/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ */ #include "xfs.h" #include "xfs_inum.h" #include "xfs_log.h" #include "xfs_clnt.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_dir.h" #include "xfs_dir2.h" #include "xfs_alloc.h" #include "xfs_dmapi.h" #include "xfs_quota.h" #include "xfs_mount.h" #include "xfs_alloc_btree.h" #include "xfs_bmap_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_btree.h" #include "xfs_ialloc.h" #include "xfs_attr_sf.h" #include "xfs_dir_sf.h" #include "xfs_dir2_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_bit.h" #include "xfs_rtalloc.h" #include "xfs_error.h" #include "xfs_itable.h" #include "xfs_rw.h" #include "xfs_acl.h" #include "xfs_cap.h" #include "xfs_mac.h" #include "xfs_attr.h" #include "xfs_buf_item.h" #include "xfs_utils.h" #include "xfs_version.h" #include #include #include #include STATIC struct quotactl_ops linvfs_qops; STATIC struct super_operations linvfs_sops; STATIC kmem_zone_t *linvfs_inode_zone; STATIC struct xfs_mount_args * xfs_args_allocate( struct super_block *sb) { struct xfs_mount_args *args; args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP); args->logbufs = args->logbufsize = -1; strncpy(args->fsname, sb->s_id, MAXNAMELEN); /* Copy the already-parsed mount(2) flags we're interested in */ if (sb->s_flags & MS_NOATIME) args->flags |= XFSMNT_NOATIME; if (sb->s_flags & MS_DIRSYNC) args->flags |= XFSMNT_DIRSYNC; if (sb->s_flags & MS_SYNCHRONOUS) args->flags |= XFSMNT_WSYNC; /* Default to 32 bit inodes on Linux all the time */ args->flags |= XFSMNT_32BITINODES; return args; } __uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_prepare_write does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBD) ASSERT(sizeof(sector_t) == 8); pagefactor = PAGE_CACHE_SIZE; bitshift = BITS_PER_LONG; # else pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); # endif #endif return (((__uint64_t)pagefactor) << bitshift) - 1; } STATIC __inline__ void xfs_set_inodeops( struct inode *inode) { vnode_t *vp = LINVFS_GET_VP(inode); if (vp->v_type == VNON) { vn_mark_bad(vp); } else if (S_ISREG(inode->i_mode)) { inode->i_op = &linvfs_file_inode_operations; inode->i_fop = &linvfs_file_operations; inode->i_mapping->a_ops = &linvfs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &linvfs_dir_inode_operations; inode->i_fop = &linvfs_dir_operations; } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &linvfs_symlink_inode_operations; if (inode->i_blocks) inode->i_mapping->a_ops = &linvfs_aops; } else { inode->i_op = &linvfs_file_inode_operations; init_special_inode(inode, inode->i_mode, inode->i_rdev); } } STATIC __inline__ void xfs_revalidate_inode( xfs_mount_t *mp, vnode_t *vp, xfs_inode_t *ip) { struct inode *inode = LINVFS_GET_IP(vp); inode->i_mode = (ip->i_d.di_mode & MODEMASK) | VTTOIF(vp->v_type); inode->i_nlink = ip->i_d.di_nlink; inode->i_uid = ip->i_d.di_uid; inode->i_gid = ip->i_d.di_gid; if (((1 << vp->v_type) & ((1<i_rdev = 0; } else { xfs_dev_t dev = ip->i_df.if_u2.if_rdev; inode->i_rdev = MKDEV(sysv_major(dev) & 0x1ff, sysv_minor(dev)); } inode->i_blksize = PAGE_CACHE_SIZE; inode->i_generation = ip->i_d.di_gen; i_size_write(inode, ip->i_d.di_size); inode->i_blocks = XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks); inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec; inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec; inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec; inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec; inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec; inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec; if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE) inode->i_flags |= S_IMMUTABLE; else inode->i_flags &= ~S_IMMUTABLE; if (ip->i_d.di_flags & XFS_DIFLAG_APPEND) inode->i_flags |= S_APPEND; else inode->i_flags &= ~S_APPEND; if (ip->i_d.di_flags & XFS_DIFLAG_SYNC) inode->i_flags |= S_SYNC; else inode->i_flags &= ~S_SYNC; if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME) inode->i_flags |= S_NOATIME; else inode->i_flags &= ~S_NOATIME; vp->v_flag &= ~VMODIFIED; } void xfs_initialize_vnode( bhv_desc_t *bdp, vnode_t *vp, bhv_desc_t *inode_bhv, int unlock) { xfs_inode_t *ip = XFS_BHVTOI(inode_bhv); struct inode *inode = LINVFS_GET_IP(vp); if (!inode_bhv->bd_vobj) { vp->v_vfsp = bhvtovfs(bdp); bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops); bhv_insert(VN_BHV_HEAD(vp), inode_bhv); } /* * We need to set the ops vectors, and unlock the inode, but if * we have been called during the new inode create process, it is * too early to fill in the Linux inode. We will get called a * second time once the inode is properly set up, and then we can * finish our work. */ if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) { vp->v_type = IFTOVT(ip->i_d.di_mode); xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip); xfs_set_inodeops(inode); ip->i_flags &= ~XFS_INEW; barrier(); unlock_new_inode(inode); } } int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { int error = 0; *bdevp = open_bdev_excl(name, 0, mp); if (IS_ERR(*bdevp)) { error = PTR_ERR(*bdevp); printk("XFS: Invalid device [%s], error=%d\n", name, error); } return -error; } void xfs_blkdev_put( struct block_device *bdev) { if (bdev) close_bdev_excl(bdev); } STATIC struct inode * linvfs_alloc_inode( struct super_block *sb) { vnode_t *vp; vp = (vnode_t *)kmem_cache_alloc(linvfs_inode_zone, kmem_flags_convert(KM_SLEEP)); if (!vp) return NULL; return LINVFS_GET_IP(vp); } STATIC void linvfs_destroy_inode( struct inode *inode) { kmem_cache_free(linvfs_inode_zone, LINVFS_GET_VP(inode)); } STATIC void init_once( void *data, kmem_cache_t *cachep, unsigned long flags) { vnode_t *vp = (vnode_t *)data; if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == SLAB_CTOR_CONSTRUCTOR) inode_init_once(LINVFS_GET_IP(vp)); } STATIC int init_inodecache( void ) { linvfs_inode_zone = kmem_cache_create("linvfs_icache", sizeof(vnode_t), 0, SLAB_RECLAIM_ACCOUNT, init_once, NULL); if (linvfs_inode_zone == NULL) return -ENOMEM; return 0; } STATIC void destroy_inodecache( void ) { if (kmem_cache_destroy(linvfs_inode_zone)) printk(KERN_WARNING "%s: cache still in use!\n", __FUNCTION__); } /* * Attempt to flush the inode, this will actually fail * if the inode is pinned, but we dirty the inode again * at the point when it is unpinned after a log write, * since this is when the inode itself becomes flushable. */ STATIC int linvfs_write_inode( struct inode *inode, int sync) { vnode_t *vp = LINVFS_GET_VP(inode); int error = 0, flags = FLUSH_INODE; if (vp) { vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); if (sync) flags |= FLUSH_SYNC; VOP_IFLUSH(vp, flags, error); if (error == EAGAIN) { if (sync) VOP_IFLUSH(vp, flags | FLUSH_LOG, error); else error = 0; } } return -error; } STATIC void linvfs_clear_inode( struct inode *inode) { vnode_t *vp = LINVFS_GET_VP(inode); if (vp) { vn_rele(vp); vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address); /* * Do all our cleanup, and remove this vnode. */ vn_remove(vp); } } /* * Enqueue a work item to be picked up by the vfs xfssyncd thread. * Doing this has two advantages: * - It saves on stack space, which is tight in certain situations * - It can be used (with care) as a mechanism to avoid deadlocks. * Flushing while allocating in a full filesystem requires both. */ STATIC void xfs_syncd_queue_work( struct vfs *vfs, void *data, void (*syncer)(vfs_t *, void *)) { vfs_sync_work_t *work; work = kmem_alloc(sizeof(struct vfs_sync_work), KM_SLEEP); INIT_LIST_HEAD(&work->w_list); work->w_syncer = syncer; work->w_data = data; work->w_vfs = vfs; spin_lock(&vfs->vfs_sync_lock); list_add_tail(&work->w_list, &vfs->vfs_sync_list); spin_unlock(&vfs->vfs_sync_lock); wake_up_process(vfs->vfs_sync_task); } /* * Flush delayed allocate data, attempting to free up reserved space * from existing allocations. At this point a new allocation attempt * has failed with ENOSPC and we are in the process of scratching our * heads, looking about for more room... */ STATIC void xfs_flush_inode_work( vfs_t *vfs, void *inode) { filemap_flush(((struct inode *)inode)->i_mapping); iput((struct inode *)inode); } void xfs_flush_inode( xfs_inode_t *ip) { struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); struct vfs *vfs = XFS_MTOVFS(ip->i_mount); igrab(inode); xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work); delay(HZ/2); } /* * This is the "bigger hammer" version of xfs_flush_inode_work... * (IOW, "If at first you don't succeed, use a Bigger Hammer"). */ STATIC void xfs_flush_device_work( vfs_t *vfs, void *inode) { sync_blockdev(vfs->vfs_super->s_bdev); iput((struct inode *)inode); } void xfs_flush_device( xfs_inode_t *ip) { struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); struct vfs *vfs = XFS_MTOVFS(ip->i_mount); igrab(inode); xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work); delay(HZ/2); xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC); } #define SYNCD_FLAGS (SYNC_FSDATA|SYNC_BDFLUSH|SYNC_ATTR) STATIC void vfs_sync_worker( vfs_t *vfsp, void *unused) { int error; if (!(vfsp->vfs_flag & VFS_RDONLY)) VFS_SYNC(vfsp, SYNCD_FLAGS, NULL, error); vfsp->vfs_sync_seq++; wmb(); wake_up(&vfsp->vfs_wait_single_sync_task); } STATIC int xfssyncd( void *arg) { long timeleft; vfs_t *vfsp = (vfs_t *) arg; struct list_head tmp; struct vfs_sync_work *work, *n; daemonize("xfssyncd"); vfsp->vfs_sync_work.w_vfs = vfsp; vfsp->vfs_sync_work.w_syncer = vfs_sync_worker; vfsp->vfs_sync_task = current; wmb(); wake_up(&vfsp->vfs_wait_sync_task); INIT_LIST_HEAD(&tmp); timeleft = (xfs_syncd_centisecs * HZ) / 100; for (;;) { set_current_state(TASK_INTERRUPTIBLE); timeleft = schedule_timeout(timeleft); /* swsusp */ try_to_freeze(PF_FREEZE); if (vfsp->vfs_flag & VFS_UMOUNT) break; spin_lock(&vfsp->vfs_sync_lock); /* * We can get woken by laptop mode, to do a sync - * that's the (only!) case where the list would be * empty with time remaining. */ if (!timeleft || list_empty(&vfsp->vfs_sync_list)) { if (!timeleft) timeleft = (xfs_syncd_centisecs * HZ) / 100; INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list); list_add_tail(&vfsp->vfs_sync_work.w_list, &vfsp->vfs_sync_list); } list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list) list_move(&work->w_list, &tmp); spin_unlock(&vfsp->vfs_sync_lock); list_for_each_entry_safe(work, n, &tmp, w_list) { (*work->w_syncer)(vfsp, work->w_data); list_del(&work->w_list); if (work == &vfsp->vfs_sync_work) continue; kmem_free(work, sizeof(struct vfs_sync_work)); } } vfsp->vfs_sync_task = NULL; wmb(); wake_up(&vfsp->vfs_wait_sync_task); return 0; } STATIC int linvfs_start_syncd( vfs_t *vfsp) { int pid; pid = kernel_thread(xfssyncd, (void *) vfsp, CLONE_VM | CLONE_FS | CLONE_FILES); if (pid < 0) return -pid; wait_event(vfsp->vfs_wait_sync_task, vfsp->vfs_sync_task); return 0; } STATIC void linvfs_stop_syncd( vfs_t *vfsp) { vfsp->vfs_flag |= VFS_UMOUNT; wmb(); wake_up_process(vfsp->vfs_sync_task); wait_event(vfsp->vfs_wait_sync_task, !vfsp->vfs_sync_task); } STATIC void linvfs_put_super( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; linvfs_stop_syncd(vfsp); VFS_SYNC(vfsp, SYNC_ATTR|SYNC_DELWRI, NULL, error); if (!error) VFS_UNMOUNT(vfsp, 0, NULL, error); if (error) { printk("XFS unmount got error %d\n", error); printk("%s: vfsp/0x%p left dangling!\n", __FUNCTION__, vfsp); return; } vfs_deallocate(vfsp); } STATIC void linvfs_write_super( struct super_block *sb) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; if (sb->s_flags & MS_RDONLY) { sb->s_dirt = 0; /* paranoia */ return; } /* Push the log and superblock a little */ VFS_SYNC(vfsp, SYNC_FSDATA, NULL, error); sb->s_dirt = 0; } STATIC int linvfs_sync_super( struct super_block *sb, int wait) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; int flags = SYNC_FSDATA; if (wait) flags |= SYNC_WAIT; VFS_SYNC(vfsp, flags, NULL, error); sb->s_dirt = 0; if (unlikely(laptop_mode)) { int prev_sync_seq = vfsp->vfs_sync_seq; /* * The disk must be active because we're syncing. * We schedule xfssyncd now (now that the disk is * active) instead of later (when it might not be). */ wake_up_process(vfsp->vfs_sync_task); /* * We have to wait for the sync iteration to complete. * If we don't, the disk activity caused by the sync * will come after the sync is completed, and that * triggers another sync from laptop mode. */ wait_event(vfsp->vfs_wait_single_sync_task, vfsp->vfs_sync_seq != prev_sync_seq); } return -error; } STATIC int linvfs_statfs( struct super_block *sb, struct kstatfs *statp) { vfs_t *vfsp = LINVFS_GET_VFS(sb); int error; VFS_STATVFS(vfsp, statp, NULL, error); return -error; } STATIC int linvfs_remount( struct super_block *sb, int *flags, char *options) { vfs_t *vfsp = LINVFS_GET_VFS(sb); struct xfs_mount_args *args = xfs_args_allocate(sb); int error; VFS_PARSEARGS(vfsp, options, args, 1, error); if (!error) VFS_MNTUPDATE(vfsp, flags, args, error); kmem_free(args, sizeof(*args)); return -error; } STATIC void linvfs_freeze_fs( struct super_block *sb) { VFS_FREEZE(LINVFS_GET_VFS(sb)); } STATIC int linvfs_show_options( struct seq_file *m, struct vfsmount *mnt) { struct vfs *vfsp = LINVFS_GET_VFS(mnt->mnt_sb); int error; VFS_SHOWARGS(vfsp, m, error); return error; } STATIC int linvfs_getxstate( struct super_block *sb, struct fs_quota_stat *fqs) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error; VFS_QUOTACTL(vfsp, Q_XGETQSTAT, 0, (caddr_t)fqs, error); return -error; } STATIC int linvfs_setxstate( struct super_block *sb, unsigned int flags, int op) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error; VFS_QUOTACTL(vfsp, op, 0, (caddr_t)&flags, error); return -error; } STATIC int linvfs_getxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error, getmode; getmode = (type == USRQUOTA) ? Q_XGETQUOTA : ((type == GRPQUOTA) ? Q_XGETGQUOTA : Q_XGETPQUOTA); VFS_QUOTACTL(vfsp, getmode, id, (caddr_t)fdq, error); return -error; } STATIC int linvfs_setxquota( struct super_block *sb, int type, qid_t id, struct fs_disk_quota *fdq) { struct vfs *vfsp = LINVFS_GET_VFS(sb); int error, setmode; setmode = (type == USRQUOTA) ? Q_XSETQLIM : ((type == GRPQUOTA) ? Q_XSETGQLIM : Q_XSETPQLIM); VFS_QUOTACTL(vfsp, setmode, id, (caddr_t)fdq, error); return -error; } STATIC int linvfs_fill_super( struct super_block *sb, void *data, int silent) { vnode_t *rootvp; struct vfs *vfsp = vfs_allocate(); struct xfs_mount_args *args = xfs_args_allocate(sb); struct kstatfs statvfs; int error, error2; vfsp->vfs_super = sb; LINVFS_SET_VFS(sb, vfsp); if (sb->s_flags & MS_RDONLY) vfsp->vfs_flag |= VFS_RDONLY; bhv_insert_all_vfsops(vfsp); VFS_PARSEARGS(vfsp, (char *)data, args, 0, error); if (error) { bhv_remove_all_vfsops(vfsp, 1); goto fail_vfsop; } sb_min_blocksize(sb, BBSIZE); #ifdef CONFIG_XFS_EXPORT sb->s_export_op = &linvfs_export_ops; #endif sb->s_qcop = &linvfs_qops; sb->s_op = &linvfs_sops; VFS_MOUNT(vfsp, args, NULL, error); if (error) { bhv_remove_all_vfsops(vfsp, 1); goto fail_vfsop; } VFS_STATVFS(vfsp, &statvfs, NULL, error); if (error) goto fail_unmount; sb->s_dirt = 1; sb->s_magic = statvfs.f_type; sb->s_blocksize = statvfs.f_bsize; sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); sb->s_time_gran = 1; set_posix_acl_flag(sb); VFS_ROOT(vfsp, &rootvp, error); if (error) goto fail_unmount; sb->s_root = d_alloc_root(LINVFS_GET_IP(rootvp)); if (!sb->s_root) { error = ENOMEM; goto fail_vnrele; } if (is_bad_inode(sb->s_root->d_inode)) { error = EINVAL; goto fail_vnrele; } if ((error = linvfs_start_syncd(vfsp))) goto fail_vnrele; vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address); kmem_free(args, sizeof(*args)); return 0; fail_vnrele: if (sb->s_root) { dput(sb->s_root); sb->s_root = NULL; } else { VN_RELE(rootvp); } fail_unmount: VFS_UNMOUNT(vfsp, 0, NULL, error2); fail_vfsop: vfs_deallocate(vfsp); kmem_free(args, sizeof(*args)); return -error; } STATIC struct super_block * linvfs_get_sb( struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return get_sb_bdev(fs_type, flags, dev_name, data, linvfs_fill_super); } STATIC struct super_operations linvfs_sops = { .alloc_inode = linvfs_alloc_inode, .destroy_inode = linvfs_destroy_inode, .write_inode = linvfs_write_inode, .clear_inode = linvfs_clear_inode, .put_super = linvfs_put_super, .write_super = linvfs_write_super, .sync_fs = linvfs_sync_super, .write_super_lockfs = linvfs_freeze_fs, .statfs = linvfs_statfs, .remount_fs = linvfs_remount, .show_options = linvfs_show_options, }; STATIC struct quotactl_ops linvfs_qops = { .get_xstate = linvfs_getxstate, .set_xstate = linvfs_setxstate, .get_xquota = linvfs_getxquota, .set_xquota = linvfs_setxquota, }; STATIC struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .get_sb = linvfs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; STATIC int __init init_xfs_fs( void ) { int error; struct sysinfo si; static char message[] __initdata = KERN_INFO \ XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"; printk(message); si_meminfo(&si); xfs_physmem = si.totalram; ktrace_init(64); error = init_inodecache(); if (error < 0) goto undo_inodecache; error = pagebuf_init(); if (error < 0) goto undo_pagebuf; vn_init(); xfs_init(); uuid_init(); vfs_initquota(); error = register_filesystem(&xfs_fs_type); if (error) goto undo_register; XFS_DM_INIT(&xfs_fs_type); return 0; undo_register: pagebuf_terminate(); undo_pagebuf: destroy_inodecache(); undo_inodecache: return error; } STATIC void __exit exit_xfs_fs( void ) { vfs_exitquota(); XFS_DM_EXIT(&xfs_fs_type); unregister_filesystem(&xfs_fs_type); xfs_cleanup(); pagebuf_terminate(); destroy_inodecache(); ktrace_uninit(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");