice || nice < -20 || nice > 19) return; /* * We have to be careful, if called from sys_setpriority(), * the task might be in the middle of scheduling on another CPU. */ rq = task_rq_lock(p, &flags); update_rq_clock(rq); /* * The RT priorities are set via sched_setscheduler(), but we still * allow the 'normal' nice value to be set - but as expected * it wont have any effect on scheduling until the task is * SCHED_FIFO/SCHED_RR: */ if (task_has_rt_policy(p)) { p->static_prio = NICE_TO_PRIO(nice); goto out_unlock; } on_rq = p->se.on_rq; if (on_rq) dequeue_task(rq, p, 0); p->static_prio = NICE_TO_PRIO(nice); set_load_weight(p); old_prio = p->prio; p->prio = effective_prio(p); delta = p->prio - old_prio; if (on_rq) { enqueue_task(rq, p, 0); /* * If the task increased its priority or is running and * lowered its priority, then reschedule its CPU: */ if (delta < 0 || (delta > 0 && task_running(rq, p))) resched_task(rq->curr); } out_unlock: task_rq_unlock(rq, &flags); } EXPORT_SYMBOL(set_user_nice); /* * can_nice - check if a task can reduce its nice value * @p: task * @nice: nice value */ int can_nice(const struct task_struct *p, const int nice) { /* convert nice value [19,-20] to rlimit style value [1,40] */ int nice_rlim = 20 - nice; return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || capable(CAP_SYS_NICE)); } #ifdef __ARCH_WANT_SYS_NICE /* * sys_nice - change the priority of the current process. * @increment: priority increment * * sys_setpriority is a more generic, but much slower function that * does similar things. */ SYSCALL_DEFINE1(nice, int, increment) { long nice, retval; /* * Setpriority might change our priority at the same moment. * We don't have to worry. Conceptually one call occurs first * and we have a single winner. */ if (increment < -40) increment = -40; if (increment > 40) increment = 40; nice = TASK_NICE(current) + increment; if (nice < -20) nice = -20; if (nice > 19) nice = 19; if (increment < 0 && !can_nice(current, nice)) return -EPERM; retval = security_task_setnice(current, nice); if (retval) return retval; set_user_nice(current, nice); return 0; } #endif /** * task_prio - return the priority value of a given task. * @p: the task in question. * * This is the priority value as seen by users in /proc. * RT tasks are offset by -200. Normal tasks are centered * around 0, value goes from -16 to +15. */ int task_prio(const struct task_struct *p) { return p->prio - MAX_RT_PRIO; } /** * task_nice - return the nice value of a given task. * @p: the task in question. */ int task_nice(const struct task_struct *p) { return TASK_NICE(p); } EXPORT_SYMBOL(task_nice); /** * idle_cpu - is a given cpu idle currently? * @cpu: the processor in question. */ int idle_cpu(int cpu) { return cpu_curr(cpu) == cpu_rq(cpu)->idle; } /** * idle_task - return the idle task for a given cpu. * @cpu: the processor in question. */ struct task_struct *idle_task(int cpu) { return cpu_rq(cpu)->idle; } /** * find_process_by_pid - find a process with a matching PID value. * @pid: the pid in question. */ static struct task_struct *find_process_by_pid(pid_t pid) { return pid ? find_task_by_vpid(pid) : current; } /* Actually do priority change: must hold rq lock. */ static void __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) { BUG_ON(p->se.on_rq); p->policy = policy; switch (p->policy) { case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: p->sched_class = &fair_sched_class; break; case SCHED_FIFO: case SCHED_RR: p->sched_class = &rt_sched_class; break; } p->rt_priority = prio; p->normal_prio = normal_prio(p); /* we are holding p->pi_lock already */ p->prio = rt_mutex_getprio(p); set_load_weight(p); } /* * check the target process has a UID that matches the current process's */ static bool check_same_owner(struct task_struct *p) { const struct cred *cred = current_cred(), *pcred; bool match; rcu_read_lock(); pcred = __task_cred(p); match = (cred->euid == pcred->euid || cred->euid == pcred->uid); rcu_read_unlock(); return match; } static int __sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param, bool user) { int retval, oldprio, oldpolicy = -1, on_rq, running; unsigned long flags; const struct sched_class *prev_class = p->sched_class; struct rq *rq; int reset_on_fork; /* may grab non-irq protected spin_locks */ BUG_ON(in_interrupt()); recheck: /* double check policy once rq lock held */ if (policy < 0) { reset_on_fork = p->sched_reset_on_fork; policy = oldpolicy = p->policy; } else { reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); policy &= ~SCHED_RESET_ON_FORK; if (policy != SCHED_FIFO && policy != SCHED_RR && policy != SCHED_NORMAL && policy != SCHED_BATCH && policy != SCHED_IDLE) return -EINVAL; } /* * Valid priorities for SCHED_FIFO and SCHED_RR are * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, * SCHED_BATCH and SCHED_IDLE is 0. */ if (param->sched_priority < 0 || (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) return -EINVAL; if (rt_policy(policy) != (param->sched_priority != 0)) return -EINVAL; /* * Allow unprivileged RT tasks to decrease priority: */ if (user && !capable(CAP_SYS_NICE)) { if (rt_policy(policy)) { unsigned long rlim_rtprio; if (!lock_task_sighand(p, &flags)) return -ESRCH; rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; unlock_task_sighand(p, &flags); /* can't set/change the rt policy */ if (policy != p->policy && !rlim_rtprio) return -EPERM; /* can't increase priority */ if (param->sched_priority > p->rt_priority && param->sched_priority > rlim_rtprio) return -EPERM; } /* * Like positive nice levels, dont allow tasks to * move out of SCHED_IDLE either: */ if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) return -EPERM; /* can't change other user's priorities */ if (!check_same_owner(p)) return -EPERM; /* Normal users shall not reset the sched_reset_on_fork flag */ if (p->sched_reset_on_fork && !reset_on_fork) return -EPERM; } if (user) { #ifdef CONFIG_RT_GROUP_SCHED /* * Do not allow realtime tasks into groups that have no runtime * assigned. */ if (rt_bandwidth_enabled() && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0) return -EPERM; #endif retval = security_task_setscheduler(p, policy, param); if (retval) return retval; } /* * make sure no PI-waiters arrive (or leave) while we are * changing the priority of the task: */ spin_lock_irqsave(&p->pi_lock, flags); /* * To be able to change p->policy safely, the apropriate * runqueue lock must be held. */ rq = __task_rq_lock(p); /* recheck policy now with rq lock held */ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { policy = oldpolicy = -1; __task_rq_unlock(rq); spin_unlock_irqrestore(&p->pi_lock, flags); goto recheck; } update_rq_clock(rq); on_rq = p->se.on_rq; running = task_current(rq, p); if (on_rq) deactivate_task(rq, p, 0); if (running) p->sched_class->put_prev_task(rq, p); p->sched_reset_on_fork = reset_on_fork; oldprio = p->prio; __setscheduler(rq, p, policy, param->sched_priority); if (running) p->sched_class->set_curr_task(rq); if (on_rq) { activate_task(rq, p, 0); check_class_changed(rq, p, prev_class, oldprio, running); } __task_rq_unlock(rq); spin_unlock_irqrestore(&p->pi_lock, flags); rt_mutex_adjust_pi(p); return 0; } /** * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. * @p: the task in question. * @policy: new policy. * @param: structure containing the new RT priority. * * NOTE that the task may be already dead. */ int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param) { return __sched_setscheduler(p, policy, param, true); } EXPORT_SYMBOL_GPL(sched_setscheduler); /** * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. * @p: the task in question. * @policy: new policy. * @param: structure containing the new RT priority. * * Just like sched_setscheduler, only don't bother checking if the * current context has permission. For example, this is needed in * stop_machine(): we create temporary high priority worker threads, * but our caller might not have that capability. */ int sched_setscheduler_nocheck(struct task_struct *p, int policy, struct sched_param *param) { return __sched_setscheduler(p, policy, param, false); } static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) { struct sched_param lparam; struct task_struct *p; int retval; if (!param || pid < 0) return -EINVAL; if (copy_from_user(&lparam, param, sizeof(struct sched_param))) return -EFAULT; rcu_read_lock(); retval = -ESRCH; p = find_process_by_pid(pid); if (p != NULL) retval = sched_setscheduler(p, policy, &lparam); rcu_read_unlock(); return retval; } /** * sys_sched_setscheduler - set/change the scheduler policy and RT priority * @pid: the pid in question. * @policy: new policy. * @param: structure containing the new RT priority. */ SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) { /* negative values for policy are not valid */ if (policy < 0) return -EINVAL; return do_sched_setscheduler(pid, policy, param); } /** * sys_sched_setparam - set/change the RT priority of a thread * @pid: the pid in question. * @param: structure containing the new RT priority. */ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) { return do_sched_setscheduler(pid, -1, param); } /** * sys_sched_getscheduler - get the policy (scheduling class) of a thread * @pid: the pid in question. */ SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) { struct task_struct *p; int retval; if (pid < 0) return -EINVAL; retval = -ESRCH; read_lock(&tasklist_lock); p = find_process_by_pid(pid); if (p) { retval = security_task_getscheduler(p); if (!retval) retval = p->policy | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); } read_unlock(&tasklist_lock); return retval; } /** * sys_sched_getparam - get the RT priority of a thread * @pid: the pid in question. * @param: structure containing the RT priority. */ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) { struct sched_param lp; struct task_struct *p; int retval; if (!param || pid < 0) return -EINVAL; read_lock(&tasklist_lock); p = find_process_by_pid(pid); retval = -ESRCH; if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; lp.sched_priority = p->rt_priority; read_unlock(&tasklist_lock); /* * This one might sleep, we cannot do it with a spinlock held ... */ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; return retval; out_unlock: read_unlock(&tasklist_lock); return retval; } long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) { cpumask_var_t cpus_allowed, new_mask; struct task_struct *p; int retval; get_online_cpus(); read_lock(&tasklist_lock); p = find_process_by_pid(pid); if (!p) { read_unlock(&tasklist_lock); put_online_cpus(); return -ESRCH; } /* * It is not safe to call set_cpus_allowed with the * tasklist_lock held. We will bump the task_struct's * usage count and then drop tasklist_lock. */ get_task_struct(p); read_unlock(&tasklist_lock); if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { retval = -ENOMEM; goto out_put_task; } if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { retval = -ENOMEM; goto out_free_cpus_allowed; } retval = -EPERM; if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) goto out_unlock; retval = security_task_setscheduler(p, 0, NULL); if (retval) goto out_unlock; cpuset_cpus_allowed(p, cpus_allowed); cpumask_and(new_mask, in_mask, cpus_allowed); again: retval = set_cpus_allowed_ptr(p, new_mask); if (!retval) { cpuset_cpus_allowed(p, cpus_allowed); if (!cpumask_subset(new_mask, cpus_allowed)) { /* * We must have raced with a concurrent cpuset * update. Just reset the cpus_allowed to the * cpuset's cpus_allowed */ cpumask_copy(new_mask, cpus_allowed); goto again; } } out_unlock: free_cpumask_var(new_mask); out_free_cpus_allowed: free_cpumask_var(cpus_allowed); out_put_task: put_task_struct(p); put_online_cpus(); return retval; } static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, struct cpumask *new_mask) { if (len < cpumask_size()) cpumask_clear(new_mask); else if (len > cpumask_size()) len = cpumask_size(); return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; } /** * sys_sched_setaffinity - set the cpu affinity of a process * @pid: pid of the process * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to the new cpu mask */ SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, unsigned long __user *, user_mask_ptr) { cpumask_var_t new_mask; int retval; if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) return -ENOMEM; retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); if (retval == 0) retval = sched_setaffinity(pid, new_mask); free_cpumask_var(new_mask); return retval; } long sched_getaffinity(pid_t pid, struct cpumask *mask) { struct task_struct *p; int retval; get_online_cpus(); read_lock(&tasklist_lock); retval = -ESRCH; p = find_process_by_pid(pid); if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); out_unlock: read_unlock(&tasklist_lock); put_online_cpus(); return retval; } /** * sys_sched_getaffinity - get the cpu affinity of a process * @pid: pid of the process * @len: length in bytes of the bitmask pointed to by user_mask_ptr * @user_mask_ptr: user-space pointer to hold the current cpu mask */ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, unsigned long __user *, user_mask_ptr) { int ret; cpumask_var_t mask; if (len < cpumask_size()) return -EINVAL; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; ret = sched_getaffinity(pid, mask); if (ret == 0) { if (copy_to_user(user_mask_ptr, mask, cpumask_size())) ret = -EFAULT; else ret = cpumask_size(); } free_cpumask_var(mask); return ret; } /** * sys_sched_yield - yield the current processor to other threads. * * This function yields the current CPU to other tasks. If there are no * other threads running on this CPU then this function will return. */ SYSCALL_DEFINE0(sched_yield) { struct rq *rq = this_rq_lock(); schedstat_inc(rq, yld_count); current->sched_class->yield_task(rq); /* * Since we are going to call schedule() anyway, there's * no need to preempt or enable interrupts: */ __release(rq->lock); spin_release(&rq->lock.dep_map, 1, _THIS_IP_); _raw_spin_unlock(&rq->lock); preempt_enable_no_resched(); schedule(); return 0; } static inline int should_resched(void) { return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); } static void __cond_resched(void) { add_preempt_count(PREEMPT_ACTIVE); schedule(); sub_preempt_count(PREEMPT_ACTIVE); } int __sched _cond_resched(void) { if (should_resched()) { __cond_resched(); return 1; } return 0; } EXPORT_SYMBOL(_cond_resched); /* * __cond_resched_lock() - if a reschedule is pending, drop the given lock, * call schedule, and on return reacquire the lock. * * This works OK both with and without CONFIG_PREEMPT. We do strange low-level * operations here to prevent schedule() from being called twice (once via * spin_unlock(), once by hand). */ int __cond_resched_lock(spinlock_t *lock) { int resched = should_resched(); int ret = 0; lockdep_assert_held(lock); if (spin_needbreak(lock) || resched) { spin_unlock(lock); if (resched) __cond_resched(); else cpu_relax(); ret = 1; spin_lock(lock); } return ret; } EXPORT_SYMBOL(__cond_resched_lock); int __sched __cond_resched_softirq(void) { BUG_ON(!in_softirq()); if (should_resched()) { local_bh_enable(); __cond_resched(); local_bh_disable(); return 1; } return 0; } EXPORT_SYMBOL(__cond_resched_softirq); /** * yield - yield the current processor to other threads. * * This is a shortcut for kernel-space yielding - it marks the * thread runnable and calls sys_sched_yield(). */ void __sched yield(void) { set_current_state(TASK_RUNNING); sys_sched_yield(); } EXPORT_SYMBOL(yield); /* * This task is about to go to sleep on IO. Increment rq->nr_iowait so * that process accounting knows that this is a task in IO wait state. */ void __sched io_schedule(void) { struct rq *rq = raw_rq(); delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); current->in_iowait = 1; schedule(); current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); } EXPORT_SYMBOL(io_schedule); long __sched io_schedule_timeout(long timeout) { struct rq *rq = raw_rq(); long ret; delayacct_blkio_start(); atomic_inc(&rq->nr_iowait); current->in_iowait = 1; ret = schedule_timeout(timeout); current->in_iowait = 0; atomic_dec(&rq->nr_iowait); delayacct_blkio_end(); return ret; } /** * sys_sched_get_priority_max - return maximum RT priority. * @policy: scheduling class. * * this syscall returns the maximum rt_priority that can be used * by a given scheduling class. */ SYSCALL_DEFINE1(sched_get_priority_max, int, policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = MAX_USER_RT_PRIO-1; break; case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: ret = 0; break; } return ret; } /** * sys_sched_get_priority_min - return minimum RT priority. * @policy: scheduling class. * * this syscall returns the minimum rt_priority that can be used * by a given scheduling class. */ SYSCALL_DEFINE1(sched_get_priority_min, int, policy) { int ret = -EINVAL; switch (policy) { case SCHED_FIFO: case SCHED_RR: ret = 1; break; case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: ret = 0; } return ret; } /** * sys_sched_rr_get_interval - return the default timeslice of a process. * @pid: pid of the process. * @interval: userspace pointer to the timeslice value. * * this syscall writes the default timeslice value of a given process * into the user-space timespec buffer. A value of '0' means infinity. */ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, struct timespec __user *, interval) { struct task_struct *p; unsigned int time_slice; int retval; struct timespec t; if (pid < 0) return -EINVAL; retval = -ESRCH; read_lock(&tasklist_lock); p = find_process_by_pid(pid); if (!p) goto out_unlock; retval = security_task_getscheduler(p); if (retval) goto out_unlock; time_slice = p->sched_class->get_rr_interval(p); read_unlock(&tasklist_lock); jiffies_to_timespec(time_slice, &t); retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; return retval; out_unlock: read_unlock(&tasklist_lock); return retval; } static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; void sched_show_task(struct task_struct *p) { unsigned long free = 0; unsigned state; state = p->state ? __ffs(p->state) + 1 : 0; printk(KERN_INFO "%-13.13s %c", p->comm, state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); #if BITS_PER_LONG == 32 if (state == TASK_RUNNING) printk(KERN_CONT " running "); else printk(KERN_CONT " %08lx ", thread_saved_pc(p)); #else if (state == TASK_RUNNING) printk(KERN_CONT " running task "); else printk(KERN_CONT " %016lx ", thread_saved_pc(p)); #endif #ifdef CONFIG_DEBUG_STACK_USAGE free = stack_not_used(p); #endif printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, task_pid_nr(p), task_pid_nr(p->real_parent), (unsigned long)task_thread_info(p)->flags); show_stack(p, NULL); } void show_state_filter(unsigned long state_filter) { struct task_struct *g, *p; #if BITS_PER_LONG == 32 printk(KERN_INFO " task PC stack pid father\n"); #else printk(KERN_INFO " task PC stack pid father\n"); #endif read_lock(&tasklist_lock); do_each_thread(g, p) { /* * reset the NMI-timeout, listing all files on a slow * console might take alot of time: */ touch_nmi_watchdog(); if (!state_filter || (p->state & state_filter)) sched_show_task(p); } while_each_thread(g, p); touch_all_softlockup_watchdogs(); #ifdef CONFIG_SCHED_DEBUG sysrq_sched_debug_show(); #endif read_unlock(&tasklist_lock); /* * Only show locks if all tasks are dumped: */ if (state_filter == -1) debug_show_all_locks(); } void __cpuinit init_idle_bootup_task(struct task_struct *idle) { idle->sched_class = &idle_sched_class; } /** * init_idle - set up an idle thread for a given CPU * @idle: task in question * @cpu: cpu the idle task belongs to * * NOTE: this function does not set the idle thread's NEED_RESCHED * flag, to make booting more robust. */ void __cpuinit init_idle(struct task_struct *idle, int cpu) { struct rq *rq = cpu_rq(cpu); unsigned long flags; spin_lock_irqsave(&rq->lock, flags); __sched_fork(idle); idle->se.exec_start = sched_clock(); idle->prio = idle->normal_prio = MAX_PRIO; cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); __set_task_cpu(idle, cpu); rq->curr = rq->idle = idle; #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) idle->oncpu = 1; #endif spin_unlock_irqrestore(&rq->lock, flags); /* Set the preempt count _outside_ the spinlocks! */ #if defined(CONFIG_PREEMPT) task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); #else task_thread_info(idle)->preempt_count = 0; #endif /* * The idle tasks have their own, simple scheduling class: */ idle->sched_class = &idle_sched_class; ftrace_graph_init_task(idle); } /* * In a system that switches off the HZ timer nohz_cpu_mask * indicates which cpus entered this state. This is used * in the rcu update to wait only for active cpus. For system * which do not switch off the HZ timer nohz_cpu_mask should * always be CPU_BITS_NONE. */ cpumask_var_t nohz_cpu_mask; /* * Increase the granularity value when there are more CPUs, * because with more CPUs the 'effective latency' as visible * to users decreases. But the relationship is not linear, * so pick a second-best guess by going with the log2 of the * number of CPUs. * * This idea comes from the SD scheduler of Con Kolivas: */ static inline void sched_init_granularity(void) { unsigned int factor = 1 + ilog2(num_online_cpus()); const unsigned long limit = 200000000; sysctl_sched_min_granularity *= factor; if (sysctl_sched_min_granularity > limit) sysctl_sched_min_granularity = limit; sysctl_sched_latency *= factor; if (sysctl_sched_latency > limit) sysctl_sched_latency = limit; sysctl_sched_wakeup_granularity *= factor; sysctl_sched_shares_ratelimit *= factor; } #ifdef CONFIG_SMP /* * This is how migration works: * * 1) we queue a struct migration_req structure in the source CPU's * runqueue and wake up that CPU's migration thread. * 2) we down() the locked semaphore => thread blocks. * 3) migration thread wakes up (implicitly it forces the migrated * thread off the CPU) * 4) it gets the migration request and checks whether the migrated * task is still in the wrong runqueue. * 5) if it's in the wrong runqueue then the migration thread removes * it and puts it into the right queue. * 6) migration thread up()s the semaphore. * 7) we wake up and the migration is done. */ /* * Change a given task's CPU affinity. Migrate the thread to a * proper CPU and schedule it away if the CPU it's executing on * is removed from the allowed bitmask. * * NOTE: the caller must have a valid reference to the task, the * task must not exit() & deallocate itself prematurely. The * call is not atomic; no spinlocks may be held. */ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { struct migration_req req; unsigned long flags; struct rq *rq; int ret = 0; rq = task_rq_lock(p, &flags); if (!cpumask_intersects(new_mask, cpu_online_mask)) { ret = -EINVAL; goto out; } if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && !cpumask_equal(&p->cpus_allowed, new_mask))) { ret = -EINVAL; goto out; } if (p->sched_class->set_cpus_allowed) p->sched_class->set_cpus_allowed(p, new_mask); else { cpumask_copy(&p->cpus_allowed, new_mask); p->rt.nr_cpus_allowed = cpumask_weight(new_mask); } /* Can the task run on the task's current CPU? If so, we're done */ if (cpumask_test_cpu(task_cpu(p), new_mask)) goto out; if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { /* Need help from migration thread: drop lock and wait. */ struct task_struct *mt = rq->migration_thread; get_task_struct(mt); task_rq_unlock(rq, &flags); wake_up_process(rq->migration_thread); put_task_struct(mt); wait_for_completion(&req.done); tlb_migrate_finish(p->mm); return 0; } out: task_rq_unlock(rq, &flags); return ret; } EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); /* * Move (not current) task off this cpu, onto dest cpu. We're doing * this because either it can't run here any more (set_cpus_allowed() * away from this CPU, or CPU going down), or because we're * attempting to rebalance this task on exec (sched_exec). * * So we race with normal scheduler movements, but that's OK, as long * as the task is no longer on this CPU. * * Returns non-zero if task was successfully migrated. */ static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) { struct rq *rq_dest, *rq_src; int ret = 0, on_rq; if (unlikely(!cpu_active(dest_cpu))) return ret; rq_src = cpu_rq(src_cpu); rq_dest = cpu_rq(dest_cpu); double_rq_lock(rq_src, rq_dest); /* Already moved. */ if (task_cpu(p) != src_cpu) goto done; /* Affinity changed (again). */ if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) goto fail; on_rq = p->se.on_rq; if (on_rq) deactivate_task(rq_src, p, 0); set_task_cpu(p, dest_cpu); if (on_rq) { activate_task(rq_dest, p, 0); check_preempt_curr(rq_dest, p, 0); } done: ret = 1; fail: double_rq_unlock(rq_src, rq_dest); return ret; } #define RCU_MIGRATION_IDLE 0 #define RCU_MIGRATION_NEED_QS 1 #define RCU_MIGRATION_GOT_QS 2 #define RCU_MIGRATION_MUST_SYNC 3 /* * migration_thread - this is a highprio system thread that performs * thread migration by bumping thread off CPU then 'pushing' onto * another runqueue. */ static int migration_thread(void *data) { int badcpu; int cpu = (long)data; struct rq *rq; rq = cpu_rq(cpu); BUG_ON(rq->migration_thread != current); set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { struct migration_req *req; struct list_head *head; spin_lock_irq(&rq->lock); if (cpu_is_offline(cpu)) { spin_unlock_irq(&rq->lock); break; } if (rq->active_balance) { active_load_balance(rq, cpu); rq->active_balance = 0; } head = &rq->migration_queue; if (list_empty(head)) { spin_unlock_irq(&rq->lock); schedule(); set_current_state(TASK_INTERRUPTIBLE); continue; } req = list_entry(head->next, struct migration_req, list); list_del_init(head->next); if (req->task != NULL) { spin_unlock(&rq->lock); __migrate_task(req->task, cpu, req->dest_cpu); } else if (likely(cpu == (badcpu = smp_processor_id()))) { req->dest_cpu = RCU_MIGRATION_GOT_QS; spin_unlock(&rq->lock); } else { req->dest_cpu = RCU_MIGRATION_MUST_SYNC; spin_unlock(&rq->lock); WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); } local_irq_enable(); complete(&req->done); } __set_current_state(TASK_RUNNING); return 0; } #ifdef CONFIG_HOTPLUG_CPU static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) { int ret; local_irq_disable(); ret = __migrate_task(p, src_cpu, dest_cpu); local_irq_enable(); return ret; } /* * Figure out where task on dead CPU should go, use force if necessary. */ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) { int dest_cpu; const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); again: /* Look for allowed, online CPU in same node. */ for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) goto move; /* Any allowed, online CPU? */ dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); if (dest_cpu < nr_cpu_ids) goto move; /* No more Mr. Nice Guy. */ if (dest_cpu >= nr_cpu_ids) { cpuset_cpus_allowed_locked(p, &p->cpus_allowed); dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); /* * Don't tell them about moving exiting tasks or * kernel threads (both mm NULL), since they never * leave kernel. */ if (p->mm && printk_ratelimit()) { printk(KERN_INFO "process %d (%s) no " "longer affine to cpu%d\n", task_pid_nr(p), p->comm, dead_cpu); } } move: /* It can have affinity changed while we were choosing. */ if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) goto again; } /* * While a dead CPU has no uninterruptible tasks queued at this point, * it might still have a nonzero ->nr_uninterruptible counter, because * for performance reasons the counter is not stricly tracking tasks to * their home CPUs. So we just add the counter to another CPU's counter, * to keep the global sum constant after CPU-down: */ static void migrate_nr_uninterruptible(struct rq *rq_src) { struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); unsigned long flags; local_irq_save(flags); double_rq_lock(rq_src, rq_dest); rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; rq_src->nr_uninterruptible = 0; double_rq_unlock(rq_src, rq_dest); local_irq_restore(flags); } /* Run through task list and migrate tasks from the dead cpu. */ static void migrate_live_tasks(int src_cpu) { struct task_struct *p, *t; read_lock(&tasklist_lock); do_each_thread(t, p) { if (p == current) continue; if (task_cpu(p) == src_cpu) move_task_off_dead_cpu(src_cpu, p); } while_each_thread(t, p); read_unlock(&tasklist_lock); } /* * Schedules idle task to be the next runnable task on current CPU. * It does so by boosting its priority to highest possible. * Used by CPU offline code. */ void sched_idle_next(void) { int this_cpu = smp_processor_id(); struct rq *rq = cpu_rq(this_cpu); struct task_struct *p = rq->idle; unsigned long flags; /* cpu has to be offline */ BUG_ON(cpu_online(this_cpu)); /* * Strictly not necessary since rest of the CPUs are stopped by now * and interrupts disabled on the current cpu. */ spin_lock_irqsave(&rq->lock, flags); __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); update_rq_clock(rq); activate_task(rq, p, 0); spin_unlock_irqrestore(&rq->lock, flags); } /* * Ensures that the idle task is using init_mm right before its cpu goes * offline. */ void idle_task_exit(void) { struct mm_struct *mm = current->active_mm; BUG_ON(cpu_online(smp_processor_id())); if (mm != &init_mm) switch_mm(mm, &init_mm, current); mmdrop(mm); } /* called under rq->lock with disabled interrupts */ static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) { struct rq *rq = cpu_rq(dead_cpu); /* Must be exiting, otherwise would be on tasklist. */ BUG_ON(!p->exit_state); /* Cannot have done final schedule yet: would have vanished. */ BUG_ON(p->state == TASK_DEAD); get_task_struct(p); /* * Drop lock around migration; if someone else moves it, * that's OK. No task can be added to this CPU, so iteration is * fine. */ spin_unlock_irq(&rq->lock); move_task_off_dead_cpu(dead_cpu, p); spin_lock_irq(&rq->lock); put_task_struct(p); } /* release_task() removes task from tasklist, so we won't find dead tasks. */ static void migrate_dead_tasks(unsigned int dead_cpu) { struct rq *rq = cpu_rq(dead_cpu); struct task_struct *next; for ( ; ; ) { if (!rq->nr_running) break; update_rq_clock(rq); next = pick_next_task(rq); if (!next) break; next->sched_class->put_prev_task(rq, next); migrate_dead(dead_cpu, next); } } /* * remove the tasks which were accounted by rq from calc_load_tasks. */ static void calc_global_load_remove(struct rq *rq) { atomic_long_sub(rq->calc_load_active, &calc_load_tasks); rq->calc_load_active = 0; } #endif /* CONFIG_HOTPLUG_CPU */ #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) static struct ctl_table sd_ctl_dir[] = { { .procname = "sched_domain", .mode = 0555, }, {0, }, }; static struct ctl_table sd_ctl_root[] = { { .ctl_name = CTL_KERN, .procname = "kernel", .mode = 0555, .child = sd_ctl_dir, }, {0, }, }; static struct ctl_table *sd_alloc_ctl_entry(int n) { struct ctl_table *entry = kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); return entry; } static void sd_free_ctl_entry(struct ctl_table **tablep) { struct ctl_table *entry; /* * In the intermediate directories, both the child directory and * procname are dynamically allocated and could fail but the mode * will always be set. In the lowest directory the names are * static strings and all have proc handlers. */ for (entry = *tablep; entry->mode; entry++) { if (entry->child) sd_free_ctl_entry(&entry->child); if (entry->proc_handler == NULL) kfree(entry->procname); } kfree(*tablep); *tablep = NULL; } static void set_table_entry(struct ctl_table *entry, const char *procname, void *data, int maxlen, mode_t mode, proc_handler *proc_handler) { entry->procname = procname; entry->data = data; entry->maxlen = maxlen; entry->mode = mode; entry->proc_handler = proc_handler; } static struct ctl_table * sd_alloc_ctl_domain_table(struct sched_domain *sd) { struct ctl_table *table = sd_alloc_ctl_entry(13); if (table == NULL) return NULL; set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax); set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax); set_table_entry(&table[2], "busy_idx", &sd->busy_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[3], "idle_idx", &sd->idle_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[5], "wake_idx", &sd->wake_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[7], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[9], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[10], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax); set_table_entry(&table[11], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring); /* &table[12] is terminator */ return table; } static ctl_table *sd_alloc_ctl_cpu_table(int cpu) { struct ctl_table *entry, *table; struct sched_domain *sd; int domain_num = 0, i; char buf[32]; for_each_domain(cpu, sd) domain_num++; entry = table = sd_alloc_ctl_entry(domain_num + 1); if (table == NULL) return NULL; i = 0; for_each_domain(cpu, sd) { snprintf(buf, 32, "domain%d", i); entry->procname = kstrdup(buf, GFP_KERNEL); entry->mode = 0555; entry->child = sd_alloc_ctl_domain_table(sd); entry++; i++; } return table; } static struct ctl_table_header *sd_sysctl_header; static void register_sched_domain_sysctl(void) { int i, cpu_num = num_online_cpus(); struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); char buf[32]; WARN_ON(sd_ctl_dir[0].child); sd_ctl_dir[0].child = entry; if (entry == NULL) return; for_each_online_cpu(i) { snprintf(buf, 32, "cpu%d", i); entry->procname = kstrdup(buf, GFP_KERNEL); entry->mode = 0555; entry->child = sd_alloc_ctl_cpu_table(i); entry++; } WARN_ON(sd_sysctl_header); sd_sysctl_header = register_sysctl_table(sd_ctl_root); } /* may be called multiple times per register */ static void unregister_sched_domain_sysctl(void) { if (sd_sysctl_header) unregister_sysctl_table(sd_sysctl_header); sd_sysctl_header = NULL; if (sd_ctl_dir[0].child) sd_free_ctl_entry(&sd_ctl_dir[0].child); } #else static void register_sched_domain_sysctl(void) { } static void unregister_sched_domain_sysctl(void) { } #endif static void set_rq_online(struct rq *rq) { if (!rq->online) { const struct sched_class *class; cpumask_set_cpu(rq->cpu, rq->rd->online); rq->online = 1; for_each_class(class) { if (class->rq_online) class->rq_online(rq); } } } static void set_rq_offline(struct rq *rq) { if (rq->online) { const struct sched_class *class; for_each_class(class) { if (class->rq_offline) class->rq_offline(rq); } cpumask_clear_cpu(rq->cpu, rq->rd->online); rq->online = 0; } } /* * migration_call - callback that gets triggered when a CPU is added. * Here we can start up the necessary migration thread for the new CPU. */ static int __cpuinit migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) { struct task_struct *p; int cpu = (long)hcpu; unsigned long flags; struct rq *rq; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); if (IS_ERR(p)) return NOTIFY_BAD; kthread_bind(p, cpu); /* Must be high prio: stop_machine expects to yield to it. */ rq = task_rq_lock(p, &flags); __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); task_rq_unlock(rq, &flags); get_task_struct(p); cpu_rq(cpu)->migration_thread = p; rq->calc_load_update = calc_load_update; break; case CPU_ONLINE: case CPU_ONLINE_FROZEN: /* Strictly unnecessary, as first user will wake it. */ wake_up_process(cpu_rq(cpu)->migration_thread); /* Update our root-domain */ rq = cpu_rq(cpu); spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); set_rq_online(rq); } spin_unlock_irqrestore(&rq->lock, flags); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: if (!cpu_rq(cpu)->migration_thread) break; /* Unbind it from offline cpu so it can run. Fall thru. */ kthread_bind(cpu_rq(cpu)->migration_thread, cpumask_any(cpu_online_mask)); kthread_stop(cpu_rq(cpu)->migration_thread); put_task_struct(cpu_rq(cpu)->migration_thread); cpu_rq(cpu)->migration_thread = NULL; break; case CPU_DEAD: case CPU_DEAD_FROZEN: cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ migrate_live_tasks(cpu); rq = cpu_rq(cpu); kthread_stop(rq->migration_thread); put_task_struct(rq->migration_thread); rq->migration_thread = NULL; /* Idle task back to normal (off runqueue, low prio) */ spin_lock_irq(&rq->lock); update_rq_clock(rq); deactivate_task(rq, rq->idle, 0); rq->idle->static_prio = MAX_PRIO; __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); rq->idle->sched_class = &idle_sched_class; migrate_dead_tasks(cpu); spin_unlock_irq(&rq->lock); cpuset_unlock(); migrate_nr_uninterruptible(rq); BUG_ON(rq->nr_running != 0); calc_global_load_remove(rq); /* * No need to migrate the tasks: it was best-effort if * they didn't take sched_hotcpu_mutex. Just wake up * the requestors. */ spin_lock_irq(&rq->lock); while (!list_empty(&rq->migration_queue)) { struct migration_req *req; req = list_entry(rq->migration_queue.next, struct migration_req, list); list_del_init(&req->list); spin_unlock_irq(&rq->lock); complete(&req->done); spin_lock_irq(&rq->lock); } spin_unlock_irq(&rq->lock); break; case CPU_DYING: case CPU_DYING_FROZEN: /* Update our root-domain */ rq = cpu_rq(cpu); spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); set_rq_offline(rq); } spin_unlock_irqrestore(&rq->lock, flags); break; #endif } return NOTIFY_OK; } /* * Register at high priority so that task migration (migrate_all_tasks) * happens before everything else. This has to be lower priority than * the notifier in the perf_event subsystem, though. */ static struct notifier_block __cpuinitdata migration_notifier = { .notifier_call = migration_call, .priority = 10 }; static int __init migration_init(void) { void *cpu = (void *)(long)smp_processor_id(); int err; /* Start one for the boot CPU: */ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); BUG_ON(err == NOTIFY_BAD); migration_call(&migration_notifier, CPU_ONLINE, cpu); register_cpu_notifier(&migration_notifier); return 0; } early_initcall(migration_init); #endif #ifdef CONFIG_SMP #ifdef CONFIG_SCHED_DEBUG static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, struct cpumask *groupmask) { struct sched_group *group = sd->groups; char str[256]; cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); cpumask_clear(groupmask); printk(KERN_DEBUG "%*s domain %d: ", level, "", level); if (!(sd->flags & SD_LOAD_BALANCE)) { printk("does not load-balance\n"); if (sd->parent) printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" " has parent"); return -1; } printk(KERN_CONT "span %s level %s\n", str, sd->name); if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { printk(KERN_ERR "ERROR: domain->span does not contain " "CPU%d\n", cpu); } if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { printk(KERN_ERR "ERROR: domain->groups does not contain" " CPU%d\n", cpu); } printk(KERN_DEBUG "%*s groups:", level + 1, ""); do { if (!group) { printk("\n"); printk(KERN_ERR "ERROR: group is NULL\n"); break; } if (!group->cpu_power) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: domain->cpu_power not " "set\n"); break; } if (!cpumask_weight(sched_group_cpus(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: empty group\n"); break; } if (cpumask_intersects(groupmask, sched_group_cpus(group))) { printk(KERN_CONT "\n"); printk(KERN_ERR "ERROR: repeated CPUs\n"); break; } cpumask_or(groupmask, groupmask, sched_group_cpus(group)); cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); printk(KERN_CONT " %s", str); if (group->cpu_power != SCHED_LOAD_SCALE) { printk(KERN_CONT " (cpu_power = %d)", group->cpu_power); } group = group->next; } while (group != sd->groups); printk(KERN_CONT "\n"); if (!cpumask_equal(sched_domain_span(sd), groupmask)) printk(KERN_ERR "ERROR: groups don't span domain->span\n"); if (sd->parent && !cpumask_subset(groupmask, sched_domain_span(sd->parent))) printk(KERN_ERR "ERROR: parent span is not a superset " "of domain->span\n"); return 0; } static void sched_domain_debug(struct sched_domain *sd, int cpu) { cpumask_var_t groupmask; int level = 0; if (!sd) { printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); return; } printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); return; } for (;;) { if (sched_domain_debug_one(sd, cpu, level, groupmask)) break; level++; sd = sd->parent; if (!sd) break; } free_cpumask_var(groupmask); } #else /* !CONFIG_SCHED_DEBUG */ # define sched_domain_debug(sd, cpu) do { } while (0) #endif /* CONFIG_SCHED_DEBUG */ static int sd_degenerate(struct sched_domain *sd) { if (cpumask_weight(sched_domain_span(sd)) == 1) return 1; /* Following flags need at least 2 groups */ if (sd->flags & (SD_LOAD_BALANCE | SD_BALANCE_NEWIDLE | SD_BALANCE_FORK | SD_BALANCE_EXEC | SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)) { if (sd->groups != sd->groups->next) return 0; } /* Following flags don't use groups */ if (sd->flags & (SD_WAKE_AFFINE)) return 0; return 1; } static int sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) { unsigned long cflags = sd->flags, pflags = parent->flags; if (sd_degenerate(parent)) return 1; if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) return 0; /* Flags needing groups don't count if only 1 group in parent */ if (parent->groups == parent->groups->next) { pflags &= ~(SD_LOAD_BALANCE | SD_BALANCE_NEWIDLE | SD_BALANCE_FORK | SD_BALANCE_EXEC | SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES); if (nr_node_ids == 1) pflags &= ~SD_SERIALIZE; } if (~cflags & pflags) return 0; return 1; } static void free_rootdomain(struct root_domain *rd) { cpupri_cleanup(&rd->cpupri); free_cpumask_var(rd->rto_mask); free_cpumask_var(rd->online); free_cpumask_var(rd->span); kfree(rd); } static void rq_attach_root(struct rq *rq, struct root_domain *rd) { struct root_domain *old_rd = NULL; unsigned long flags; spin_lock_irqsave(&rq->lock, flags); if (rq->rd) { old_rd = rq->rd; if (cpumask_test_cpu(rq->cpu, old_rd->online)) set_rq_offline(rq); cpumask_clear_cpu(rq->cpu, old_rd->span); /* * If we dont want to free the old_rt yet then * set old_rd to NULL to skip the freeing later * in this function: */ if (!atomic_dec_and_test(&old_rd->refcount)) old_rd = NULL; } atomic_inc(&rd->refcount); rq->rd = rd; cpumask_set_cpu(rq->cpu, rd->span); if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) set_rq_online(rq); spin_unlock_irqrestore(&rq->lock, flags); if (old_rd) free_rootdomain(old_rd); } static int init_rootdomain(struct root_domain *rd, bool bootmem) { gfp_t gfp = GFP_KERNEL; memset(rd, 0, sizeof(*rd)); if (bootmem) gfp = GFP_NOWAIT; if (!alloc_cpumask_var(&rd->span, gfp)) goto out; if (!alloc_cpumask_var(&rd->online, gfp)) goto free_span; if (!alloc_cpumask_var(&rd->rto_mask, gfp)) goto free_online; if (cpupri_init(&rd->cpupri, bootmem) != 0) goto free_rto_mask; return 0; free_rto_mask: free_cpumask_var(rd->rto_mask); free_online: free_cpumask_var(rd->online); free_span: free_cpumask_var(rd->span); out: return -ENOMEM; } static void init_defrootdomain(void) { init_rootdomain(&def_root_domain, true); atomic_set(&def_root_domain.refcount, 1); } static struct root_domain *alloc_rootdomain(void) { struct root_domain *rd; rd = kmalloc(sizeof(*rd), GFP_KERNEL); if (!rd) return NULL; if (init_rootdomain(rd, false) != 0) { kfree(rd); return NULL; } return rd; } /* * Attach the domain 'sd' to 'cpu' as its base domain. Callers must * hold the hotplug lock. */ static void cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) { struct rq *rq = cpu_rq(cpu); struct sched_domain *tmp; /* Remove the sched domains which do not contribute to scheduling. */ for (tmp = sd; tmp; ) { struct sched_domain *parent = tmp->parent; if (!parent) break; if (sd_parent_degenerate(tmp, parent)) { tmp->parent = parent->parent; if (parent->parent) parent->parent->child = tmp; } else tmp = tmp->parent; } if (sd && sd_degenerate(sd)) { sd = sd->parent; if (sd) sd->child = NULL; } sched_domain_debug(sd, cpu); rq_attach_root(rq, rd); rcu_assign_pointer(rq->sd, sd); } /* cpus with isolated domains */ static cpumask_var_t cpu_isolated_map; /* Setup the mask of cpus configured for isolated domains */ static int __init isolated_cpu_setup(char *str) { cpulist_parse(str, cpu_isolated_map); return 1; } __setup("isolcpus=", isolated_cpu_setup); /* * init_sched_build_groups takes the cpumask we wish to span, and a pointer * to a function which identifies what group(along with sched group) a CPU * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids * (due to the fact that we keep track of groups covered with a struct cpumask). * * init_sched_build_groups will build a circular linked list of the groups * covered by the given span, and will set each group's ->cpumask correctly, * and ->cpu_power to 0. */ static void init_sched_build_groups(const struct cpumask *span, const struct cpumask *cpu_map, int (*group_fn)(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, struct cpumask *tmpmask), struct cpumask *covered, struct cpumask *tmpmask) { struct sched_group *first = NULL, *last = NULL; int i; cpumask_clear(covered); for_each_cpu(i, span) { struct sched_group *sg; int group = group_fn(i, cpu_map, &sg, tmpmask); int j; if (cpumask_test_cpu(i, covered)) continue; cpumask_clear(sched_group_cpus(sg)); sg->cpu_power = 0; for_each_cpu(j, span) { if (group_fn(j, cpu_map, NULL, tmpmask) != group) continue; cpumask_set_cpu(j, covered); cpumask_set_cpu(j, sched_group_cpus(sg)); } if (!first) first = sg; if (last) last->next = sg; last = sg; } last->next = first; } #define SD_NODES_PER_DOMAIN 16 #ifdef CONFIG_NUMA /** * find_next_best_node - find the next node to include in a sched_domain * @node: node whose sched_domain we're building * @used_nodes: nodes already in the sched_domain * * Find the next node to include in a given scheduling domain. Simply * finds the closest node not already in the @used_nodes map. * * Should use nodemask_t. */ static int find_next_best_node(int node, nodemask_t *used_nodes) { int i, n, val, min_val, best_node = 0; min_val = INT_MAX; for (i = 0; i < nr_node_ids; i++) { /* Start at @node */ n = (node + i) % nr_node_ids; if (!nr_cpus_node(n)) continue; /* Skip already used nodes */ if (node_isset(n, *used_nodes)) continue; /* Simple min distance search */ val = node_distance(node, n); if (val < min_val) { min_val = val; best_node = n; } } node_set(best_node, *used_nodes); return best_node; } /** * sched_domain_node_span - get a cpumask for a node's sched_domain * @node: node whose cpumask we're constructing * @span: resulting cpumask * * Given a node, construct a good cpumask for its sched_domain to span. It * should be one that prevents unnecessary balancing, but also spreads tasks * out optimally. */ static void sched_domain_node_span(int node, struct cpumask *span) { nodemask_t used_nodes; int i; cpumask_clear(span); nodes_clear(used_nodes); cpumask_or(span, span, cpumask_of_node(node)); node_set(node, used_nodes); for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { int next_node = find_next_best_node(node, &used_nodes); cpumask_or(span, span, cpumask_of_node(next_node)); } } #endif /* CONFIG_NUMA */ int sched_smt_power_savings = 0, sched_mc_power_savings = 0; /* * The cpus mask in sched_group and sched_domain hangs off the end. * * ( See the the comments in include/linux/sched.h:struct sched_group * and struct sched_domain. ) */ struct static_sched_group { struct sched_group sg; DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); }; struct static_sched_domain { struct sched_domain sd; DECLARE_BITMAP(span, CONFIG_NR_CPUS); }; struct s_data { #ifdef CONFIG_NUMA int sd_allnodes; cpumask_var_t domainspan; cpumask_var_t covered; cpumask_var_t notcovered; #endif cpumask_var_t nodemask; cpumask_var_t this_sibling_map; cpumask_var_t this_core_map; cpumask_var_t send_covered; cpumask_var_t tmpmask; struct sched_group **sched_group_nodes; struct root_domain *rd; }; enum s_alloc { sa_sched_groups = 0, sa_rootdomain, sa_tmpmask, sa_send_covered, sa_this_core_map, sa_this_sibling_map, sa_nodemask, sa_sched_group_nodes, #ifdef CONFIG_NUMA sa_notcovered, sa_covered, sa_domainspan, #endif sa_none, }; /* * SMT sched-domains: */ #ifdef CONFIG_SCHED_SMT static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); static int cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, struct cpumask *unused) { if (sg) *sg = &per_cpu(sched_group_cpus, cpu).sg; return cpu; } #endif /* CONFIG_SCHED_SMT */ /* * multi-core sched-domains: */ #ifdef CONFIG_SCHED_MC static DEFINE_PER_CPU(struct static_sched_domain, core_domains); static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); #endif /* CONFIG_SCHED_MC */ #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) static int cpu_to_core_group(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, struct cpumask *mask) { int group; cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); group = cpumask_first(mask); if (sg) *sg = &per_cpu(sched_group_core, group).sg; return group; } #elif defined(CONFIG_SCHED_MC) static int cpu_to_core_group(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, struct cpumask *unused) { if (sg) *sg = &per_cpu(sched_group_core, cpu).sg; return cpu; } #endif static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); static int cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, struct cpumask *mask) { int group; #ifdef CONFIG_SCHED_MC cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); group = cpumask_first(mask); #elif defined(CONFIG_SCHED_SMT) cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); group = cpumask_first(mask); #else group = cpu; #endif if (sg) *sg = &per_cpu(sched_group_phys, group).sg; return group; } #ifdef CONFIG_NUMA /* * The init_sched_build_groups can't handle what we want to do with node * groups, so roll our own. Now each node has its own list of groups which * gets dynamically allocated. */ static DEFINE_PER_CPU(struct static_sched_domain, node_domains); static struct sched_group ***sched_group_nodes_bycpu; static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, struct sched_group **sg, struct cpumask *nodemask) { int group; cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); group = cpumask_first(nodemask); if (sg) *sg = &per_cpu(sched_group_allnodes, group).sg; return group; } static void init_numa_sched_groups_power(struct sched_group *group_head) { struct sched_group *sg = group_head; int j; if (!sg) return; do { for_each_cpu(j, sched_group_cpus(sg)) { struct sched_domain *sd; sd = &per_cpu(phys_domains, j).sd; if (j != group_first_cpu(sd->groups)) { /* * Only add "power" once for each * physical package. */ continue; } sg->cpu_power += sd->groups->cpu_power; } sg = sg->next; } while (sg != group_head); } static int build_numa_sched_groups(struct s_data *d, const struct cpumask *cpu_map, int num) { struct sched_domain *sd; struct sched_group *sg, *prev; int n, j; cpumask_clear(d->covered); cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map); if (cpumask_empty(d->nodemask)) { d->sched_group_nodes[num] = NULL; goto out; } sched_domain_node_span(num, d->domainspan); cpumask_and(d->domainspan, d->domainspan, cpu_map); sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), GFP_KERNEL, num); if (!sg) { printk(KERN_WARNING "Can not alloc domain group for node %d\n", num); return -ENOMEM; } d->sched_group_nodes[num] = sg; for_each_cpu(j, d->nodemask) { sd = &per_cpu(node_domains, j).sd; sd->groups = sg; } sg->cpu_power = 0; cpumask_copy(sched_group_cpus(sg), d->nodemask); sg->next = sg; cpumask_or(d->covered, d->covered, d->nodemask); prev = sg; for (j = 0; j < nr_node_ids; j++) { n = (num + j) % nr_node_ids; cpumask_complement(d->notcovered, d->covered); cpumask_and(d->tmpmask, d->notcovered, cpu_map); cpumask_and(d->tmpmask, d->tmpmask, d->domainspan); if (cpumask_empty(d->tmpmask)) break; cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n)); if (cpumask_empty(d->tmpmask)) continue; sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), GFP_KERNEL, num); if (!sg) { printk(KERN_WARNING "Can not alloc domain group for node %d\n", j); return -ENOMEM; } sg->cpu_power = 0; cpumask_copy(sched_group_cpus(sg), d->tmpmask); sg->next = prev->next; cpumask_or(d->covered, d->covered, d->tmpmask); prev->next = sg; prev = sg; } out: return 0; } #endif /* CONFIG_NUMA */ #ifdef CONFIG_NUMA /* Free memory allocated for various sched_group structures */ static void free_sched_groups(const struct cpumask *cpu_map, struct cpumask *nodemask) { int cpu, i; for_each_cpu(cpu, cpu_map) { struct sched_group **sched_group_nodes = sched_group_nodes_bycpu[cpu]; if (!sched_group_nodes) continue; for (i = 0; i < nr_node_ids; i++) { struct sched_group *oldsg, *sg = sched_group_nodes[i]; cpumask_and(nodemask, cpumask_of_node(i), cpu_map); if (cpumask_empty(nodemask)) continue; if (sg == NULL) continue; sg = sg->next; next_sg: oldsg = sg; sg = sg->next; kfree(oldsg); if (oldsg != sched_group_nodes[i]) goto next_sg; } kfree(sched_group_nodes); sched_group_nodes_bycpu[cpu] = NULL; } } #else /* !CONFIG_NUMA */ static void free_sched_groups(const struct cpumask *cpu_map, struct cpumask *nodemask) { } #endif /* CONFIG_NUMA */ /* * Initialize sched groups cpu_power. * * cpu_power indicates the capacity of sched group, which is used while * distributing the load between different sched groups in a sched domain. * Typically cpu_power for all the groups in a sched domain will be same unless * there are asymmetries in the topology. If there are asymmetries, group * having more cpu_power will pickup more load compared to the group having * less cpu_power. */ static void init_sched_groups_power(int cpu, struct sched_domain *sd) { struct sched_domain *child; struct sched_group *group; long power; int weight; WARN_ON(!sd || !sd->groups); if (cpu != group_first_cpu(sd->groups)) return; child = sd->child; sd->groups->cpu_power = 0; if (!child) { power = SCHED_LOAD_SCALE; weight = cpumask_weight(sched_domain_span(sd)); /* * SMT siblings share the power of a single core. * Usually multiple threads get a better yield out of * that one core than a single thread would have, * reflect that in sd->smt_gain. */ if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { power *= sd->smt_gain; power /= weight; power >>= SCHED_LOAD_SHIFT; } sd->groups->cpu_power += power; return; } /* * Add cpu_power of each child group to this groups cpu_power. */ group = child->groups; do { sd->groups->cpu_power += group->cpu_power; group = group->next; } while (group != child->groups); } /* * Initializers for schedule domains * Non-inlined to reduce accumulated stack pressure in build_sched_domains() */ #ifdef CONFIG_SCHED_DEBUG # define SD_INIT_NAME(sd, type) sd->name = #type #else # define SD_INIT_NAME(sd, type) do { } while (0) #endif #define SD_INIT(sd, type) sd_init_##type(sd) #define SD_INIT_FUNC(type) \ static noinline void sd_init_##type(struct sched_domain *sd) \ { \ memset(sd, 0, sizeof(*sd)); \ *sd = SD_##type##_INIT; \ sd->level = SD_LV_##type; \ SD_INIT_NAME(sd, type); \ } SD_INIT_FUNC(CPU) #ifdef CONFIG_NUMA SD_INIT_FUNC(ALLNODES) SD_INIT_FUNC(NODE) #endif #ifdef CONFIG_SCHED_SMT SD_INIT_FUNC(SIBLING) #endif #ifdef CONFIG_SCHED_MC SD_INIT_FUNC(MC) #endif static int default_relax_domain_level = -1; static int __init setup_relax_domain_level(char *str) { unsigned long val; val = simple_strtoul(str, NULL, 0); if (val < SD_LV_MAX) default_relax_domain_level = val; return 1; } __setup("relax_domain_level=", setup_relax_domain_level); static void set_domain_attribute(struct sched_domain *sd, struct sched_domain_attr *attr) { int request; if (!attr || attr->relax_domain_level < 0) { if (default_relax_domain_level < 0) return; else request = default_relax_domain_level; } else request = attr->relax_domain_level; if (request < sd->level) { /* turn off idle balance on this domain */ sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); } else { /* turn on idle balance on this domain */ sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); } } static void __free_domain_allocs(struct s_data *d, enum s_alloc what, const struct cpumask *cpu_map) { switch (what) { case sa_sched_groups: free_sched_groups(cpu_map, d->tmpmask); /* fall through */ d->sched_group_nodes = NULL; case sa_rootdomain: free_rootdomain(d->rd); /* fall through */ case sa_tmpmask: free_cpumask_var(d->tmpmask); /* fall through */ case sa_send_covered: free_cpumask_var(d->send_covered); /* fall through */ case sa_this_core_map: free_cpumask_var(d->this_core_map); /* fall through */ case sa_this_sibling_map: free_cpumask_var(d->this_sibling_map); /* fall through */ case sa_nodemask: free_cpumask_var(d->nodemask); /* fall through */ case sa_sched_group_nodes: #ifdef CONFIG_NUMA kfree(d->sched_group_nodes); /* fall through */ case sa_notcovered: free_cpumask_var(d->notcovered); /* fall through */ case sa_covered: free_cpumask_var(d->covered); /* fall through */ case sa_domainspan: free_cpumask_var(d->domainspan); /* fall through */ #endif case sa_none: break; } } static enum s_alloc __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) { #ifdef CONFIG_NUMA if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL)) return sa_none; if (!alloc_cpumask_var(&d->covered, GFP_KERNEL)) return sa_domainspan; if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL)) return sa_covered; /* Allocate the per-node list of sched groups */ d->sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), GFP_KERNEL); if (!d->sched_group_nodes) { printk(KERN_WARNING "Can not alloc sched group node list\n"); return sa_notcovered; } sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes; #endif if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL)) return sa_sched_group_nodes; if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL)) return sa_nodemask; if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL)) return sa_this_sibling_map; if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL)) return sa_this_core_map; if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL)) return sa_send_covered; d->rd = alloc_rootdomain(); if (!d->rd) { printk(KERN_WARNING "Cannot alloc root domain\n"); return sa_tmpmask; } return sa_rootdomain; } static struct sched_domain *__build_numa_sched_domains(struct s_data *d, const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i) { struct sched_domain *sd = NULL; #ifdef CONFIG_NUMA struct sched_domain *parent; d->sd_allnodes = 0; if (cpumask_weight(cpu_map) > SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) { sd = &per_cpu(allnodes_domains, i).sd; SD_INIT(sd, ALLNODES); set_domain_attribute(sd, attr); cpumask_copy(sched_domain_span(sd), cpu_map); cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask); d->sd_allnodes = 1; } parent = sd; sd = &per_cpu(node_domains, i).sd; SD_INIT(sd, NODE); set_domain_attribute(sd, attr); sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); sd->parent = parent; if (parent) parent->child = sd; cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map); #endif return sd; } static struct sched_domain *__build_cpu_sched_domain(struct s_data *d, const struct cpumask *cpu_map, struct sched_domain_attr *attr, struct sched_domain *parent, int i) { struct sched_domain *sd; sd = &per_cpu(phys_domains, i).sd; SD_INIT(sd, CPU); set_domain_attribute(sd, attr); cpumask_copy(sched_domain_span(sd), d->nodemask); sd->parent = parent; if (parent) parent->child = sd; cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask); return sd; } static struct sched_domain *__build_mc_sched_domain(struct s_data *d, const struct cpumask *cpu_map, struct sched_domain_attr *attr, struct sched_domain *parent, int i) { struct sched_domain *sd = parent; #ifdef CONFIG_SCHED_MC sd = &per_cpu(core_domains, i).sd; SD_INIT(sd, MC); set_domain_attribute(sd, attr); cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i)); sd->parent = parent; parent->child = sd; cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask); #endif return sd; } static struct sched_domain *__build_smt_sched_domain(struct s_data *d, const struct cpumask *cpu_map, struct sched_domain_attr *attr, struct sched_domain *parent, int i) { struct sched_domain *sd = parent; #ifdef CONFIG_SCHED_SMT sd = &per_cpu(cpu_domains, i).sd; SD_INIT(sd, SIBLING); set_domain_attribute(sd, attr); cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i)); sd->parent = parent; parent->child = sd; cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask); #endif return sd; } static void build_sched_groups(struct s_data *d, enum sched_domain_level l, const struct cpumask *cpu_map, int cpu) { switch (l) { #ifdef CONFIG_SCHED_SMT case SD_LV_SIBLING: /* set up CPU (sibling) groups */ cpumask_and(d->this_sibling_map, cpu_map, topology_thread_cpumask(cpu)); if (cpu == cpumask_first(d->this_sibling_map)) init_sched_build_groups(d->this_sibling_map, cpu_map, &cpu_to_cpu_group, d->send_covered, d->tmpmask); break; #endif #ifdef CONFIG_SCHED_MC case SD_LV_MC: /* set up multi-core groups */ cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu)); if (cpu == cpumask_first(d->this_core_map)) init_sched_build_groups(d->this_core_map, cpu_map, &cpu_to_core_group, d->send_covered, d->tmpmask); break; #endif case SD_LV_CPU: /* set up physical groups */ cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map); if (!cpumask_empty(d->nodemask)) init_sched_build_groups(d->nodemask, cpu_map, &cpu_to_phys_group, d->send_covered, d->tmpmask); break; #ifdef CONFIG_NUMA case SD_LV_ALLNODES: init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group, d->send_covered, d->tmpmask); break; #endif default: break; } } /* * Build sched domains for a given set of cpus and attach the sched domains * to the individual cpus */ static int __build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) { enum s_alloc alloc_state = sa_none; struct s_data d; struct sched_domain *sd; int i; #ifdef CONFIG_NUMA d.sd_allnodes = 0; #endif alloc_state = __visit_domain_allocation_hell(&d, cpu_map); if (alloc_state != sa_rootdomain) goto error; alloc_state = sa_sched_groups; /* * Set up domains for cpus specified by the cpu_map. */ for_each_cpu(i, cpu_map) { cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); sd = __build_numa_sched_domains(&d, cpu_map, attr, i); sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i); sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i); sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i); } for_each_cpu(i, cpu_map) { build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i); build_sched_groups(&d, SD_LV_MC, cpu_map, i); } /* Set up physical groups */ for (i = 0; i < nr_node_ids; i++) build_sched_groups(&d, SD_LV_CPU, cpu_map, i); #ifdef CONFIG_NUMA /* Set up node groups */ if (d.sd_allnodes) build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0); for (i = 0; i < nr_node_ids; i++) if (build_numa_sched_groups(&d, cpu_map, i)) goto error; #endif /* Calculate CPU power for physical packages and nodes */ #ifdef CONFIG_SCHED_SMT for_each_cpu(i, cpu_map) { sd = &per_cpu(cpu_domains, i).sd; init_sched_groups_power(i, sd); } #endif #ifdef CONFIG_SCHED_MC for_each_cpu(i, cpu_map) { sd = &per_cpu(core_domains, i).sd; init_sched_groups_power(i, sd); } #endif for_each_cpu(i, cpu_map) { sd = &per_cpu(phys_domains, i).sd; init_sched_groups_power(i, sd); } #ifdef CONFIG_NUMA for (i = 0; i < nr_node_ids; i++) init_numa_sched_groups_power(d.sched_group_nodes[i]); if (d.sd_allnodes) { struct sched_group *sg; cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, d.tmpmask); init_numa_sched_groups_power(sg); } #endif /* Attach the domains */ for_each_cpu(i, cpu_map) { #ifdef CONFIG_SCHED_SMT sd = &per_cpu(cpu_domains, i).sd; #elif defined(CONFIG_SCHED_MC) sd = &per_cpu(core_domains, i).sd; #else sd = &per_cpu(phys_domains, i).sd; #endif cpu_attach_domain(sd, d.rd, i); } d.sched_group_nodes = NULL; /* don't free this we still need it */ __free_domain_allocs(&d, sa_tmpmask, cpu_map); return 0; error: __free_domain_allocs(&d, alloc_state, cpu_map); return -ENOMEM; } static int build_sched_domains(const struct cpumask *cpu_map) { return __build_sched_domains(cpu_map, NULL); } static struct cpumask *doms_cur; /* current sched domains */ static int ndoms_cur; /* number of sched domains in 'doms_cur' */ static struct sched_domain_attr *dattr_cur; /* attribues of custom domains in 'doms_cur' */ /* * Special case: If a kmalloc of a doms_cur partition (array of * cpumask) fails, then fallback to a single sched domain, * as determined by the single cpumask fallback_doms. */ static cpumask_var_t fallback_doms; /* * arch_update_cpu_topology lets virtualized architectures update the * cpu core maps. It is supposed to return 1 if the topology changed * or 0 if it stayed the same. */ int __attribute__((weak)) arch_update_cpu_topology(void) { return 0; } /* * Set up scheduler domains and groups. Callers must hold the hotplug lock. * For now this just excludes isolated cpus, but could be used to * exclude other special cases in the future. */ static int arch_init_sched_domains(const struct cpumask *cpu_map) { int err; arch_update_cpu_topology(); ndoms_cur = 1; doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); if (!doms_cur) doms_cur = fallback_doms; cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); dattr_cur = NULL; err = build_sched_domains(doms_cur); register_sched_domain_sysctl(); return err; } static void arch_destroy_sched_domains(const struct cpumask *cpu_map, struct cpumask *tmpmask) { free_sched_groups(cpu_map, tmpmask); } /* * Detach sched domains from a group of cpus specified in cpu_map * These cpus will now be attached to the NULL domain */ static void detach_destroy_domains(const struct cpumask *cpu_map) { /* Save because hotplug lock held. */ static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); int i; for_each_cpu(i, cpu_map) cpu_attach_domain(NULL, &def_root_domain, i); synchronize_sched(); arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); } /* handle null as "default" */ static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, struct sched_domain_attr *new, int idx_new) { struct sched_domain_attr tmp; /* fast path */ if (!new && !cur) return 1; tmp = SD_ATTR_INIT; return !memcmp(cur ? (cur + idx_cur) : &tmp, new ? (new + idx_new) : &tmp, sizeof(struct sched_domain_attr)); } /* * Partition sched domains as specified by the 'ndoms_new' * cpumasks in the array doms_new[] of cpumasks. This compares * doms_new[] to the current sched domain partitioning, doms_cur[]. * It destroys each deleted domain and builds each new domain. * * 'doms_new' is an array of cpumask's of length 'ndoms_new'. * The masks don't intersect (don't overlap.) We should setup one * sched domain for each mask. CPUs not in any of the cpumasks will * not be load balanced. If the same cpumask appears both in the * current 'doms_cur' domains and in the new 'doms_new', we can leave * it as it is. * * The passed in 'doms_new' should be kmalloc'd. This routine takes * ownership of it and will kfree it when done with it. If the caller * failed the kmalloc call, then it can pass in doms_new == NULL && * ndoms_new == 1, and partition_sched_domains() will fallback to * the single partition 'fallback_doms', it also forces the domains * to be rebuilt. * * If doms_new == NULL it will be replaced with cpu_online_mask. * ndoms_new == 0 is a special case for destroying existing domains, * and it will not create the default domain. * * Call with hotplug lock held */ /* FIXME: Change to struct cpumask *doms_new[] */ void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, struct sched_domain_attr *dattr_new) { int i, j, n; int new_topology; mutex_lock(&sched_domains_mutex); /* always unregister in case we don't destroy any domains */ unregister_sched_domain_sysctl(); /* Let architecture update cpu core mappings. */ new_topology = arch_update_cpu_topology(); n = doms_new ? ndoms_new : 0; /* Destroy deleted domains */ for (i = 0; i < ndoms_cur; i++) { for (j = 0; j < n && !new_topology; j++) { if (cpumask_equal(&doms_cur[i], &doms_new[j]) && dattrs_equal(dattr_cur, i, dattr_new, j)) goto match1; } /* no match - a current sched domain not in new doms_new[] */ detach_destroy_domains(doms_cur + i); match1: ; } if (doms_new == NULL) { ndoms_cur = 0; doms_new = fallback_doms; cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); WARN_ON_ONCE(dattr_new); } /* Build new domains */ for (i = 0; i < ndoms_new; i++) { for (j = 0; j < ndoms_cur && !new_topology; j++) { if (cpumask_equal(&doms_new[i], &doms_cur[j]) && dattrs_equal(dattr_new, i, dattr_cur, j)) goto match2; } /* no match - add a new doms_new */ __build_sched_domains(doms_new + i, dattr_new ? dattr_new + i : NULL); match2: ; } /* Remember the new sched domains */ if (doms_cur != fallback_doms) kfree(doms_cur); kfree(dattr_cur); /* kfree(NULL) is safe */ doms_cur = doms_new; dattr_cur = dattr_new; ndoms_cur = ndoms_new; register_sched_domain_sysctl(); mutex_unlock(&sched_domains_mutex); } #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) static void arch_reinit_sched_domains(void) { get_online_cpus(); /* Destroy domains first to force the rebuild */ partition_sched_domains(0, NULL, NULL); rebuild_sched_domains(); put_online_cpus(); } static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) { unsigned int level = 0; if (sscanf(buf, "%u", &level) != 1) return -EINVAL; /* * level is always be positive so don't check for * level < POWERSAVINGS_BALANCE_NONE which is 0 * What happens on 0 or 1 byte write, * need to check for count as well? */ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) return -EINVAL; if (smt) sched_smt_power_savings = level; else sched_mc_power_savings = level; arch_reinit_sched_domains(); return count; } #ifdef CONFIG_SCHED_MC static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, char *page) { return sprintf(page, "%u\n", sched_mc_power_savings); } static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 0); } static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, sched_mc_power_savings_store); #endif #ifdef CONFIG_SCHED_SMT static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, char *page) { return sprintf(page, "%u\n", sched_smt_power_savings); } static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, const char *buf, size_t count) { return sched_power_savings_store(buf, count, 1); } static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, sched_smt_power_savings_store); #endif int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) { int err = 0; #ifdef CONFIG_SCHED_SMT if (smt_capable()) err = sysfs_create_file(&cls->kset.kobj, &attr_sched_smt_power_savings.attr); #endif #ifdef CONFIG_SCHED_MC if (!err && mc_capable()) err = sysfs_create_file(&cls->kset.kobj, &attr_sched_mc_power_savings.attr); #endif return err; } #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ #ifndef CONFIG_CPUSETS /* * Add online and remove offline CPUs from the scheduler domains. * When cpusets are enabled they take over this function. */ static int update_sched_domains(struct notifier_block *nfb, unsigned long action, void *hcpu) { switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: partition_sched_domains(1, NULL, NULL); return NOTIFY_OK; default: return NOTIFY_DONE; } } #endif static int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (int)(long)hcpu; switch (action) { case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: disable_runtime(cpu_rq(cpu)); return NOTIFY_OK; case CPU_DOWN_FAILED: case CPU_DOWN_FAILED_FROZEN: case CPU_ONLINE: case CPU_ONLINE_FROZEN: enable_runtime(cpu_rq(cpu)); return NOTIFY_OK; default: return NOTIFY_DONE; } } void __init sched_init_smp(void) { cpumask_var_t non_isolated_cpus; alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); alloc_cpumask_var(&fallback_doms, GFP_KERNEL); #if defined(CONFIG_NUMA) sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), GFP_KERNEL); BUG_ON(sched_group_nodes_bycpu == NULL); #endif get_online_cpus(); mutex_lock(&sched_domains_mutex); arch_init_sched_domains(cpu_online_mask); cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); if (cpumask_empty(non_isolated_cpus)) cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); mutex_unlock(&sched_domains_mutex); put_online_cpus(); #ifndef CONFIG_CPUSETS /* XXX: Theoretical race here - CPU may be hotplugged now */ hotcpu_notifier(update_sched_domains, 0); #endif /* RT runtime code needs to handle some hotplug events */ hotcpu_notifier(update_runtime, 0); init_hrtick(); /* Move init over to a non-isolated CPU */ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) BUG(); sched_init_granularity(); free_cpumask_var(non_isolated_cpus); init_sched_rt_class(); } #else void __init sched_init_smp(void) { sched_init_granularity(); } #endif /* CONFIG_SMP */ const_debug unsigned int sysctl_timer_migration = 1; int in_sched_functions(unsigned long addr) { return in_lock_functions(addr) || (addr >= (unsigned long)__sched_text_start && addr < (unsigned long)__sched_text_end); } static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) { cfs_rq->tasks_timeline = RB_ROOT; INIT_LIST_HEAD(&cfs_rq->tasks); #ifdef CONFIG_FAIR_GROUP_SCHED cfs_rq->rq = rq; #endif cfs_rq->min_vruntime = (u64)(-(1LL << 20)); } static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) { struct rt_prio_array *array; int i; array = &rt_rq->active; for (i = 0; i < MAX_RT_PRIO; i++) { INIT_LIST_HEAD(array->queue + i); __clear_bit(i, array->bitmap); } /* delimiter for bitsearch: */ __set_bit(MAX_RT_PRIO, array->bitmap); #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED rt_rq->highest_prio.curr = MAX_RT_PRIO; #ifdef CONFIG_SMP rt_rq->highest_prio.next = MAX_RT_PRIO; #endif #endif #ifdef CONFIG_SMP rt_rq->rt_nr_migratory = 0; rt_rq->overloaded = 0; plist_head_init(&rt_rq->pushable_tasks, &rq->lock); #endif rt_rq->rt_time = 0; rt_rq->rt_throttled = 0; rt_rq->rt_runtime = 0; spin_lock_init(&rt_rq->rt_runtime_lock); #ifdef CONFIG_RT_GROUP_SCHED rt_rq->rt_nr_boosted = 0; rt_rq->rq = rq; #endif } #ifdef CONFIG_FAIR_GROUP_SCHED static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, int add, struct sched_entity *parent) { struct rq *rq = cpu_rq(cpu); tg->cfs_rq[cpu] = cfs_rq; init_cfs_rq(cfs_rq, rq); cfs_rq->tg = tg; if (add) list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); tg->se[cpu] = se; /* se could be NULL for init_task_group */ if (!se) return; if (!parent) se->cfs_rq = &rq->cfs; else se->cfs_rq = parent->my_q; se->my_q = cfs_rq; se->load.weight = tg->shares; se->load.inv_weight = 0; se->parent = parent; } #endif #ifdef CONFIG_RT_GROUP_SCHED static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, int add, struct sched_rt_entity *parent) { struct rq *rq = cpu_rq(cpu); tg->rt_rq[cpu] = rt_rq; init_rt_rq(rt_rq, rq); rt_rq->tg = tg; rt_rq->rt_se = rt_se; rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; if (add) list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); tg->rt_se[cpu] = rt_se; if (!rt_se) return; if (!parent) rt_se->rt_rq = &rq->rt; else rt_se->rt_rq = parent->my_q; rt_se->my_q = rt_rq; rt_se->parent = parent; INIT_LIST_HEAD(&rt_se->run_list); } #endif void __init sched_init(void) { int i, j; unsigned long alloc_size = 0, ptr; #ifdef CONFIG_FAIR_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); #endif #ifdef CONFIG_RT_GROUP_SCHED alloc_size += 2 * nr_cpu_ids * sizeof(void **); #endif #ifdef CONFIG_USER_SCHED alloc_size *= 2; #endif #ifdef CONFIG_CPUMASK_OFFSTACK alloc_size += num_possible_cpus() * cpumask_size(); #endif /* * As sched_init() is called before page_alloc is setup, * we use alloc_bootmem(). */ if (alloc_size) { ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); #ifdef CONFIG_FAIR_GROUP_SCHED init_task_group.se = (struct sched_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); init_task_group.cfs_rq = (struct cfs_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); #ifdef CONFIG_USER_SCHED root_task_group.se = (struct sched_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); root_task_group.cfs_rq = (struct cfs_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); #endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED init_task_group.rt_se = (struct sched_rt_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); init_task_group.rt_rq = (struct rt_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); #ifdef CONFIG_USER_SCHED root_task_group.rt_se = (struct sched_rt_entity **)ptr; ptr += nr_cpu_ids * sizeof(void **); root_task_group.rt_rq = (struct rt_rq **)ptr; ptr += nr_cpu_ids * sizeof(void **); #endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_CPUMASK_OFFSTACK for_each_possible_cpu(i) { per_cpu(load_balance_tmpmask, i) = (void *)ptr; ptr += cpumask_size(); } #endif /* CONFIG_CPUMASK_OFFSTACK */ } #ifdef CONFIG_SMP init_defrootdomain(); #endif init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime()); #ifdef CONFIG_RT_GROUP_SCHED init_rt_bandwidth(&init_task_group.rt_bandwidth, global_rt_period(), global_rt_runtime()); #ifdef CONFIG_USER_SCHED init_rt_bandwidth(&root_task_group.rt_bandwidth, global_rt_period(), RUNTIME_INF); #endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_GROUP_SCHED list_add(&init_task_group.list, &task_groups); INIT_LIST_HEAD(&init_task_group.children); #ifdef CONFIG_USER_SCHED INIT_LIST_HEAD(&root_task_group.children); init_task_group.parent = &root_task_group; list_add(&init_task_group.siblings, &root_task_group.children); #endif /* CONFIG_USER_SCHED */ #endif /* CONFIG_GROUP_SCHED */ #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long), __alignof__(unsigned long)); #endif for_each_possible_cpu(i) { struct rq *rq; rq = cpu_rq(i); spin_lock_init(&rq->lock); rq->nr_running = 0; rq->calc_load_active = 0; rq->calc_load_update = jiffies + LOAD_FREQ; init_cfs_rq(&rq->cfs, rq); init_rt_rq(&rq->rt, rq); #ifdef CONFIG_FAIR_GROUP_SCHED init_task_group.shares = init_task_group_load; INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); #ifdef CONFIG_CGROUP_SCHED /* * How much cpu bandwidth does init_task_group get? * * In case of task-groups formed thr' the cgroup filesystem, it * gets 100% of the cpu resources in the system. This overall * system cpu resource is divided among the tasks of * init_task_group and its child task-groups in a fair manner, * based on each entity's (task or task-group's) weight * (se->load.weight). * * In other words, if init_task_group has 10 tasks of weight * 1024) and two child groups A0 and A1 (of weight 1024 each), * then A0's share of the cpu resource is: * * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% * * We achieve this by letting init_task_group's tasks sit * directly in rq->cfs (i.e init_task_group->se[] = NULL). */ init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); #elif defined CONFIG_USER_SCHED root_task_group.shares = NICE_0_LOAD; init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); /* * In case of task-groups formed thr' the user id of tasks, * init_task_group represents tasks belonging to root user. * Hence it forms a sibling of all subsequent groups formed. * In this case, init_task_group gets only a fraction of overall * system cpu resource, based on the weight assigned to root * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished * by letting tasks of init_task_group sit in a separate cfs_rq * (init_tg_cfs_rq) and having one entity represent this group of * tasks in rq->cfs (i.e init_task_group->se[] != NULL). */ init_tg_cfs_entry(&init_task_group, &per_cpu(init_tg_cfs_rq, i), &per_cpu(init_sched_entity, i), i, 1, root_task_group.se[i]); #endif #endif /* CONFIG_FAIR_GROUP_SCHED */ rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; #ifdef CONFIG_RT_GROUP_SCHED INIT_LIST_HEAD(&rq->leaf_rt_rq_list); #ifdef CONFIG_CGROUP_SCHED init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); #elif defined CONFIG_USER_SCHED init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); init_tg_rt_entry(&init_task_group, &per_cpu(init_rt_rq, i), &per_cpu(init_sched_rt_entity, i), i, 1, root_task_group.rt_se[i]); #endif #endif for (j = 0; j < CPU_LOAD_IDX_MAX; j++) rq->cpu_load[j] = 0; #ifdef CONFIG_SMP rq->sd = NULL; rq->rd = NULL; rq->post_schedule = 0; rq->active_balance = 0; rq->next_balance = jiffies; rq->push_cpu = 0; rq->cpu = i; rq->online = 0; rq->migration_thread = NULL; rq->idle_stamp = 0; rq->avg_idle = 2*sysctl_sched_migration_cost; INIT_LIST_HEAD(&rq->migration_queue); rq_attach_root(rq, &def_root_domain); #endif init_rq_hrtick(rq); atomic_set(&rq->nr_iowait, 0); } set_load_weight(&init_task); #ifdef CONFIG_PREEMPT_NOTIFIERS INIT_HLIST_HEAD(&init_task.preempt_notifiers); #endif #ifdef CONFIG_SMP open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); #endif #ifdef CONFIG_RT_MUTEXES plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); #endif /* * The boot idle thread does lazy MMU switching as well: */ atomic_inc(&init_mm.mm_count); enter_lazy_tlb(&init_mm, current); /* * Make us the idle thread. Technically, schedule() should not be * called from this thread, however somewhere below it might be, * but because we are the idle thread, we just pick up running again * when this runqueue becomes "idle". */ init_idle(current, smp_processor_id()); calc_load_update = jiffies + LOAD_FREQ; /* * During early bootup we pretend to be a normal task: */ current->sched_class = &fair_sched_class; /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); #ifdef CONFIG_SMP #ifdef CONFIG_NO_HZ zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); #endif zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); #endif /* SMP */ perf_event_init(); scheduler_running = 1; } #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP static inline int preempt_count_equals(int preempt_offset) { int nested = preempt_count() & ~PREEMPT_ACTIVE; return (nested == PREEMPT_INATOMIC_BASE + preempt_offset); } void __might_sleep(char *file, int line, int preempt_offset) { #ifdef in_atomic static unsigned long prev_jiffy; /* ratelimiting */ if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) || system_state != SYSTEM_RUNNING || oops_in_progress) return; if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) return; prev_jiffy = jiffies; printk(KERN_ERR "BUG: sleeping function called from invalid context at %s:%d\n", file, line); printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", in_atomic(), irqs_disabled(), current->pid, current->comm); debug_show_held_locks(current); if (irqs_disabled()) print_irqtrace_events(current); dump_stack(); #endif } EXPORT_SYMBOL(__might_sleep); #endif #ifdef CONFIG_MAGIC_SYSRQ static void normalize_task(struct rq *rq, struct task_struct *p) { int on_rq; update_rq_clock(rq); on_rq = p->se.on_rq; if (on_rq) deactivate_task(rq, p, 0); __setscheduler(rq, p, SCHED_NORMAL, 0); if (on_rq) { activate_task(rq, p, 0); resched_task(rq->curr); } } void normalize_rt_tasks(void) { struct task_struct *g, *p; unsigned long flags; struct rq *rq; read_lock_irqsave(&tasklist_lock, flags); do_each_thread(g, p) { /* * Only normalize user tasks: */ if (!p->mm) continue; p->se.exec_start = 0; #ifdef CONFIG_SCHEDSTATS p->se.wait_start = 0; p->se.sleep_start = 0; p->se.block_start = 0; #endif if (!rt_task(p)) { /* * Renice negative nice level userspace * tasks back to 0: */ if (TASK_NICE(p) < 0 && p->mm) set_user_nice(p, 0); continue; } spin_lock(&p->pi_lock); rq = __task_rq_lock(p); normalize_task(rq, p); __task_rq_unlock(rq); spin_unlock(&p->pi_lock); } while_each_thread(g, p); read_unlock_irqrestore(&tasklist_lock, flags); } #endif /* CONFIG_MAGIC_SYSRQ */ #ifdef CONFIG_IA64 /* * These functions are only useful for the IA64 MCA handling. * * They can only be called when the whole system has been * stopped - every CPU needs to be quiescent, and no scheduling * activity can take place. Using them for anything else would * be a serious bug, and as a result, they aren't even visible * under any other configuration. */ /** * curr_task - return the current task for a given cpu. * @cpu: the processor in question. * * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! */ struct task_struct *curr_task(int cpu) { return cpu_curr(cpu); } /** * set_curr_task - set the current task for a given cpu. * @cpu: the processor in question. * @p: the task pointer to set. * * Description: This function must only be used when non-maskable interrupts * are serviced on a separate stack. It allows the architecture to switch the * notion of the current task on a cpu in a non-blocking manner. This function * must be called with all CPU's synchronized, and interrupts disabled, the * and caller must save the original value of the current task (see * curr_task() above) and restore that value before reenabling interrupts and * re-starting the system. * * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! */ void set_curr_task(int cpu, struct task_struct *p) { cpu_curr(cpu) = p; } #endif #ifdef CONFIG_FAIR_GROUP_SCHED static void free_fair_sched_group(struct task_group *tg) { int i; for_each_possible_cpu(i) { if (tg->cfs_rq) kfree(tg->cfs_rq[i]); if (tg->se) kfree(tg->se[i]); } kfree(tg->cfs_rq); kfree(tg->se); } static int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { struct cfs_rq *cfs_rq; struct sched_entity *se; struct rq *rq; int i; tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); if (!tg->cfs_rq) goto err; tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); if (!tg->se) goto err; tg->shares = NICE_0_LOAD; for_each_possible_cpu(i) { rq = cpu_rq(i); cfs_rq = kzalloc_node(sizeof(struct cfs_rq), GFP_KERNEL, cpu_to_node(i)); if (!cfs_rq) goto err; se = kzalloc_node(sizeof(struct sched_entity), GFP_KERNEL, cpu_to_node(i)); if (!se) goto err; init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); } return 1; err: return 0; } static inline void register_fair_sched_group(struct task_group *tg, int cpu) { list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, &cpu_rq(cpu)->leaf_cfs_rq_list); } static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) { list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); } #else /* !CONFG_FAIR_GROUP_SCHED */ static inline void free_fair_sched_group(struct task_group *tg) { } static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) { return 1; } static inline void register_fair_sched_group(struct task_group *tg, int cpu) { } static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) { } #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static void free_rt_sched_group(struct task_group *tg) { int i; destroy_rt_bandwidth(&tg->rt_bandwidth); for_each_possible_cpu(i) { if (tg->rt_rq) kfree(tg->rt_rq[i]); if (tg->rt_se) kfree(tg->rt_se[i]); } kfree(tg->rt_rq); kfree(tg->rt_se); } static int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) { struct rt_rq *rt_rq; struct sched_rt_entity *rt_se; struct rq *rq; int i; tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); if (!tg->rt_rq) goto err; tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); if (!tg->rt_se) goto err; init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(def_rt_bandwidth.rt_period), 0); for_each_possible_cpu(i) { rq = cpu_rq(i); rt_rq = kzalloc_node(sizeof(struct rt_rq), GFP_KERNEL, cpu_to_node(i)); if (!rt_rq) goto err; rt_se = kzalloc_node(sizeof(struct sched_rt_entity), GFP_KERNEL, cpu_to_node(i)); if (!rt_se) goto err; init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); } return 1; err: return 0; } static inline void register_rt_sched_group(struct task_group *tg, int cpu) { list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, &cpu_rq(cpu)->leaf_rt_rq_list); } static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) { list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); } #else /* !CONFIG_RT_GROUP_SCHED */ static inline void free_rt_sched_group(struct task_group *tg) { } static inline int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) { return 1; } static inline void register_rt_sched_group(struct task_group *tg, int cpu) { } static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) { } #endif /* CONFIG_RT_GROUP_SCHED */ #ifdef CONFIG_GROUP_SCHED static void free_sched_group(struct task_group *tg) { free_fair_sched_group(tg); free_rt_sched_group(tg); kfree(tg); } /* allocate runqueue etc for a new task group */ struct task_group *sched_create_group(struct task_group *parent) { struct task_group *tg; unsigned long flags; int i; tg = kzalloc(sizeof(*tg), GFP_KERNEL); if (!tg) return ERR_PTR(-ENOMEM); if (!alloc_fair_sched_group(tg, parent)) goto err; if (!alloc_rt_sched_group(tg, parent)) goto err; spin_lock_irqsave(&task_group_lock, flags); for_each_possible_cpu(i) { register_fair_sched_group(tg, i); register_rt_sched_group(tg, i); } list_add_rcu(&tg->list, &task_groups); WARN_ON(!parent); /* root should already exist */ tg->parent = parent; INIT_LIST_HEAD(&tg->children); list_add_rcu(&tg->siblings, &parent->children); spin_unlock_irqrestore(&task_group_lock, flags); return tg; err: free_sched_group(tg); return ERR_PTR(-ENOMEM); } /* rcu callback to free various structures associated with a task group */ static void free_sched_group_rcu(struct rcu_head *rhp) { /* now it should be safe to free those cfs_rqs */ free_sched_group(container_of(rhp, struct task_group, rcu)); } /* Destroy runqueue etc associated with a task group */ void sched_destroy_group(struct task_group *tg) { unsigned long flags; int i; spin_lock_irqsave(&task_group_lock, flags); for_each_possible_cpu(i) { unregister_fair_sched_group(tg, i); unregister_rt_sched_group(tg, i); } list_del_rcu(&tg->list); list_del_rcu(&tg->siblings); spin_unlock_irqrestore(&task_group_lock, flags); /* wait for possible concurrent references to cfs_rqs complete */ call_rcu(&tg->rcu, free_sched_group_rcu); } /* change task's runqueue when it moves between groups. * The caller of this function should have put the task in its new group * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to * reflect its new group. */ void sched_move_task(struct task_struct *tsk) { int on_rq, running; unsigned long flags; struct rq *rq; rq = task_rq_lock(tsk, &flags); update_rq_clock(rq); running = task_current(rq, tsk); on_rq = tsk->se.on_rq; if (on_rq) dequeue_task(rq, tsk, 0); if (unlikely(running)) tsk->sched_class->put_prev_task(rq, tsk); set_task_rq(tsk, task_cpu(tsk)); #ifdef CONFIG_FAIR_GROUP_SCHED if (tsk->sched_class->moved_group) tsk->sched_class->moved_group(tsk); #endif if (unlikely(running)) tsk->sched_class->set_curr_task(rq); if (on_rq) enqueue_task(rq, tsk, 0); task_rq_unlock(rq, &flags); } #endif /* CONFIG_GROUP_SCHED */ #ifdef CONFIG_FAIR_GROUP_SCHED static void __set_se_shares(struct sched_entity *se, unsigned long shares) { struct cfs_rq *cfs_rq = se->cfs_rq; int on_rq; on_rq = se->on_rq; if (on_rq) dequeue_entity(cfs_rq, se, 0); se->load.weight = shares; se->load.inv_weight = 0; if (on_rq) enqueue_entity(cfs_rq, se, 0); } static void set_se_shares(struct sched_entity *se, unsigned long shares) { struct cfs_rq *cfs_rq = se->cfs_rq; struct rq *rq = cfs_rq->rq; unsigned long flags; spin_lock_irqsave(&rq->lock, flags); __set_se_shares(se, shares); spin_unlock_irqrestore(&rq->lock, flags); } static DEFINE_MUTEX(shares_mutex); int sched_group_set_shares(struct task_group *tg, unsigned long shares) { int i; unsigned long flags; /* * We can't change the weight of the root cgroup. */ if (!tg->se[0]) return -EINVAL; if (shares < MIN_SHARES) shares = MIN_SHARES; else if (shares > MAX_SHARES) shares = MAX_SHARES; mutex_lock(&shares_mutex); if (tg->shares == shares) goto done; spin_lock_irqsave(&task_group_lock, flags); for_each_possible_cpu(i) unregister_fair_sched_group(tg, i); list_del_rcu(&tg->siblings); spin_unlock_irqrestore(&task_group_lock, flags); /* wait for any ongoing reference to this group to finish */ synchronize_sched(); /* * Now we are free to modify the group's share on each cpu * w/o tripping rebalance_share or load_balance_fair. */ tg->shares = shares; for_each_possible_cpu(i) { /* * force a rebalance */ cfs_rq_set_shares(tg->cfs_rq[i], 0); set_se_shares(tg->se[i], shares); } /* * Enable load balance activity on this group, by inserting it back on * each cpu's rq->leaf_cfs_rq_list. */ spin_lock_irqsave(&task_group_lock, flags); for_each_possible_cpu(i) register_fair_sched_group(tg, i); list_add_rcu(&tg->siblings, &tg->parent->children); spin_unlock_irqrestore(&task_group_lock, flags); done: mutex_unlock(&shares_mutex); return 0; } unsigned long sched_group_shares(struct task_group *tg) { return tg->shares; } #endif #ifdef CONFIG_RT_GROUP_SCHED /* * Ensure that the real time constraints are schedulable. */ static DEFINE_MUTEX(rt_constraints_mutex); static unsigned long to_ratio(u64 period, u64 runtime) { if (runtime == RUNTIME_INF) return 1ULL << 20; return div64_u64(runtime << 20, period); } /* Must be called with tasklist_lock held */ static inline int tg_has_rt_tasks(struct task_group *tg) { struct task_struct *g, *p; do_each_thread(g, p) { if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) return 1; } while_each_thread(g, p); return 0; } struct rt_schedulable_data { struct task_group *tg; u64 rt_period; u64 rt_runtime; }; static int tg_schedulable(struct task_group *tg, void *data) { struct rt_schedulable_data *d = data; struct task_group *child; unsigned long total, sum = 0; u64 period, runtime; period = ktime_to_ns(tg->rt_bandwidth.rt_period); runtime = tg->rt_bandwidth.rt_runtime; if (tg == d->tg) { period = d->rt_period; runtime = d->rt_runtime; } #ifdef CONFIG_USER_SCHED if (tg == &root_task_group) { period = global_rt_period(); runtime = global_rt_runtime(); } #endif /* * Cannot have more runtime than the period. */ if (runtime > period && runtime != RUNTIME_INF) return -EINVAL; /* * Ensure we don't starve existing RT tasks. */ if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) return -EBUSY; total = to_ratio(period, runtime); /* * Nobody can have more than the global setting allows. */ if (total > to_ratio(global_rt_period(), global_rt_runtime())) return -EINVAL; /* * The sum of our children's runtime should not exceed our own. */ list_for_each_entry_rcu(child, &tg->children, siblings) { period = ktime_to_ns(child->rt_bandwidth.rt_period); runtime = child->rt_bandwidth.rt_runtime; if (child == d->tg) { period = d->rt_period; runtime = d->rt_runtime; } sum += to_ratio(period, runtime); } if (sum > total) return -EINVAL; return 0; } static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) { struct rt_schedulable_data data = { .tg = tg, .rt_period = period, .rt_runtime = runtime, }; return walk_tg_tree(tg_schedulable, tg_nop, &data); } static int tg_set_bandwidth(struct task_group *tg, u64 rt_period, u64 rt_runtime) { int i, err = 0; mutex_lock(&rt_constraints_mutex); read_lock(&tasklist_lock); err = __rt_schedulable(tg, rt_period, rt_runtime); if (err) goto unlock; spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); tg->rt_bandwidth.rt_runtime = rt_runtime; for_each_possible_cpu(i) { struct rt_rq *rt_rq = tg->rt_rq[i]; spin_lock(&rt_rq->rt_runtime_lock); rt_rq->rt_runtime = rt_runtime; spin_unlock(&rt_rq->rt_runtime_lock); } spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); unlock: read_unlock(&tasklist_lock); mutex_unlock(&rt_constraints_mutex); return err; } int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) { u64 rt_runtime, rt_period; rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; if (rt_runtime_us < 0) rt_runtime = RUNTIME_INF; return tg_set_bandwidth(tg, rt_period, rt_runtime); } long sched_group_rt_runtime(struct task_group *tg) { u64 rt_runtime_us; if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) return -1; rt_runtime_us = tg->rt_bandwidth.rt_runtime; do_div(rt_runtime_us, NSEC_PER_USEC); return rt_runtime_us; } int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) { u64 rt_runtime, rt_period; rt_period = (u64)rt_period_us * NSEC_PER_USEC; rt_runtime = tg->rt_bandwidth.rt_runtime; if (rt_period == 0) return -EINVAL; return tg_set_bandwidth(tg, rt_period, rt_runtime); } long sched_group_rt_period(struct task_group *tg) { u64 rt_period_us; rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); do_div(rt_period_us, NSEC_PER_USEC); return rt_period_us; } static int sched_rt_global_constraints(void) { u64 runtime, period; int ret = 0; if (sysctl_sched_rt_period <= 0) return -EINVAL; runtime = global_rt_runtime(); period = global_rt_period(); /* * Sanity check on the sysctl variables. */ if (runtime > period && runtime != RUNTIME_INF) return -EINVAL; mutex_lock(&rt_constraints_mutex); read_lock(&tasklist_lock); ret = __rt_schedulable(NULL, 0, 0); read_unlock(&tasklist_lock); mutex_unlock(&rt_constraints_mutex); return ret; } int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) { /* Don't accept realtime tasks when there is no way for them to run */ if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) return 0; return 1; } #else /* !CONFIG_RT_GROUP_SCHED */ static int sched_rt_global_constraints(void) { unsigned long flags; int i; if (sysctl_sched_rt_period <= 0) return -EINVAL; /* * There's always some RT tasks in the root group * -- migration, kstopmachine etc.. */ if (sysctl_sched_rt_runtime == 0) return -EBUSY; spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); for_each_possible_cpu(i) { struct rt_rq *rt_rq = &cpu_rq(i)->rt; spin_lock(&rt_rq->rt_runtime_lock); rt_rq->rt_runtime = global_rt_runtime(); spin_unlock(&rt_rq->rt_runtime_lock); } spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); return 0; } #endif /* CONFIG_RT_GROUP_SCHED */ int sched_rt_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret; int old_period, old_runtime; static DEFINE_MUTEX(mutex); mutex_lock(&mutex); old_period = sysctl_sched_rt_period; old_runtime = sysctl_sched_rt_runtime; ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret && write) { ret = sched_rt_global_constraints(); if (ret) { sysctl_sched_rt_period = old_period; sysctl_sched_rt_runtime = old_runtime; } else { def_rt_bandwidth.rt_runtime = global_rt_runtime(); def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); } } mutex_unlock(&mutex); return ret; } #ifdef CONFIG_CGROUP_SCHED /* return corresponding task_group object of a cgroup */ static inline struct task_group *cgroup_tg(struct cgroup *cgrp) { return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), struct task_group, css); } static struct cgroup_subsys_state * cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct task_group *tg, *parent; if (!cgrp->parent) { /* This is early initialization for the top cgroup */ return &init_task_group.css; } parent = cgroup_tg(cgrp->parent); tg = sched_create_group(parent); if (IS_ERR(tg)) return ERR_PTR(-ENOMEM); return &tg->css; } static void cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct task_group *tg = cgroup_tg(cgrp); sched_destroy_group(tg); } static int cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) { #ifdef CONFIG_RT_GROUP_SCHED if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) return -EINVAL; #else /* We don't support RT-tasks being in separate groups */ if (tsk->sched_class != &fair_sched_class) return -EINVAL; #endif return 0; } static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, struct task_struct *tsk, bool threadgroup) { int retval = cpu_cgroup_can_attach_task(cgrp, tsk); if (retval) return retval; if (threadgroup) { struct task_struct *c; rcu_read_lock(); list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { retval = cpu_cgroup_can_attach_task(cgrp, c); if (retval) { rcu_read_unlock(); return retval; } } rcu_read_unlock(); } return 0; } static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, struct cgroup *old_cont, struct task_struct *tsk, bool threadgroup) { sched_move_task(tsk); if (threadgroup) { struct task_struct *c; rcu_read_lock(); list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { sched_move_task(c); } rcu_read_unlock(); } } #ifdef CONFIG_FAIR_GROUP_SCHED static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, u64 shareval) { return sched_group_set_shares(cgroup_tg(cgrp), shareval); } static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) { struct task_group *tg = cgroup_tg(cgrp); return (u64) tg->shares; } #endif /* CONFIG_FAIR_GROUP_SCHED */ #ifdef CONFIG_RT_GROUP_SCHED static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, s64 val) { return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); } static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) { return sched_group_rt_runtime(cgroup_tg(cgrp)); } static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, u64 rt_period_us) { return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); } static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) { return sched_group_rt_period(cgroup_tg(cgrp)); } #endif /* CONFIG_RT_GROUP_SCHED */ static struct cftype cpu_files[] = { #ifdef CONFIG_FAIR_GROUP_SCHED { .name = "shares", .read_u64 = cpu_shares_read_u64, .write_u64 = cpu_shares_write_u64, }, #endif #ifdef CONFIG_RT_GROUP_SCHED { .name = "rt_runtime_us", .read_s64 = cpu_rt_runtime_read, .write_s64 = cpu_rt_runtime_write, }, { .name = "rt_period_us", .read_u64 = cpu_rt_period_read_uint, .write_u64 = cpu_rt_period_write_uint, }, #endif }; static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) { return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); } struct cgroup_subsys cpu_cgroup_subsys = { .name = "cpu", .create = cpu_cgroup_create, .destroy = cpu_cgroup_destroy, .can_attach = cpu_cgroup_can_attach, .attach = cpu_cgroup_attach, .populate = cpu_cgroup_populate, .subsys_id = cpu_cgroup_subsys_id, .early_init = 1, }; #endif /* CONFIG_CGROUP_SCHED */ #ifdef CONFIG_CGROUP_CPUACCT /* * CPU accounting code for task groups. * * Based on the work by Paul Menage (menage@google.com) and Balbir Singh * (balbir@in.ibm.com). */ /* track cpu usage of a group of tasks and its child groups */ struct cpuacct { struct cgroup_subsys_state css; /* cpuusage holds pointer to a u64-type object on every cpu */ u64 *cpuusage; struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; struct cpuacct *parent; }; struct cgroup_subsys cpuacct_subsys; /* return cpu accounting group corresponding to this container */ static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) { return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), struct cpuacct, css); } /* return cpu accounting group to which this task belongs */ static inline struct cpuacct *task_ca(struct task_struct *tsk) { return container_of(task_subsys_state(tsk, cpuacct_subsys_id), struct cpuacct, css); } /* create a new cpu accounting group */ static struct cgroup_subsys_state *cpuacct_create( struct cgroup_subsys *ss, struct cgroup *cgrp) { struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); int i; if (!ca) goto out; ca->cpuusage = alloc_percpu(u64); if (!ca->cpuusage) goto out_free_ca; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) if (percpu_counter_init(&ca->cpustat[i], 0)) goto out_free_counters; if (cgrp->parent) ca->parent = cgroup_ca(cgrp->parent); return &ca->css; out_free_counters: while (--i >= 0) percpu_counter_destroy(&ca->cpustat[i]); free_percpu(ca->cpuusage); out_free_ca: kfree(ca); out: return ERR_PTR(-ENOMEM); } /* destroy an existing cpu accounting group */ static void cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) { struct cpuacct *ca = cgroup_ca(cgrp); int i; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) percpu_counter_destroy(&ca->cpustat[i]); free_percpu(ca->cpuusage); kfree(ca); } static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); u64 data; #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit read safe on 32-bit platforms. */ spin_lock_irq(&cpu_rq(cpu)->lock); data = *cpuusage; spin_unlock_irq(&cpu_rq(cpu)->lock); #else data = *cpuusage; #endif return data; } static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit write safe on 32-bit platforms. */ spin_lock_irq(&cpu_rq(cpu)->lock); *cpuusage = val; spin_unlock_irq(&cpu_rq(cpu)->lock); #else *cpuusage = val; #endif } /* return total cpu usage (in nanoseconds) of a group */ static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) { struct cpuacct *ca = cgroup_ca(cgrp); u64 totalcpuusage = 0; int i; for_each_present_cpu(i) totalcpuusage += cpuacct_cpuusage_read(ca, i); return totalcpuusage; } static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, u64 reset) { struct cpuacct *ca = cgroup_ca(cgrp); int err = 0; int i; if (reset) { err = -EINVAL; goto out; } for_each_present_cpu(i) cpuacct_cpuusage_write(ca, i, 0); out: return err; } static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, struct seq_file *m) { struct cpuacct *ca = cgroup_ca(cgroup); u64 percpu; int i; for_each_present_cpu(i) { percpu = cpuacct_cpuusage_read(ca, i); seq_printf(m, "%llu ", (unsigned long long) percpu); } seq_printf(m, "\n"); return 0; } static const char *cpuacct_stat_desc[] = { [CPUACCT_STAT_USER] = "user", [CPUACCT_STAT_SYSTEM] = "system", }; static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, struct cgroup_map_cb *cb) { struct cpuacct *ca = cgroup_ca(cgrp); int i; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { s64 val = percpu_counter_read(&ca->cpustat[i]); val = cputime64_to_clock_t(val); cb->fill(cb, cpuacct_stat_desc[i], val); } return 0; } static struct cftype files[] = { { .name = "usage", .read_u64 = cpuusage_read, .write_u64 = cpuusage_write, }, { .name = "usage_percpu", .read_seq_string = cpuacct_percpu_seq_read, }, { .name = "stat", .read_map = cpuacct_stats_show, }, }; static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) { return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); } /* * charge this task's execution time to its accounting group. * * called with rq->lock held. */ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) { struct cpuacct *ca; int cpu; if (unlikely(!cpuacct_subsys.active)) return; cpu = task_cpu(tsk); rcu_read_lock(); ca = task_ca(tsk); for (; ca; ca = ca->parent) { u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); *cpuusage += cputime; } rcu_read_unlock(); } /* * Charge the system/user time to the task's accounting group. */ static void cpuacct_update_stats(struct task_struct *tsk, enum cpuacct_stat_index idx, cputime_t val) { struct cpuacct *ca; if (unlikely(!cpuacct_subsys.active)) return; rcu_read_lock(); ca = task_ca(tsk); do { percpu_counter_add(&ca->cpustat[idx], val); ca = ca->parent; } while (ca); rcu_read_unlock(); } struct cgroup_subsys cpuacct_subsys = { .name = "cpuacct", .create = cpuacct_create, .destroy = cpuacct_destroy, .populate = cpuacct_populate, .subsys_id = cpuacct_subsys_id, }; #endif /* CONFIG_CGROUP_CPUACCT */ #ifndef CONFIG_SMP int rcu_expedited_torture_stats(char *page) { return 0; } EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); void synchronize_sched_expedited(void) { } EXPORT_SYMBOL_GPL(synchronize_sched_expedited); #else /* #ifndef CONFIG_SMP */ static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); static DEFINE_MUTEX(rcu_sched_expedited_mutex); #define RCU_EXPEDITED_STATE_POST -2 #define RCU_EXPEDITED_STATE_IDLE -1 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; int rcu_expedited_torture_stats(char *page) { int cnt = 0; int cpu; cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); for_each_online_cpu(cpu) { cnt += sprintf(&page[cnt], " %d:%d", cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); } cnt += sprintf(&page[cnt], "\n"); return cnt; } EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); static long synchronize_sched_expedited_count; /* * Wait for an rcu-sched grace period to elapse, but use "big hammer" * approach to force grace period to end quickly. This consumes * significant time on all CPUs, and is thus not recommended for * any sort of common-case code. * * Note that it is illegal to call this function while holding any * lock that is acquired by a CPU-hotplug notifier. Failing to * observe this restriction will result in deadlock. */ void synchronize_sched_expedited(void) { int cpu; unsigned long flags; bool need_full_sync = 0; struct rq *rq; struct migration_req *req; long snap; int trycount = 0; smp_mb(); /* ensure prior mod happens before capturing snap. */ snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; get_online_cpus(); while (!mutex_trylock(&rcu_sched_expedited_mutex)) { put_online_cpus(); if (trycount++ < 10) udelay(trycount * num_online_cpus()); else { synchronize_sched(); return; } if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { smp_mb(); /* ensure test happens before caller kfree */ return; } get_online_cpus(); } rcu_expedited_state = RCU_EXPEDITED_STATE_POST; for_each_online_cpu(cpu) { rq = cpu_rq(cpu); req = &per_cpu(rcu_migration_req, cpu); init_completion(&req->done); req->task = NULL; req->dest_cpu = RCU_MIGRATION_NEED_QS; spin_lock_irqsave(&rq->lock, flags); list_add(&req->list, &rq->migration_queue); spin_unlock_irqrestore(&rq->lock, flags); wake_up_process(rq->migration_thread); } for_each_online_cpu(cpu) { rcu_expedited_state = cpu; req = &per_cpu(rcu_migration_req, cpu); rq = cpu_rq(cpu); wait_for_completion(&req->done); spin_lock_irqsave(&rq->lock, flags); if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) need_full_sync = 1; req->dest_cpu = RCU_MIGRATION_IDLE; spin_unlock_irqrestore(&rq->lock, flags); } rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; mutex_unlock(&rcu_sched_expedited_mutex); put_online_cpus(); if (need_full_sync) synchronize_sched(); } EXPORT_SYMBOL_GPL(synchronize_sched_expedited); #endif /* #else #ifndef CONFIG_SMP */