/* * linux/kernel/irq/handle.c * * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar * Copyright (C) 2005-2006, Thomas Gleixner, Russell King * * This file contains the core interrupt handling code. * * Detailed information is available in Documentation/DocBook/genericirq * */ #include #include #include #include #include #include "internals.h" /** * handle_bad_irq - handle spurious and unhandled irqs */ void fastcall handle_bad_irq(unsigned int irq, struct irq_desc *desc, struct pt_regs *regs) { kstat_this_cpu.irqs[irq]++; ack_bad_irq(irq); } /* * Linux has a controller-independent interrupt architecture. * Every controller has a 'controller-template', that is used * by the main code to do the right thing. Each driver-visible * interrupt source is transparently wired to the appropriate * controller. Thus drivers need not be aware of the * interrupt-controller. * * The code is designed to be easily extended with new/different * interrupt controllers, without having to do assembly magic or * having to touch the generic code. * * Controller mappings for all interrupt sources: */ struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned = { [0 ... NR_IRQS-1] = { .status = IRQ_DISABLED, .chip = &no_irq_chip, .handle_irq = handle_bad_irq, .depth = 1, .lock = SPIN_LOCK_UNLOCKED, #ifdef CONFIG_SMP .affinity = CPU_MASK_ALL #endif } }; /* * What should we do if we get a hw irq event on an illegal vector? * Each architecture has to answer this themself. */ static void ack_bad(unsigned int irq) { ack_bad_irq(irq); } /* * NOP functions */ static void noop(unsigned int irq) { } static unsigned int noop_ret(unsigned int irq) { return 0; } /* * Generic no controller implementation */ struct irq_chip no_irq_chip = { .name = "none", .startup = noop_ret, .shutdown = noop, .enable = noop, .disable = noop, .ack = ack_bad, .end = noop, }; /* * Special, empty irq handler: */ irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs) { return IRQ_NONE; } /** * handle_IRQ_event - irq action chain handler * @irq: the interrupt number * @regs: pointer to a register structure * @action: the interrupt action chain for this irq * * Handles the action chain of an irq event */ irqreturn_t handle_IRQ_event(unsigned int irq, struct pt_regs *regs, struct irqaction *action) { irqreturn_t ret, retval = IRQ_NONE; unsigned int status = 0; if (!(action->flags & SA_INTERRUPT)) local_irq_enable(); do { ret = action->handler(irq, action->dev_id, regs); if (ret == IRQ_HANDLED) status |= action->flags; retval |= ret; action = action->next; } while (action); if (status & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); local_irq_disable(); return retval; } /** * __do_IRQ - original all in one highlevel IRQ handler * @irq: the interrupt number * @regs: pointer to a register structure * * __do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). * * This is the original x86 implementation which is used for every * interrupt type. */ fastcall unsigned int __do_IRQ(unsigned int irq, struct pt_regs *regs) { struct irq_desc *desc = irq_desc + irq; struct irqaction *action; unsigned int status; kstat_this_cpu.irqs[irq]++; if (CHECK_IRQ_PER_CPU(desc->status)) { irqreturn_t action_ret; /* * No locking required for CPU-local interrupts: */ if (desc->chip->ack) desc->chip->ack(irq); action_ret = handle_IRQ_event(irq, regs, desc->action); desc->chip->end(irq); return 1; } spin_lock(&desc->lock); if (desc->chip->ack) desc->chip->ack(irq); /* * REPLAY is when Linux resends an IRQ that was dropped earlier * WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. * Since we set PENDING, if another processor is handling * a different instance of this same irq, the other processor * will take care of it. */ if (unlikely(!action)) goto out; /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in do_IRQ * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { irqreturn_t action_ret; spin_unlock(&desc->lock); action_ret = handle_IRQ_event(irq, regs, action); spin_lock(&desc->lock); if (!noirqdebug) note_interrupt(irq, desc, action_ret, regs); if (likely(!(desc->status & IRQ_PENDING))) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->chip->end(irq); spin_unlock(&desc->lock); return 1; }