#ifndef _ASM_POWERPC_PGTABLE_64K_H #define _ASM_POWERPC_PGTABLE_64K_H #include <asm-generic/pgtable-nopud.h> #define PTE_INDEX_SIZE 12 #define PMD_INDEX_SIZE 12 #define PUD_INDEX_SIZE 0 #define PGD_INDEX_SIZE 4 #ifndef __ASSEMBLY__ #define PTE_TABLE_SIZE (sizeof(real_pte_t) << PTE_INDEX_SIZE) #define PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE) #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) #ifdef CONFIG_PPC_SUBPAGE_PROT /* * For the sub-page protection option, we extend the PGD with one of * these. Basically we have a 3-level tree, with the top level being * the protptrs array. To optimize speed and memory consumption when * only addresses < 4GB are being protected, pointers to the first * four pages of sub-page protection words are stored in the low_prot * array. * Each page of sub-page protection words protects 1GB (4 bytes * protects 64k). For the 3-level tree, each page of pointers then * protects 8TB. */ struct subpage_prot_table { unsigned long maxaddr; /* only addresses < this are protected */ unsigned int **protptrs[2]; unsigned int *low_prot[4]; }; #undef PGD_TABLE_SIZE #define PGD_TABLE_SIZE ((sizeof(pgd_t) << PGD_INDEX_SIZE) + \ sizeof(struct subpage_prot_table)) #define SBP_L1_BITS (PAGE_SHIFT - 2) #define SBP_L2_BITS (PAGE_SHIFT - 3) #define SBP_L1_COUNT (1 << SBP_L1_BITS) #define SBP_L2_COUNT (1 << SBP_L2_BITS) #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) extern void subpage_prot_free(pgd_t *pgd); static inline struct subpage_prot_table *pgd_subpage_prot(pgd_t *pgd) { return (struct subpage_prot_table *)(pgd + PTRS_PER_PGD); } #endif /* CONFIG_PPC_SUBPAGE_PROT */ #endif /* __ASSEMBLY__ */ /* With 4k base page size, hugepage PTEs go at the PMD level */ #define MIN_HUGEPTE_SHIFT PAGE_SHIFT /* PMD_SHIFT determines what a second-level page table entry can map */ #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Additional PTE bits (don't change without checking asm in hash_low.S) */ #define __HAVE_ARCH_PTE_SPECIAL #define _PAGE_SPECIAL 0x00000400 /* software: special page */ #define _PAGE_HPTE_SUB 0x0ffff000 /* combo only: sub pages HPTE bits */ #define _PAGE_HPTE_SUB0 0x08000000 /* combo only: first sub page */ #define _PAGE_COMBO 0x10000000 /* this is a combo 4k page */ #define _PAGE_4K_PFN 0x20000000 /* PFN is for a single 4k page */ /* For 64K page, we don't have a separate _PAGE_HASHPTE bit. Instead, * we set that to be the whole sub-bits mask. The C code will only * test this, so a multi-bit mask will work. For combo pages, this * is equivalent as effectively, the old _PAGE_HASHPTE was an OR of * all the sub bits. For real 64k pages, we now have the assembly set * _PAGE_HPTE_SUB0 in addition to setting the HIDX bits which overlap * that mask. This is fine as long as the HIDX bits are never set on * a PTE that isn't hashed, which is the case today. * * A little nit is for the huge page C code, which does the hashing * in C, we need to provide which bit to use. */ #define _PAGE_HASHPTE _PAGE_HPTE_SUB /* Note the full page bits must be in the same location as for normal * 4k pages as the same asssembly will be used to insert 64K pages * wether the kernel has CONFIG_PPC_64K_PAGES or not */ #define _PAGE_F_SECOND 0x00008000 /* full page: hidx bits */ #define _PAGE_F_GIX 0x00007000 /* full page: hidx bits */ /* PTE flags to conserve for HPTE identification */ #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_COMBO) /* Shift to put page number into pte. * * That gives us a max RPN of 34 bits, which means a max of 50 bits * of addressable physical space, or 46 bits for the special 4k PFNs. */ #define PTE_RPN_SHIFT (30) #define PTE_RPN_MAX (1UL << (64 - PTE_RPN_SHIFT)) #define PTE_RPN_MASK (~((1UL<<PTE_RPN_SHIFT)-1)) /* _PAGE_CHG_MASK masks of bits that are to be preserved accross * pgprot changes */ #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ _PAGE_ACCESSED) /* Bits to mask out from a PMD to get to the PTE page */ #define PMD_MASKED_BITS 0x1ff /* Bits to mask out from a PGD/PUD to get to the PMD page */ #define PUD_MASKED_BITS 0x1ff /* Manipulate "rpte" values */ #define __real_pte(e,p) ((real_pte_t) { \ (e), pte_val(*((p) + PTRS_PER_PTE)) }) #define __rpte_to_hidx(r,index) ((pte_val((r).pte) & _PAGE_COMBO) ? \ (((r).hidx >> ((index)<<2)) & 0xf) : ((pte_val((r).pte) >> 12) & 0xf)) #define __rpte_to_pte(r) ((r).pte) #define __rpte_sub_valid(rpte, index) \ (pte_val(rpte.pte) & (_PAGE_HPTE_SUB0 >> (index))) /* Trick: we set __end to va + 64k, which happens works for * a 16M page as well as we want only one iteration */ #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ do { \ unsigned long __end = va + PAGE_SIZE; \ unsigned __split = (psize == MMU_PAGE_4K || \ psize == MMU_PAGE_64K_AP); \ shift = mmu_psize_defs[psize].shift; \ for (index = 0; va < __end; index++, va += (1L << shift)) { \ if (!__split || __rpte_sub_valid(rpte, index)) do { \ #define pte_iterate_hashed_end() } while(0); } } while(0) #define pte_pagesize_index(mm, addr, pte) \ (((pte) & _PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) #define remap_4k_pfn(vma, addr, pfn, prot) \ remap_pfn_range((vma), (addr), (pfn), PAGE_SIZE, \ __pgprot(pgprot_val((prot)) | _PAGE_4K_PFN)) #endif /* _ASM_POWERPC_PGTABLE_64K_H */