#include <linux/kernel.h> #include <linux/fs.h> #include <linux/minix_fs.h> #include <linux/ext2_fs.h> #include <linux/romfs_fs.h> #include <linux/cramfs_fs.h> #include <linux/initrd.h> #include <linux/string.h> #include "do_mounts.h" #include "../fs/squashfs/squashfs_fs.h" int __initdata rd_prompt = 1;/* 1 = prompt for RAM disk, 0 = don't prompt */ static int __init prompt_ramdisk(char *str) { rd_prompt = simple_strtol(str,NULL,0) & 1; return 1; } __setup("prompt_ramdisk=", prompt_ramdisk); int __initdata rd_image_start; /* starting block # of image */ static int __init ramdisk_start_setup(char *str) { rd_image_start = simple_strtol(str,NULL,0); return 1; } __setup("ramdisk_start=", ramdisk_start_setup); static int __init crd_load(int in_fd, int out_fd); /* * This routine tries to find a RAM disk image to load, and returns the * number of blocks to read for a non-compressed image, 0 if the image * is a compressed image, and -1 if an image with the right magic * numbers could not be found. * * We currently check for the following magic numbers: * minix * ext2 * romfs * cramfs * squashfs * gzip */ static int __init identify_ramdisk_image(int fd, int start_block) { const int size = 512; struct minix_super_block *minixsb; struct ext2_super_block *ext2sb; struct romfs_super_block *romfsb; struct cramfs_super *cramfsb; struct squashfs_super_block *squashfsb; int nblocks = -1; unsigned char *buf; buf = kmalloc(size, GFP_KERNEL); if (!buf) return -1; minixsb = (struct minix_super_block *) buf; ext2sb = (struct ext2_super_block *) buf; romfsb = (struct romfs_super_block *) buf; cramfsb = (struct cramfs_super *) buf; squashfsb = (struct squashfs_super_block *) buf; memset(buf, 0xe5, size); /* * Read block 0 to test for gzipped kernel */ sys_lseek(fd, start_block * BLOCK_SIZE, 0); sys_read(fd, buf, size); /* * If it matches the gzip magic numbers, return 0 */ if (buf[0] == 037 && ((buf[1] == 0213) || (buf[1] == 0236))) { printk(KERN_NOTICE "RAMDISK: Compressed image found at block %d\n", start_block); nblocks = 0; goto done; } /* romfs is at block zero too */ if (romfsb->word0 == ROMSB_WORD0 && romfsb->word1 == ROMSB_WORD1) { printk(KERN_NOTICE "RAMDISK: romfs filesystem found at block %d\n", start_block); nblocks = (ntohl(romfsb->size)+BLOCK_SIZE-1)>>BLOCK_SIZE_BITS; goto done; } if (cramfsb->magic == CRAMFS_MAGIC) { printk(KERN_NOTICE "RAMDISK: cramfs filesystem found at block %d\n", start_block); nblocks = (cramfsb->size + BLOCK_SIZE - 1) >> BLOCK_SIZE_BITS; goto done; } /* squashfs is at block zero too */ if (le32_to_cpu(squashfsb->s_magic) == SQUASHFS_MAGIC) { printk(KERN_NOTICE "RAMDISK: squashfs filesystem found at block %d\n", start_block); nblocks = (le64_to_cpu(squashfsb->bytes_used) + BLOCK_SIZE - 1) >> BLOCK_SIZE_BITS; goto done; } /* * Read block 1 to test for minix and ext2 superblock */ sys_lseek(fd, (start_block+1) * BLOCK_SIZE, 0); sys_read(fd, buf, size); /* Try minix */ if (minixsb->s_magic == MINIX_SUPER_MAGIC || minixsb->s_magic == MINIX_SUPER_MAGIC2) { printk(KERN_NOTICE "RAMDISK: Minix filesystem found at block %d\n", start_block); nblocks = minixsb->s_nzones << minixsb->s_log_zone_size; goto done; } /* Try ext2 */ if (ext2sb->s_magic == cpu_to_le16(EXT2_SUPER_MAGIC)) { printk(KERN_NOTICE "RAMDISK: ext2 filesystem found at block %d\n", start_block); nblocks = le32_to_cpu(ext2sb->s_blocks_count) << le32_to_cpu(ext2sb->s_log_block_size); goto done; } printk(KERN_NOTICE "RAMDISK: Couldn't find valid RAM disk image starting at %d.\n", start_block); done: sys_lseek(fd, start_block * BLOCK_SIZE, 0); kfree(buf); return nblocks; } int __init rd_load_image(char *from) { int res = 0; int in_fd, out_fd; unsigned long rd_blocks, devblocks; int nblocks, i, disk; char *buf = NULL; unsigned short rotate = 0; #if !defined(CONFIG_S390) && !defined(CONFIG_PPC_ISERIES) char rotator[4] = { '|' , '/' , '-' , '\\' }; #endif out_fd = sys_open("/dev/ram", O_RDWR, 0); if (out_fd < 0) goto out; in_fd = sys_open(from, O_RDONLY, 0); if (in_fd < 0) goto noclose_input; nblocks = identify_ramdisk_image(in_fd, rd_image_start); if (nblocks < 0) goto done; if (nblocks == 0) { if (crd_load(in_fd, out_fd) == 0) goto successful_load; goto done; } /* * NOTE NOTE: nblocks is not actually blocks but * the number of kibibytes of data to load into a ramdisk. * So any ramdisk block size that is a multiple of 1KiB should * work when the appropriate ramdisk_blocksize is specified * on the command line. * * The default ramdisk_blocksize is 1KiB and it is generally * silly to use anything else, so make sure to use 1KiB * blocksize while generating ext2fs ramdisk-images. */ if (sys_ioctl(out_fd, BLKGETSIZE, (unsigned long)&rd_blocks) < 0) rd_blocks = 0; else rd_blocks >>= 1; if (nblocks > rd_blocks) { printk("RAMDISK: image too big! (%dKiB/%ldKiB)\n", nblocks, rd_blocks); goto done; } /* * OK, time to copy in the data */ if (sys_ioctl(in_fd, BLKGETSIZE, (unsigned long)&devblocks) < 0) devblocks = 0; else devblocks >>= 1; if (strcmp(from, "/initrd.image") == 0) devblocks = nblocks; if (devblocks == 0) { printk(KERN_ERR "RAMDISK: could not determine device size\n"); goto done; } buf = kmalloc(BLOCK_SIZE, GFP_KERNEL); if (!buf) { printk(KERN_ERR "RAMDISK: could not allocate buffer\n"); goto done; } printk(KERN_NOTICE "RAMDISK: Loading %dKiB [%ld disk%s] into ram disk... ", nblocks, ((nblocks-1)/devblocks)+1, nblocks>devblocks ? "s" : ""); for (i = 0, disk = 1; i < nblocks; i++) { if (i && (i % devblocks == 0)) { printk("done disk #%d.\n", disk++); rotate = 0; if (sys_close(in_fd)) { printk("Error closing the disk.\n"); goto noclose_input; } change_floppy("disk #%d", disk); in_fd = sys_open(from, O_RDONLY, 0); if (in_fd < 0) { printk("Error opening disk.\n"); goto noclose_input; } printk("Loading disk #%d... ", disk); } sys_read(in_fd, buf, BLOCK_SIZE); sys_write(out_fd, buf, BLOCK_SIZE); #if !defined(CONFIG_S390) && !defined(CONFIG_PPC_ISERIES) if (!(i % 16)) { printk("%c\b", rotator[rotate & 0x3]); rotate++; } #endif } printk("done.\n"); successful_load: res = 1; done: sys_close(in_fd); noclose_input: sys_close(out_fd); out: kfree(buf); sys_unlink("/dev/ram"); return res; } int __init rd_load_disk(int n) { if (rd_prompt) change_floppy("root floppy disk to be loaded into RAM disk"); create_dev("/dev/root", ROOT_DEV); create_dev("/dev/ram", MKDEV(RAMDISK_MAJOR, n)); return rd_load_image("/dev/root"); } /* * gzip declarations */ #define OF(args) args #ifndef memzero #define memzero(s, n) memset ((s), 0, (n)) #endif typedef unsigned char uch; typedef unsigned short ush; typedef unsigned long ulg; #define INBUFSIZ 4096 #define WSIZE 0x8000 /* window size--must be a power of two, and */ /* at least 32K for zip's deflate method */ static uch *inbuf; static uch *window; static unsigned insize; /* valid bytes in inbuf */ static unsigned inptr; /* index of next byte to be processed in inbuf */ static unsigned outcnt; /* bytes in output buffer */ static int exit_code; static int unzip_error; static long bytes_out; static int crd_infd, crd_outfd; #define get_byte() (inptr < insize ? inbuf[inptr++] : fill_inbuf()) /* Diagnostic functions (stubbed out) */ #define Assert(cond,msg) #define Trace(x) #define Tracev(x) #define Tracevv(x) #define Tracec(c,x) #define Tracecv(c,x) #define STATIC static #define INIT __init static int __init fill_inbuf(void); static void __init flush_window(void); static void __init error(char *m); #define NO_INFLATE_MALLOC #include "../lib/inflate.c" /* =========================================================================== * Fill the input buffer. This is called only when the buffer is empty * and at least one byte is really needed. * Returning -1 does not guarantee that gunzip() will ever return. */ static int __init fill_inbuf(void) { if (exit_code) return -1; insize = sys_read(crd_infd, inbuf, INBUFSIZ); if (insize == 0) { error("RAMDISK: ran out of compressed data"); return -1; } inptr = 1; return inbuf[0]; } /* =========================================================================== * Write the output window window[0..outcnt-1] and update crc and bytes_out. * (Used for the decompressed data only.) */ static void __init flush_window(void) { ulg c = crc; /* temporary variable */ unsigned n, written; uch *in, ch; written = sys_write(crd_outfd, window, outcnt); if (written != outcnt && unzip_error == 0) { printk(KERN_ERR "RAMDISK: incomplete write (%d != %d) %ld\n", written, outcnt, bytes_out); unzip_error = 1; } in = window; for (n = 0; n < outcnt; n++) { ch = *in++; c = crc_32_tab[((int)c ^ ch) & 0xff] ^ (c >> 8); } crc = c; bytes_out += (ulg)outcnt; outcnt = 0; } static void __init error(char *x) { printk(KERN_ERR "%s\n", x); exit_code = 1; unzip_error = 1; } static int __init crd_load(int in_fd, int out_fd) { int result; insize = 0; /* valid bytes in inbuf */ inptr = 0; /* index of next byte to be processed in inbuf */ outcnt = 0; /* bytes in output buffer */ exit_code = 0; bytes_out = 0; crc = (ulg)0xffffffffL; /* shift register contents */ crd_infd = in_fd; crd_outfd = out_fd; inbuf = kmalloc(INBUFSIZ, GFP_KERNEL); if (!inbuf) { printk(KERN_ERR "RAMDISK: Couldn't allocate gzip buffer\n"); return -1; } window = kmalloc(WSIZE, GFP_KERNEL); if (!window) { printk(KERN_ERR "RAMDISK: Couldn't allocate gzip window\n"); kfree(inbuf); return -1; } makecrc(); result = gunzip(); if (unzip_error) result = 1; kfree(inbuf); kfree(window); return result; }