#ifndef _ASM_IA64_ELF_H #define _ASM_IA64_ELF_H /* * ELF-specific definitions. * * Copyright (C) 1998-1999, 2002-2004 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> */ #include <asm/fpu.h> #include <asm/page.h> #include <asm/auxvec.h> /* * This is used to ensure we don't load something for the wrong architecture. */ #define elf_check_arch(x) ((x)->e_machine == EM_IA_64) /* * These are used to set parameters in the core dumps. */ #define ELF_CLASS ELFCLASS64 #define ELF_DATA ELFDATA2LSB #define ELF_ARCH EM_IA_64 #define USE_ELF_CORE_DUMP /* Least-significant four bits of ELF header's e_flags are OS-specific. The bits are interpreted as follows by Linux: */ #define EF_IA_64_LINUX_EXECUTABLE_STACK 0x1 /* is stack (& heap) executable by default? */ #define ELF_EXEC_PAGESIZE PAGE_SIZE /* * This is the location that an ET_DYN program is loaded if exec'ed. * Typical use of this is to invoke "./ld.so someprog" to test out a * new version of the loader. We need to make sure that it is out of * the way of the program that it will "exec", and that there is * sufficient room for the brk. */ #define ELF_ET_DYN_BASE (TASK_UNMAPPED_BASE + 0x800000000UL) #define PT_IA_64_UNWIND 0x70000001 /* IA-64 relocations: */ #define R_IA64_NONE 0x00 /* none */ #define R_IA64_IMM14 0x21 /* symbol + addend, add imm14 */ #define R_IA64_IMM22 0x22 /* symbol + addend, add imm22 */ #define R_IA64_IMM64 0x23 /* symbol + addend, mov imm64 */ #define R_IA64_DIR32MSB 0x24 /* symbol + addend, data4 MSB */ #define R_IA64_DIR32LSB 0x25 /* symbol + addend, data4 LSB */ #define R_IA64_DIR64MSB 0x26 /* symbol + addend, data8 MSB */ #define R_IA64_DIR64LSB 0x27 /* symbol + addend, data8 LSB */ #define R_IA64_GPREL22 0x2a /* @gprel(sym+add), add imm22 */ #define R_IA64_GPREL64I 0x2b /* @gprel(sym+add), mov imm64 */ #define R_IA64_GPREL32MSB 0x2c /* @gprel(sym+add), data4 MSB */ #define R_IA64_GPREL32LSB 0x2d /* @gprel(sym+add), data4 LSB */ #define R_IA64_GPREL64MSB 0x2e /* @gprel(sym+add), data8 MSB */ #define R_IA64_GPREL64LSB 0x2f /* @gprel(sym+add), data8 LSB */ #define R_IA64_LTOFF22 0x32 /* @ltoff(sym+add), add imm22 */ #define R_IA64_LTOFF64I 0x33 /* @ltoff(sym+add), mov imm64 */ #define R_IA64_PLTOFF22 0x3a /* @pltoff(sym+add), add imm22 */ #define R_IA64_PLTOFF64I 0x3b /* @pltoff(sym+add), mov imm64 */ #define R_IA64_PLTOFF64MSB 0x3e /* @pltoff(sym+add), data8 MSB */ #define R_IA64_PLTOFF64LSB 0x3f /* @pltoff(sym+add), data8 LSB */ #define R_IA64_FPTR64I 0x43 /* @fptr(sym+add), mov imm64 */ #define R_IA64_FPTR32MSB 0x44 /* @fptr(sym+add), data4 MSB */ #define R_IA64_FPTR32LSB 0x45 /* @fptr(sym+add), data4 LSB */ #define R_IA64_FPTR64MSB 0x46 /* @fptr(sym+add), data8 MSB */ #define R_IA64_FPTR64LSB 0x47 /* @fptr(sym+add), data8 LSB */ #define R_IA64_PCREL60B 0x48 /* @pcrel(sym+add), brl */ #define R_IA64_PCREL21B 0x49 /* @pcrel(sym+add), ptb, call */ #define R_IA64_PCREL21M 0x4a /* @pcrel(sym+add), chk.s */ #define R_IA64_PCREL21F 0x4b /* @pcrel(sym+add), fchkf */ #define R_IA64_PCREL32MSB 0x4c /* @pcrel(sym+add), data4 MSB */ #define R_IA64_PCREL32LSB 0x4d /* @pcrel(sym+add), data4 LSB */ #define R_IA64_PCREL64MSB 0x4e /* @pcrel(sym+add), data8 MSB */ #define R_IA64_PCREL64LSB 0x4f /* @pcrel(sym+add), data8 LSB */ #define R_IA64_LTOFF_FPTR22 0x52 /* @ltoff(@fptr(s+a)), imm22 */ #define R_IA64_LTOFF_FPTR64I 0x53 /* @ltoff(@fptr(s+a)), imm64 */ #define R_IA64_LTOFF_FPTR32MSB 0x54 /* @ltoff(@fptr(s+a)), 4 MSB */ #define R_IA64_LTOFF_FPTR32LSB 0x55 /* @ltoff(@fptr(s+a)), 4 LSB */ #define R_IA64_LTOFF_FPTR64MSB 0x56 /* @ltoff(@fptr(s+a)), 8 MSB */ #define R_IA64_LTOFF_FPTR64LSB 0x57 /* @ltoff(@fptr(s+a)), 8 LSB */ #define R_IA64_SEGREL32MSB 0x5c /* @segrel(sym+add), data4 MSB */ #define R_IA64_SEGREL32LSB 0x5d /* @segrel(sym+add), data4 LSB */ #define R_IA64_SEGREL64MSB 0x5e /* @segrel(sym+add), data8 MSB */ #define R_IA64_SEGREL64LSB 0x5f /* @segrel(sym+add), data8 LSB */ #define R_IA64_SECREL32MSB 0x64 /* @secrel(sym+add), data4 MSB */ #define R_IA64_SECREL32LSB 0x65 /* @secrel(sym+add), data4 LSB */ #define R_IA64_SECREL64MSB 0x66 /* @secrel(sym+add), data8 MSB */ #define R_IA64_SECREL64LSB 0x67 /* @secrel(sym+add), data8 LSB */ #define R_IA64_REL32MSB 0x6c /* data 4 + REL */ #define R_IA64_REL32LSB 0x6d /* data 4 + REL */ #define R_IA64_REL64MSB 0x6e /* data 8 + REL */ #define R_IA64_REL64LSB 0x6f /* data 8 + REL */ #define R_IA64_LTV32MSB 0x74 /* symbol + addend, data4 MSB */ #define R_IA64_LTV32LSB 0x75 /* symbol + addend, data4 LSB */ #define R_IA64_LTV64MSB 0x76 /* symbol + addend, data8 MSB */ #define R_IA64_LTV64LSB 0x77 /* symbol + addend, data8 LSB */ #define R_IA64_PCREL21BI 0x79 /* @pcrel(sym+add), ptb, call */ #define R_IA64_PCREL22 0x7a /* @pcrel(sym+add), imm22 */ #define R_IA64_PCREL64I 0x7b /* @pcrel(sym+add), imm64 */ #define R_IA64_IPLTMSB 0x80 /* dynamic reloc, imported PLT, MSB */ #define R_IA64_IPLTLSB 0x81 /* dynamic reloc, imported PLT, LSB */ #define R_IA64_COPY 0x84 /* dynamic reloc, data copy */ #define R_IA64_SUB 0x85 /* -symbol + addend, add imm22 */ #define R_IA64_LTOFF22X 0x86 /* LTOFF22, relaxable. */ #define R_IA64_LDXMOV 0x87 /* Use of LTOFF22X. */ #define R_IA64_TPREL14 0x91 /* @tprel(sym+add), add imm14 */ #define R_IA64_TPREL22 0x92 /* @tprel(sym+add), add imm22 */ #define R_IA64_TPREL64I 0x93 /* @tprel(sym+add), add imm64 */ #define R_IA64_TPREL64MSB 0x96 /* @tprel(sym+add), data8 MSB */ #define R_IA64_TPREL64LSB 0x97 /* @tprel(sym+add), data8 LSB */ #define R_IA64_LTOFF_TPREL22 0x9a /* @ltoff(@tprel(s+a)), add imm22 */ #define R_IA64_DTPMOD64MSB 0xa6 /* @dtpmod(sym+add), data8 MSB */ #define R_IA64_DTPMOD64LSB 0xa7 /* @dtpmod(sym+add), data8 LSB */ #define R_IA64_LTOFF_DTPMOD22 0xaa /* @ltoff(@dtpmod(s+a)), imm22 */ #define R_IA64_DTPREL14 0xb1 /* @dtprel(sym+add), imm14 */ #define R_IA64_DTPREL22 0xb2 /* @dtprel(sym+add), imm22 */ #define R_IA64_DTPREL64I 0xb3 /* @dtprel(sym+add), imm64 */ #define R_IA64_DTPREL32MSB 0xb4 /* @dtprel(sym+add), data4 MSB */ #define R_IA64_DTPREL32LSB 0xb5 /* @dtprel(sym+add), data4 LSB */ #define R_IA64_DTPREL64MSB 0xb6 /* @dtprel(sym+add), data8 MSB */ #define R_IA64_DTPREL64LSB 0xb7 /* @dtprel(sym+add), data8 LSB */ #define R_IA64_LTOFF_DTPREL22 0xba /* @ltoff(@dtprel(s+a)), imm22 */ /* IA-64 specific section flags: */ #define SHF_IA_64_SHORT 0x10000000 /* section near gp */ /* * We use (abuse?) this macro to insert the (empty) vm_area that is * used to map the register backing store. I don't see any better * place to do this, but we should discuss this with Linus once we can * talk to him... */ extern void ia64_init_addr_space (void); #define ELF_PLAT_INIT(_r, load_addr) ia64_init_addr_space() /* ELF register definitions. This is needed for core dump support. */ /* * elf_gregset_t contains the application-level state in the following order: * r0-r31 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) * predicate registers (p0-p63) * b0-b7 * ip cfm psr * ar.rsc ar.bsp ar.bspstore ar.rnat * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd */ #define ELF_NGREG 128 /* we really need just 72 but let's leave some headroom... */ #define ELF_NFPREG 128 /* f0 and f1 could be omitted, but so what... */ typedef unsigned long elf_fpxregset_t; typedef unsigned long elf_greg_t; typedef elf_greg_t elf_gregset_t[ELF_NGREG]; typedef struct ia64_fpreg elf_fpreg_t; typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG]; struct pt_regs; /* forward declaration... */ extern void ia64_elf_core_copy_regs (struct pt_regs *src, elf_gregset_t dst); #define ELF_CORE_COPY_REGS(_dest,_regs) ia64_elf_core_copy_regs(_regs, _dest); /* This macro yields a bitmask that programs can use to figure out what instruction set this CPU supports. */ #define ELF_HWCAP 0 /* This macro yields a string that ld.so will use to load implementation specific libraries for optimization. Not terribly relevant until we have real hardware to play with... */ #define ELF_PLATFORM NULL #ifdef __KERNEL__ #define SET_PERSONALITY(ex, ibcs2) set_personality(PER_LINUX) #define elf_read_implies_exec(ex, executable_stack) \ ((executable_stack!=EXSTACK_DISABLE_X) && ((ex).e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK) != 0) struct task_struct; extern int dump_task_regs(struct task_struct *, elf_gregset_t *); extern int dump_task_fpu (struct task_struct *, elf_fpregset_t *); #define ELF_CORE_COPY_TASK_REGS(tsk, elf_gregs) dump_task_regs(tsk, elf_gregs) #define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs) #define GATE_EHDR ((const struct elfhdr *) GATE_ADDR) #define ARCH_DLINFO \ do { \ extern char __kernel_syscall_via_epc[]; \ NEW_AUX_ENT(AT_SYSINFO, (unsigned long) __kernel_syscall_via_epc); \ NEW_AUX_ENT(AT_SYSINFO_EHDR, (unsigned long) GATE_EHDR); \ } while (0) /* * These macros parameterize elf_core_dump in fs/binfmt_elf.c to write out * extra segments containing the gate DSO contents. Dumping its * contents makes post-mortem fully interpretable later without matching up * the same kernel and hardware config to see what PC values meant. * Dumping its extra ELF program headers includes all the other information * a debugger needs to easily find how the gate DSO was being used. */ #define ELF_CORE_EXTRA_PHDRS (GATE_EHDR->e_phnum) #define ELF_CORE_WRITE_EXTRA_PHDRS \ do { \ const struct elf_phdr *const gate_phdrs = \ (const struct elf_phdr *) (GATE_ADDR + GATE_EHDR->e_phoff); \ int i; \ Elf64_Off ofs = 0; \ for (i = 0; i < GATE_EHDR->e_phnum; ++i) { \ struct elf_phdr phdr = gate_phdrs[i]; \ if (phdr.p_type == PT_LOAD) { \ phdr.p_memsz = PAGE_ALIGN(phdr.p_memsz); \ phdr.p_filesz = phdr.p_memsz; \ if (ofs == 0) { \ ofs = phdr.p_offset = offset; \ offset += phdr.p_filesz; \ } \ else \ phdr.p_offset = ofs; \ } \ else \ phdr.p_offset += ofs; \ phdr.p_paddr = 0; /* match other core phdrs */ \ DUMP_WRITE(&phdr, sizeof(phdr)); \ } \ } while (0) #define ELF_CORE_WRITE_EXTRA_DATA \ do { \ const struct elf_phdr *const gate_phdrs = \ (const struct elf_phdr *) (GATE_ADDR + GATE_EHDR->e_phoff); \ int i; \ for (i = 0; i < GATE_EHDR->e_phnum; ++i) { \ if (gate_phdrs[i].p_type == PT_LOAD) { \ DUMP_WRITE((void *) gate_phdrs[i].p_vaddr, \ PAGE_ALIGN(gate_phdrs[i].p_memsz)); \ break; \ } \ } \ } while (0) #endif /* __KERNEL__ */ #endif /* _ASM_IA64_ELF_H */