/* * inode.c * * PURPOSE * Inode handling routines for the OSTA-UDF(tm) filesystem. * * COPYRIGHT * This file is distributed under the terms of the GNU General Public * License (GPL). Copies of the GPL can be obtained from: * ftp://prep.ai.mit.edu/pub/gnu/GPL * Each contributing author retains all rights to their own work. * * (C) 1998 Dave Boynton * (C) 1998-2004 Ben Fennema * (C) 1999-2000 Stelias Computing Inc * * HISTORY * * 10/04/98 dgb Added rudimentary directory functions * 10/07/98 Fully working udf_block_map! It works! * 11/25/98 bmap altered to better support extents * 12/06/98 blf partition support in udf_iget, udf_block_map * and udf_read_inode * 12/12/98 rewrote udf_block_map to handle next extents and descs across * block boundaries (which is not actually allowed) * 12/20/98 added support for strategy 4096 * 03/07/99 rewrote udf_block_map (again) * New funcs, inode_bmap, udf_next_aext * 04/19/99 Support for writing device EA's for major/minor # */ #include "udfdecl.h" #include <linux/mm.h> #include <linux/smp_lock.h> #include <linux/module.h> #include <linux/pagemap.h> #include <linux/buffer_head.h> #include <linux/writeback.h> #include <linux/slab.h> #include <linux/crc-itu-t.h> #include "udf_i.h" #include "udf_sb.h" MODULE_AUTHOR("Ben Fennema"); MODULE_DESCRIPTION("Universal Disk Format Filesystem"); MODULE_LICENSE("GPL"); #define EXTENT_MERGE_SIZE 5 static mode_t udf_convert_permissions(struct fileEntry *); static int udf_update_inode(struct inode *, int); static void udf_fill_inode(struct inode *, struct buffer_head *); static int udf_alloc_i_data(struct inode *inode, size_t size); static struct buffer_head *inode_getblk(struct inode *, sector_t, int *, sector_t *, int *); static int8_t udf_insert_aext(struct inode *, struct extent_position, struct kernel_lb_addr, uint32_t); static void udf_split_extents(struct inode *, int *, int, int, struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); static void udf_prealloc_extents(struct inode *, int, int, struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); static void udf_merge_extents(struct inode *, struct kernel_long_ad[EXTENT_MERGE_SIZE], int *); static void udf_update_extents(struct inode *, struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int, struct extent_position *); static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); void udf_delete_inode(struct inode *inode) { truncate_inode_pages(&inode->i_data, 0); if (is_bad_inode(inode)) goto no_delete; inode->i_size = 0; udf_truncate(inode); lock_kernel(); udf_update_inode(inode, IS_SYNC(inode)); udf_free_inode(inode); unlock_kernel(); return; no_delete: clear_inode(inode); } /* * If we are going to release inode from memory, we discard preallocation and * truncate last inode extent to proper length. We could use drop_inode() but * it's called under inode_lock and thus we cannot mark inode dirty there. We * use clear_inode() but we have to make sure to write inode as it's not written * automatically. */ void udf_clear_inode(struct inode *inode) { struct udf_inode_info *iinfo; if (!(inode->i_sb->s_flags & MS_RDONLY)) { lock_kernel(); /* Discard preallocation for directories, symlinks, etc. */ udf_discard_prealloc(inode); udf_truncate_tail_extent(inode); unlock_kernel(); write_inode_now(inode, 0); invalidate_inode_buffers(inode); } iinfo = UDF_I(inode); kfree(iinfo->i_ext.i_data); iinfo->i_ext.i_data = NULL; } static int udf_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page, udf_get_block, wbc); } static int udf_readpage(struct file *file, struct page *page) { return block_read_full_page(page, udf_get_block); } static int udf_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { *pagep = NULL; return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, udf_get_block); } static sector_t udf_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping, block, udf_get_block); } const struct address_space_operations udf_aops = { .readpage = udf_readpage, .writepage = udf_writepage, .sync_page = block_sync_page, .write_begin = udf_write_begin, .write_end = generic_write_end, .bmap = udf_bmap, }; void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err) { struct page *page; char *kaddr; struct udf_inode_info *iinfo = UDF_I(inode); struct writeback_control udf_wbc = { .sync_mode = WB_SYNC_NONE, .nr_to_write = 1, }; /* from now on we have normal address_space methods */ inode->i_data.a_ops = &udf_aops; if (!iinfo->i_lenAlloc) { if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; else iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; mark_inode_dirty(inode); return; } page = grab_cache_page(inode->i_mapping, 0); BUG_ON(!PageLocked(page)); if (!PageUptodate(page)) { kaddr = kmap(page); memset(kaddr + iinfo->i_lenAlloc, 0x00, PAGE_CACHE_SIZE - iinfo->i_lenAlloc); memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr, iinfo->i_lenAlloc); flush_dcache_page(page); SetPageUptodate(page); kunmap(page); } memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00, iinfo->i_lenAlloc); iinfo->i_lenAlloc = 0; if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; else iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; inode->i_data.a_ops->writepage(page, &udf_wbc); page_cache_release(page); mark_inode_dirty(inode); } struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block, int *err) { int newblock; struct buffer_head *dbh = NULL; struct kernel_lb_addr eloc; uint32_t elen; uint8_t alloctype; struct extent_position epos; struct udf_fileident_bh sfibh, dfibh; loff_t f_pos = udf_ext0_offset(inode); int size = udf_ext0_offset(inode) + inode->i_size; struct fileIdentDesc cfi, *sfi, *dfi; struct udf_inode_info *iinfo = UDF_I(inode); if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) alloctype = ICBTAG_FLAG_AD_SHORT; else alloctype = ICBTAG_FLAG_AD_LONG; if (!inode->i_size) { iinfo->i_alloc_type = alloctype; mark_inode_dirty(inode); return NULL; } /* alloc block, and copy data to it */ *block = udf_new_block(inode->i_sb, inode, iinfo->i_location.partitionReferenceNum, iinfo->i_location.logicalBlockNum, err); if (!(*block)) return NULL; newblock = udf_get_pblock(inode->i_sb, *block, iinfo->i_location.partitionReferenceNum, 0); if (!newblock) return NULL; dbh = udf_tgetblk(inode->i_sb, newblock); if (!dbh) return NULL; lock_buffer(dbh); memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); set_buffer_uptodate(dbh); unlock_buffer(dbh); mark_buffer_dirty_inode(dbh, inode); sfibh.soffset = sfibh.eoffset = f_pos & (inode->i_sb->s_blocksize - 1); sfibh.sbh = sfibh.ebh = NULL; dfibh.soffset = dfibh.eoffset = 0; dfibh.sbh = dfibh.ebh = dbh; while (f_pos < size) { iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL); if (!sfi) { brelse(dbh); return NULL; } iinfo->i_alloc_type = alloctype; sfi->descTag.tagLocation = cpu_to_le32(*block); dfibh.soffset = dfibh.eoffset; dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) { iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; brelse(dbh); return NULL; } } mark_buffer_dirty_inode(dbh, inode); memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); iinfo->i_lenAlloc = 0; eloc.logicalBlockNum = *block; eloc.partitionReferenceNum = iinfo->i_location.partitionReferenceNum; elen = inode->i_sb->s_blocksize; iinfo->i_lenExtents = elen; epos.bh = NULL; epos.block = iinfo->i_location; epos.offset = udf_file_entry_alloc_offset(inode); udf_add_aext(inode, &epos, &eloc, elen, 0); /* UniqueID stuff */ brelse(epos.bh); mark_inode_dirty(inode); return dbh; } static int udf_get_block(struct inode *inode, sector_t block, struct buffer_head *bh_result, int create) { int err, new; struct buffer_head *bh; sector_t phys = 0; struct udf_inode_info *iinfo; if (!create) { phys = udf_block_map(inode, block); if (phys) map_bh(bh_result, inode->i_sb, phys); return 0; } err = -EIO; new = 0; bh = NULL; lock_kernel(); iinfo = UDF_I(inode); if (block == iinfo->i_next_alloc_block + 1) { iinfo->i_next_alloc_block++; iinfo->i_next_alloc_goal++; } err = 0; bh = inode_getblk(inode, block, &err, &phys, &new); BUG_ON(bh); if (err) goto abort; BUG_ON(!phys); if (new) set_buffer_new(bh_result); map_bh(bh_result, inode->i_sb, phys); abort: unlock_kernel(); return err; } static struct buffer_head *udf_getblk(struct inode *inode, long block, int create, int *err) { struct buffer_head *bh; struct buffer_head dummy; dummy.b_state = 0; dummy.b_blocknr = -1000; *err = udf_get_block(inode, block, &dummy, create); if (!*err && buffer_mapped(&dummy)) { bh = sb_getblk(inode->i_sb, dummy.b_blocknr); if (buffer_new(&dummy)) { lock_buffer(bh); memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); set_buffer_uptodate(bh); unlock_buffer(bh); mark_buffer_dirty_inode(bh, inode); } return bh; } return NULL; } /* Extend the file by 'blocks' blocks, return the number of extents added */ int udf_extend_file(struct inode *inode, struct extent_position *last_pos, struct kernel_long_ad *last_ext, sector_t blocks) { sector_t add; int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); struct super_block *sb = inode->i_sb; struct kernel_lb_addr prealloc_loc = {}; int prealloc_len = 0; struct udf_inode_info *iinfo; /* The previous extent is fake and we should not extend by anything * - there's nothing to do... */ if (!blocks && fake) return 0; iinfo = UDF_I(inode); /* Round the last extent up to a multiple of block size */ if (last_ext->extLength & (sb->s_blocksize - 1)) { last_ext->extLength = (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); iinfo->i_lenExtents = (iinfo->i_lenExtents + sb->s_blocksize - 1) & ~(sb->s_blocksize - 1); } /* Last extent are just preallocated blocks? */ if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) { /* Save the extent so that we can reattach it to the end */ prealloc_loc = last_ext->extLocation; prealloc_len = last_ext->extLength; /* Mark the extent as a hole */ last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); last_ext->extLocation.logicalBlockNum = 0; last_ext->extLocation.partitionReferenceNum = 0; } /* Can we merge with the previous extent? */ if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) { add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits; if (add > blocks) add = blocks; blocks -= add; last_ext->extLength += add << sb->s_blocksize_bits; } if (fake) { udf_add_aext(inode, last_pos, &last_ext->extLocation, last_ext->extLength, 1); count++; } else udf_write_aext(inode, last_pos, &last_ext->extLocation, last_ext->extLength, 1); /* Managed to do everything necessary? */ if (!blocks) goto out; /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ last_ext->extLocation.logicalBlockNum = 0; last_ext->extLocation.partitionReferenceNum = 0; add = (1 << (30-sb->s_blocksize_bits)) - 1; last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits); /* Create enough extents to cover the whole hole */ while (blocks > add) { blocks -= add; if (udf_add_aext(inode, last_pos, &last_ext->extLocation, last_ext->extLength, 1) == -1) return -1; count++; } if (blocks) { last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (blocks << sb->s_blocksize_bits); if (udf_add_aext(inode, last_pos, &last_ext->extLocation, last_ext->extLength, 1) == -1) return -1; count++; } out: /* Do we have some preallocated blocks saved? */ if (prealloc_len) { if (udf_add_aext(inode, last_pos, &prealloc_loc, prealloc_len, 1) == -1) return -1; last_ext->extLocation = prealloc_loc; last_ext->extLength = prealloc_len; count++; } /* last_pos should point to the last written extent... */ if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) last_pos->offset -= sizeof(struct short_ad); else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) last_pos->offset -= sizeof(struct long_ad); else return -1; return count; } static struct buffer_head *inode_getblk(struct inode *inode, sector_t block, int *err, sector_t *phys, int *new) { static sector_t last_block; struct buffer_head *result = NULL; struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; struct extent_position prev_epos, cur_epos, next_epos; int count = 0, startnum = 0, endnum = 0; uint32_t elen = 0, tmpelen; struct kernel_lb_addr eloc, tmpeloc; int c = 1; loff_t lbcount = 0, b_off = 0; uint32_t newblocknum, newblock; sector_t offset = 0; int8_t etype; struct udf_inode_info *iinfo = UDF_I(inode); int goal = 0, pgoal = iinfo->i_location.logicalBlockNum; int lastblock = 0; prev_epos.offset = udf_file_entry_alloc_offset(inode); prev_epos.block = iinfo->i_location; prev_epos.bh = NULL; cur_epos = next_epos = prev_epos; b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; /* find the extent which contains the block we are looking for. alternate between laarr[0] and laarr[1] for locations of the current extent, and the previous extent */ do { if (prev_epos.bh != cur_epos.bh) { brelse(prev_epos.bh); get_bh(cur_epos.bh); prev_epos.bh = cur_epos.bh; } if (cur_epos.bh != next_epos.bh) { brelse(cur_epos.bh); get_bh(next_epos.bh); cur_epos.bh = next_epos.bh; } lbcount += elen; prev_epos.block = cur_epos.block; cur_epos.block = next_epos.block; prev_epos.offset = cur_epos.offset; cur_epos.offset = next_epos.offset; etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); if (etype == -1) break; c = !c; laarr[c].extLength = (etype << 30) | elen; laarr[c].extLocation = eloc; if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) pgoal = eloc.logicalBlockNum + ((elen + inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); count++; } while (lbcount + elen <= b_off); b_off -= lbcount; offset = b_off >> inode->i_sb->s_blocksize_bits; /* * Move prev_epos and cur_epos into indirect extent if we are at * the pointer to it */ udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); /* if the extent is allocated and recorded, return the block if the extent is not a multiple of the blocksize, round up */ if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { if (elen & (inode->i_sb->s_blocksize - 1)) { elen = EXT_RECORDED_ALLOCATED | ((elen + inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1)); etype = udf_write_aext(inode, &cur_epos, &eloc, elen, 1); } brelse(prev_epos.bh); brelse(cur_epos.bh); brelse(next_epos.bh); newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); *phys = newblock; return NULL; } last_block = block; /* Are we beyond EOF? */ if (etype == -1) { int ret; if (count) { if (c) laarr[0] = laarr[1]; startnum = 1; } else { /* Create a fake extent when there's not one */ memset(&laarr[0].extLocation, 0x00, sizeof(struct kernel_lb_addr)); laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; /* Will udf_extend_file() create real extent from a fake one? */ startnum = (offset > 0); } /* Create extents for the hole between EOF and offset */ ret = udf_extend_file(inode, &prev_epos, laarr, offset); if (ret == -1) { brelse(prev_epos.bh); brelse(cur_epos.bh); brelse(next_epos.bh); /* We don't really know the error here so we just make * something up */ *err = -ENOSPC; return NULL; } c = 0; offset = 0; count += ret; /* We are not covered by a preallocated extent? */ if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) { /* Is there any real extent? - otherwise we overwrite * the fake one... */ if (count) c = !c; laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | inode->i_sb->s_blocksize; memset(&laarr[c].extLocation, 0x00, sizeof(struct kernel_lb_addr)); count++; endnum++; } endnum = c + 1; lastblock = 1; } else { endnum = startnum = ((count > 2) ? 2 : count); /* if the current extent is in position 0, swap it with the previous */ if (!c && count != 1) { laarr[2] = laarr[0]; laarr[0] = laarr[1]; laarr[1] = laarr[2]; c = 1; } /* if the current block is located in an extent, read the next extent */ etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); if (etype != -1) { laarr[c + 1].extLength = (etype << 30) | elen; laarr[c + 1].extLocation = eloc; count++; startnum++; endnum++; } else lastblock = 1; } /* if the current extent is not recorded but allocated, get the * block in the extent corresponding to the requested block */ if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) newblocknum = laarr[c].extLocation.logicalBlockNum + offset; else { /* otherwise, allocate a new block */ if (iinfo->i_next_alloc_block == block) goal = iinfo->i_next_alloc_goal; if (!goal) { if (!(goal = pgoal)) /* XXX: what was intended here? */ goal = iinfo->i_location.logicalBlockNum + 1; } newblocknum = udf_new_block(inode->i_sb, inode, iinfo->i_location.partitionReferenceNum, goal, err); if (!newblocknum) { brelse(prev_epos.bh); *err = -ENOSPC; return NULL; } iinfo->i_lenExtents += inode->i_sb->s_blocksize; } /* if the extent the requsted block is located in contains multiple * blocks, split the extent into at most three extents. blocks prior * to requested block, requested block, and blocks after requested * block */ udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); #ifdef UDF_PREALLOCATE /* preallocate blocks */ udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); #endif /* merge any continuous blocks in laarr */ udf_merge_extents(inode, laarr, &endnum); /* write back the new extents, inserting new extents if the new number * of extents is greater than the old number, and deleting extents if * the new number of extents is less than the old number */ udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); brelse(prev_epos.bh); newblock = udf_get_pblock(inode->i_sb, newblocknum, iinfo->i_location.partitionReferenceNum, 0); if (!newblock) return NULL; *phys = newblock; *err = 0; *new = 1; iinfo->i_next_alloc_block = block; iinfo->i_next_alloc_goal = newblocknum; inode->i_ctime = current_fs_time(inode->i_sb); if (IS_SYNC(inode)) udf_sync_inode(inode); else mark_inode_dirty(inode); return result; } static void udf_split_extents(struct inode *inode, int *c, int offset, int newblocknum, struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], int *endnum) { unsigned long blocksize = inode->i_sb->s_blocksize; unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { int curr = *c; int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) >> blocksize_bits; int8_t etype = (laarr[curr].extLength >> 30); if (blen == 1) ; else if (!offset || blen == offset + 1) { laarr[curr + 2] = laarr[curr + 1]; laarr[curr + 1] = laarr[curr]; } else { laarr[curr + 3] = laarr[curr + 1]; laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; } if (offset) { if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { udf_free_blocks(inode->i_sb, inode, &laarr[curr].extLocation, 0, offset); laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (offset << blocksize_bits); laarr[curr].extLocation.logicalBlockNum = 0; laarr[curr].extLocation. partitionReferenceNum = 0; } else laarr[curr].extLength = (etype << 30) | (offset << blocksize_bits); curr++; (*c)++; (*endnum)++; } laarr[curr].extLocation.logicalBlockNum = newblocknum; if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) laarr[curr].extLocation.partitionReferenceNum = UDF_I(inode)->i_location.partitionReferenceNum; laarr[curr].extLength = EXT_RECORDED_ALLOCATED | blocksize; curr++; if (blen != offset + 1) { if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) laarr[curr].extLocation.logicalBlockNum += offset + 1; laarr[curr].extLength = (etype << 30) | ((blen - (offset + 1)) << blocksize_bits); curr++; (*endnum)++; } } } static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], int *endnum) { int start, length = 0, currlength = 0, i; if (*endnum >= (c + 1)) { if (!lastblock) return; else start = c; } else { if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { start = c + 1; length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) + inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); } else start = c; } for (i = start + 1; i <= *endnum; i++) { if (i == *endnum) { if (lastblock) length += UDF_DEFAULT_PREALLOC_BLOCKS; } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); } else break; } if (length) { int next = laarr[start].extLocation.logicalBlockNum + (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits); int numalloc = udf_prealloc_blocks(inode->i_sb, inode, laarr[start].extLocation.partitionReferenceNum, next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length : UDF_DEFAULT_PREALLOC_BLOCKS) - currlength); if (numalloc) { if (start == (c + 1)) laarr[start].extLength += (numalloc << inode->i_sb->s_blocksize_bits); else { memmove(&laarr[c + 2], &laarr[c + 1], sizeof(struct long_ad) * (*endnum - (c + 1))); (*endnum)++; laarr[c + 1].extLocation.logicalBlockNum = next; laarr[c + 1].extLocation.partitionReferenceNum = laarr[c].extLocation. partitionReferenceNum; laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED | (numalloc << inode->i_sb->s_blocksize_bits); start = c + 1; } for (i = start + 1; numalloc && i < *endnum; i++) { int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) + inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits; if (elen > numalloc) { laarr[i].extLength -= (numalloc << inode->i_sb->s_blocksize_bits); numalloc = 0; } else { numalloc -= elen; if (*endnum > (i + 1)) memmove(&laarr[i], &laarr[i + 1], sizeof(struct long_ad) * (*endnum - (i + 1))); i--; (*endnum)--; } } UDF_I(inode)->i_lenExtents += numalloc << inode->i_sb->s_blocksize_bits; } } } static void udf_merge_extents(struct inode *inode, struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], int *endnum) { int i; unsigned long blocksize = inode->i_sb->s_blocksize; unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; for (i = 0; i < (*endnum - 1); i++) { struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; if (((li->extLength >> 30) == (lip1->extLength >> 30)) && (((li->extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || ((lip1->extLocation.logicalBlockNum - li->extLocation.logicalBlockNum) == (((li->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) >> blocksize_bits)))) { if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { lip1->extLength = (lip1->extLength - (li->extLength & UDF_EXTENT_LENGTH_MASK) + UDF_EXTENT_LENGTH_MASK) & ~(blocksize - 1); li->extLength = (li->extLength & UDF_EXTENT_FLAG_MASK) + (UDF_EXTENT_LENGTH_MASK + 1) - blocksize; lip1->extLocation.logicalBlockNum = li->extLocation.logicalBlockNum + ((li->extLength & UDF_EXTENT_LENGTH_MASK) >> blocksize_bits); } else { li->extLength = lip1->extLength + (((li->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) & ~(blocksize - 1)); if (*endnum > (i + 2)) memmove(&laarr[i + 1], &laarr[i + 2], sizeof(struct long_ad) * (*endnum - (i + 2))); i--; (*endnum)--; } } else if (((li->extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) && ((lip1->extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, ((li->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) >> blocksize_bits); li->extLocation.logicalBlockNum = 0; li->extLocation.partitionReferenceNum = 0; if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { lip1->extLength = (lip1->extLength - (li->extLength & UDF_EXTENT_LENGTH_MASK) + UDF_EXTENT_LENGTH_MASK) & ~(blocksize - 1); li->extLength = (li->extLength & UDF_EXTENT_FLAG_MASK) + (UDF_EXTENT_LENGTH_MASK + 1) - blocksize; } else { li->extLength = lip1->extLength + (((li->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) & ~(blocksize - 1)); if (*endnum > (i + 2)) memmove(&laarr[i + 1], &laarr[i + 2], sizeof(struct long_ad) * (*endnum - (i + 2))); i--; (*endnum)--; } } else if ((li->extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, ((li->extLength & UDF_EXTENT_LENGTH_MASK) + blocksize - 1) >> blocksize_bits); li->extLocation.logicalBlockNum = 0; li->extLocation.partitionReferenceNum = 0; li->extLength = (li->extLength & UDF_EXTENT_LENGTH_MASK) | EXT_NOT_RECORDED_NOT_ALLOCATED; } } } static void udf_update_extents(struct inode *inode, struct kernel_long_ad laarr[EXTENT_MERGE_SIZE], int startnum, int endnum, struct extent_position *epos) { int start = 0, i; struct kernel_lb_addr tmploc; uint32_t tmplen; if (startnum > endnum) { for (i = 0; i < (startnum - endnum); i++) udf_delete_aext(inode, *epos, laarr[i].extLocation, laarr[i].extLength); } else if (startnum < endnum) { for (i = 0; i < (endnum - startnum); i++) { udf_insert_aext(inode, *epos, laarr[i].extLocation, laarr[i].extLength); udf_next_aext(inode, epos, &laarr[i].extLocation, &laarr[i].extLength, 1); start++; } } for (i = start; i < endnum; i++) { udf_next_aext(inode, epos, &tmploc, &tmplen, 0); udf_write_aext(inode, epos, &laarr[i].extLocation, laarr[i].extLength, 1); } } struct buffer_head *udf_bread(struct inode *inode, int block, int create, int *err) { struct buffer_head *bh = NULL; bh = udf_getblk(inode, block, create, err); if (!bh) return NULL; if (buffer_uptodate(bh)) return bh; ll_rw_block(READ, 1, &bh); wait_on_buffer(bh); if (buffer_uptodate(bh)) return bh; brelse(bh); *err = -EIO; return NULL; } void udf_truncate(struct inode *inode) { int offset; int err; struct udf_inode_info *iinfo; if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; lock_kernel(); iinfo = UDF_I(inode); if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) + inode->i_size)) { udf_expand_file_adinicb(inode, inode->i_size, &err); if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { inode->i_size = iinfo->i_lenAlloc; unlock_kernel(); return; } else udf_truncate_extents(inode); } else { offset = inode->i_size & (inode->i_sb->s_blocksize - 1); memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset, 0x00, inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode)); iinfo->i_lenAlloc = inode->i_size; } } else { block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block); udf_truncate_extents(inode); } inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); if (IS_SYNC(inode)) udf_sync_inode(inode); else mark_inode_dirty(inode); unlock_kernel(); } static void __udf_read_inode(struct inode *inode) { struct buffer_head *bh = NULL; struct fileEntry *fe; uint16_t ident; struct udf_inode_info *iinfo = UDF_I(inode); /* * Set defaults, but the inode is still incomplete! * Note: get_new_inode() sets the following on a new inode: * i_sb = sb * i_no = ino * i_flags = sb->s_flags * i_state = 0 * clean_inode(): zero fills and sets * i_count = 1 * i_nlink = 1 * i_op = NULL; */ bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); if (!bh) { printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n", inode->i_ino); make_bad_inode(inode); return; } if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && ident != TAG_IDENT_USE) { printk(KERN_ERR "udf: udf_read_inode(ino %ld) " "failed ident=%d\n", inode->i_ino, ident); brelse(bh); make_bad_inode(inode); return; } fe = (struct fileEntry *)bh->b_data; if (fe->icbTag.strategyType == cpu_to_le16(4096)) { struct buffer_head *ibh; ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, &ident); if (ident == TAG_IDENT_IE && ibh) { struct buffer_head *nbh = NULL; struct kernel_lb_addr loc; struct indirectEntry *ie; ie = (struct indirectEntry *)ibh->b_data; loc = lelb_to_cpu(ie->indirectICB.extLocation); if (ie->indirectICB.extLength && (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, &ident))) { if (ident == TAG_IDENT_FE || ident == TAG_IDENT_EFE) { memcpy(&iinfo->i_location, &loc, sizeof(struct kernel_lb_addr)); brelse(bh); brelse(ibh); brelse(nbh); __udf_read_inode(inode); return; } brelse(nbh); } } brelse(ibh); } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { printk(KERN_ERR "udf: unsupported strategy type: %d\n", le16_to_cpu(fe->icbTag.strategyType)); brelse(bh); make_bad_inode(inode); return; } udf_fill_inode(inode, bh); brelse(bh); } static void udf_fill_inode(struct inode *inode, struct buffer_head *bh) { struct fileEntry *fe; struct extendedFileEntry *efe; int offset; struct udf_sb_info *sbi = UDF_SB(inode->i_sb); struct udf_inode_info *iinfo = UDF_I(inode); fe = (struct fileEntry *)bh->b_data; efe = (struct extendedFileEntry *)bh->b_data; if (fe->icbTag.strategyType == cpu_to_le16(4)) iinfo->i_strat4096 = 0; else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ iinfo->i_strat4096 = 1; iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK; iinfo->i_unique = 0; iinfo->i_lenEAttr = 0; iinfo->i_lenExtents = 0; iinfo->i_lenAlloc = 0; iinfo->i_next_alloc_block = 0; iinfo->i_next_alloc_goal = 0; if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { iinfo->i_efe = 1; iinfo->i_use = 0; if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) { make_bad_inode(inode); return; } memcpy(iinfo->i_ext.i_data, bh->b_data + sizeof(struct extendedFileEntry), inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { iinfo->i_efe = 0; iinfo->i_use = 0; if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) { make_bad_inode(inode); return; } memcpy(iinfo->i_ext.i_data, bh->b_data + sizeof(struct fileEntry), inode->i_sb->s_blocksize - sizeof(struct fileEntry)); } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { iinfo->i_efe = 0; iinfo->i_use = 1; iinfo->i_lenAlloc = le32_to_cpu( ((struct unallocSpaceEntry *)bh->b_data)-> lengthAllocDescs); if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) { make_bad_inode(inode); return; } memcpy(iinfo->i_ext.i_data, bh->b_data + sizeof(struct unallocSpaceEntry), inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); return; } inode->i_uid = le32_to_cpu(fe->uid); if (inode->i_uid == -1 || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) inode->i_uid = UDF_SB(inode->i_sb)->s_uid; inode->i_gid = le32_to_cpu(fe->gid); if (inode->i_gid == -1 || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) inode->i_gid = UDF_SB(inode->i_sb)->s_gid; inode->i_nlink = le16_to_cpu(fe->fileLinkCount); if (!inode->i_nlink) inode->i_nlink = 1; inode->i_size = le64_to_cpu(fe->informationLength); iinfo->i_lenExtents = inode->i_size; inode->i_mode = udf_convert_permissions(fe); inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask; if (iinfo->i_efe == 0) { inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << (inode->i_sb->s_blocksize_bits - 9); if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) inode->i_atime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime)) inode->i_mtime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) inode->i_ctime = sbi->s_record_time; iinfo->i_unique = le64_to_cpu(fe->uniqueID); iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr; } else { inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << (inode->i_sb->s_blocksize_bits - 9); if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) inode->i_atime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime)) inode->i_mtime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) iinfo->i_crtime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) inode->i_ctime = sbi->s_record_time; iinfo->i_unique = le64_to_cpu(efe->uniqueID); iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); offset = sizeof(struct extendedFileEntry) + iinfo->i_lenEAttr; } switch (fe->icbTag.fileType) { case ICBTAG_FILE_TYPE_DIRECTORY: inode->i_op = &udf_dir_inode_operations; inode->i_fop = &udf_dir_operations; inode->i_mode |= S_IFDIR; inc_nlink(inode); break; case ICBTAG_FILE_TYPE_REALTIME: case ICBTAG_FILE_TYPE_REGULAR: case ICBTAG_FILE_TYPE_UNDEF: case ICBTAG_FILE_TYPE_VAT20: if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) inode->i_data.a_ops = &udf_adinicb_aops; else inode->i_data.a_ops = &udf_aops; inode->i_op = &udf_file_inode_operations; inode->i_fop = &udf_file_operations; inode->i_mode |= S_IFREG; break; case ICBTAG_FILE_TYPE_BLOCK: inode->i_mode |= S_IFBLK; break; case ICBTAG_FILE_TYPE_CHAR: inode->i_mode |= S_IFCHR; break; case ICBTAG_FILE_TYPE_FIFO: init_special_inode(inode, inode->i_mode | S_IFIFO, 0); break; case ICBTAG_FILE_TYPE_SOCKET: init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); break; case ICBTAG_FILE_TYPE_SYMLINK: inode->i_data.a_ops = &udf_symlink_aops; inode->i_op = &page_symlink_inode_operations; inode->i_mode = S_IFLNK | S_IRWXUGO; break; case ICBTAG_FILE_TYPE_MAIN: udf_debug("METADATA FILE-----\n"); break; case ICBTAG_FILE_TYPE_MIRROR: udf_debug("METADATA MIRROR FILE-----\n"); break; case ICBTAG_FILE_TYPE_BITMAP: udf_debug("METADATA BITMAP FILE-----\n"); break; default: printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown " "file type=%d\n", inode->i_ino, fe->icbTag.fileType); make_bad_inode(inode); return; } if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); if (dsea) { init_special_inode(inode, inode->i_mode, MKDEV(le32_to_cpu(dsea->majorDeviceIdent), le32_to_cpu(dsea->minorDeviceIdent))); /* Developer ID ??? */ } else make_bad_inode(inode); } } static int udf_alloc_i_data(struct inode *inode, size_t size) { struct udf_inode_info *iinfo = UDF_I(inode); iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL); if (!iinfo->i_ext.i_data) { printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) " "no free memory\n", inode->i_ino); return -ENOMEM; } return 0; } static mode_t udf_convert_permissions(struct fileEntry *fe) { mode_t mode; uint32_t permissions; uint32_t flags; permissions = le32_to_cpu(fe->permissions); flags = le16_to_cpu(fe->icbTag.flags); mode = ((permissions) & S_IRWXO) | ((permissions >> 2) & S_IRWXG) | ((permissions >> 4) & S_IRWXU) | ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); return mode; } int udf_write_inode(struct inode *inode, int sync) { int ret; lock_kernel(); ret = udf_update_inode(inode, sync); unlock_kernel(); return ret; } int udf_sync_inode(struct inode *inode) { return udf_update_inode(inode, 1); } static int udf_update_inode(struct inode *inode, int do_sync) { struct buffer_head *bh = NULL; struct fileEntry *fe; struct extendedFileEntry *efe; uint32_t udfperms; uint16_t icbflags; uint16_t crclen; int err = 0; struct udf_sb_info *sbi = UDF_SB(inode->i_sb); unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; struct udf_inode_info *iinfo = UDF_I(inode); bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); if (!bh) { udf_debug("bread failure\n"); return -EIO; } memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); fe = (struct fileEntry *)bh->b_data; efe = (struct extendedFileEntry *)bh->b_data; if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { struct unallocSpaceEntry *use = (struct unallocSpaceEntry *)bh->b_data; use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), iinfo->i_ext.i_data, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); crclen = sizeof(struct unallocSpaceEntry) + iinfo->i_lenAlloc - sizeof(struct tag); use->descTag.tagLocation = cpu_to_le32( iinfo->i_location. logicalBlockNum); use->descTag.descCRCLength = cpu_to_le16(crclen); use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use + sizeof(struct tag), crclen)); use->descTag.tagChecksum = udf_tag_checksum(&use->descTag); mark_buffer_dirty(bh); brelse(bh); return err; } if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) fe->uid = cpu_to_le32(-1); else fe->uid = cpu_to_le32(inode->i_uid); if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) fe->gid = cpu_to_le32(-1); else fe->gid = cpu_to_le32(inode->i_gid); udfperms = ((inode->i_mode & S_IRWXO)) | ((inode->i_mode & S_IRWXG) << 2) | ((inode->i_mode & S_IRWXU) << 4); udfperms |= (le32_to_cpu(fe->permissions) & (FE_PERM_O_DELETE | FE_PERM_O_CHATTR | FE_PERM_G_DELETE | FE_PERM_G_CHATTR | FE_PERM_U_DELETE | FE_PERM_U_CHATTR)); fe->permissions = cpu_to_le32(udfperms); if (S_ISDIR(inode->i_mode)) fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); else fe->fileLinkCount = cpu_to_le16(inode->i_nlink); fe->informationLength = cpu_to_le64(inode->i_size); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { struct regid *eid; struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); if (!dsea) { dsea = (struct deviceSpec *) udf_add_extendedattr(inode, sizeof(struct deviceSpec) + sizeof(struct regid), 12, 0x3); dsea->attrType = cpu_to_le32(12); dsea->attrSubtype = 1; dsea->attrLength = cpu_to_le32( sizeof(struct deviceSpec) + sizeof(struct regid)); dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); } eid = (struct regid *)dsea->impUse; memset(eid, 0, sizeof(struct regid)); strcpy(eid->ident, UDF_ID_DEVELOPER); eid->identSuffix[0] = UDF_OS_CLASS_UNIX; eid->identSuffix[1] = UDF_OS_ID_LINUX; dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); } if (iinfo->i_efe == 0) { memcpy(bh->b_data + sizeof(struct fileEntry), iinfo->i_ext.i_data, inode->i_sb->s_blocksize - sizeof(struct fileEntry)); fe->logicalBlocksRecorded = cpu_to_le64( (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> (blocksize_bits - 9)); udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); memset(&(fe->impIdent), 0, sizeof(struct regid)); strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; fe->uniqueID = cpu_to_le64(iinfo->i_unique); fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); crclen = sizeof(struct fileEntry); } else { memcpy(bh->b_data + sizeof(struct extendedFileEntry), iinfo->i_ext.i_data, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); efe->objectSize = cpu_to_le64(inode->i_size); efe->logicalBlocksRecorded = cpu_to_le64( (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> (blocksize_bits - 9)); if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec || (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec && iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec)) iinfo->i_crtime = inode->i_atime; if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec || (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec && iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec)) iinfo->i_crtime = inode->i_mtime; if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec || (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec && iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec)) iinfo->i_crtime = inode->i_ctime; udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); memset(&(efe->impIdent), 0, sizeof(struct regid)); strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; efe->uniqueID = cpu_to_le64(iinfo->i_unique); efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); crclen = sizeof(struct extendedFileEntry); } if (iinfo->i_strat4096) { fe->icbTag.strategyType = cpu_to_le16(4096); fe->icbTag.strategyParameter = cpu_to_le16(1); fe->icbTag.numEntries = cpu_to_le16(2); } else { fe->icbTag.strategyType = cpu_to_le16(4); fe->icbTag.numEntries = cpu_to_le16(1); } if (S_ISDIR(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; else if (S_ISREG(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; else if (S_ISLNK(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; else if (S_ISBLK(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; else if (S_ISCHR(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; else if (S_ISFIFO(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; else if (S_ISSOCK(inode->i_mode)) fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; icbflags = iinfo->i_alloc_type | ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | (le16_to_cpu(fe->icbTag.flags) & ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); fe->icbTag.flags = cpu_to_le16(icbflags); if (sbi->s_udfrev >= 0x0200) fe->descTag.descVersion = cpu_to_le16(3); else fe->descTag.descVersion = cpu_to_le16(2); fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); fe->descTag.tagLocation = cpu_to_le32( iinfo->i_location.logicalBlockNum); crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); fe->descTag.descCRCLength = cpu_to_le16(crclen); fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), crclen)); fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); /* write the data blocks */ mark_buffer_dirty(bh); if (do_sync) { sync_dirty_buffer(bh); if (buffer_req(bh) && !buffer_uptodate(bh)) { printk(KERN_WARNING "IO error syncing udf inode " "[%s:%08lx]\n", inode->i_sb->s_id, inode->i_ino); err = -EIO; } } brelse(bh); return err; } struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino) { unsigned long block = udf_get_lb_pblock(sb, ino, 0); struct inode *inode = iget_locked(sb, block); if (!inode) return NULL; if (inode->i_state & I_NEW) { memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); __udf_read_inode(inode); unlock_new_inode(inode); } if (is_bad_inode(inode)) goto out_iput; if (ino->logicalBlockNum >= UDF_SB(sb)-> s_partmaps[ino->partitionReferenceNum].s_partition_len) { udf_debug("block=%d, partition=%d out of range\n", ino->logicalBlockNum, ino->partitionReferenceNum); make_bad_inode(inode); goto out_iput; } return inode; out_iput: iput(inode); return NULL; } int8_t udf_add_aext(struct inode *inode, struct extent_position *epos, struct kernel_lb_addr *eloc, uint32_t elen, int inc) { int adsize; struct short_ad *sad = NULL; struct long_ad *lad = NULL; struct allocExtDesc *aed; int8_t etype; uint8_t *ptr; struct udf_inode_info *iinfo = UDF_I(inode); if (!epos->bh) ptr = iinfo->i_ext.i_data + epos->offset - udf_file_entry_alloc_offset(inode) + iinfo->i_lenEAttr; else ptr = epos->bh->b_data + epos->offset; if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) adsize = sizeof(struct short_ad); else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) adsize = sizeof(struct long_ad); else return -1; if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) { char *sptr, *dptr; struct buffer_head *nbh; int err, loffset; struct kernel_lb_addr obloc = epos->block; epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL, obloc.partitionReferenceNum, obloc.logicalBlockNum, &err); if (!epos->block.logicalBlockNum) return -1; nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb, &epos->block, 0)); if (!nbh) return -1; lock_buffer(nbh); memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize); set_buffer_uptodate(nbh); unlock_buffer(nbh); mark_buffer_dirty_inode(nbh, inode); aed = (struct allocExtDesc *)(nbh->b_data); if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT)) aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); if (epos->offset + adsize > inode->i_sb->s_blocksize) { loffset = epos->offset; aed->lengthAllocDescs = cpu_to_le32(adsize); sptr = ptr - adsize; dptr = nbh->b_data + sizeof(struct allocExtDesc); memcpy(dptr, sptr, adsize); epos->offset = sizeof(struct allocExtDesc) + adsize; } else { loffset = epos->offset + adsize; aed->lengthAllocDescs = cpu_to_le32(0); sptr = ptr; epos->offset = sizeof(struct allocExtDesc); if (epos->bh) { aed = (struct allocExtDesc *)epos->bh->b_data; le32_add_cpu(&aed->lengthAllocDescs, adsize); } else { iinfo->i_lenAlloc += adsize; mark_inode_dirty(inode); } } if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200) udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, epos->block.logicalBlockNum, sizeof(struct tag)); else udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, epos->block.logicalBlockNum, sizeof(struct tag)); switch (iinfo->i_alloc_type) { case ICBTAG_FLAG_AD_SHORT: sad = (struct short_ad *)sptr; sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | inode->i_sb->s_blocksize); sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum); break; case ICBTAG_FLAG_AD_LONG: lad = (struct long_ad *)sptr; lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS | inode->i_sb->s_blocksize); lad->extLocation = cpu_to_lelb(epos->block); memset(lad->impUse, 0x00, sizeof(lad->impUse)); break; } if (epos->bh) { if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) udf_update_tag(epos->bh->b_data, loffset); else udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc)); mark_buffer_dirty_inode(epos->bh, inode); brelse(epos->bh); } else { mark_inode_dirty(inode); } epos->bh = nbh; } etype = udf_write_aext(inode, epos, eloc, elen, inc); if (!epos->bh) { iinfo->i_lenAlloc += adsize; mark_inode_dirty(inode); } else { aed = (struct allocExtDesc *)epos->bh->b_data; le32_add_cpu(&aed->lengthAllocDescs, adsize); if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize)); else udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc)); mark_buffer_dirty_inode(epos->bh, inode); } return etype; } int8_t udf_write_aext(struct inode *inode, struct extent_position *epos, struct kernel_lb_addr *eloc, uint32_t elen, int inc) { int adsize; uint8_t *ptr; struct short_ad *sad; struct long_ad *lad; struct udf_inode_info *iinfo = UDF_I(inode); if (!epos->bh) ptr = iinfo->i_ext.i_data + epos->offset - udf_file_entry_alloc_offset(inode) + iinfo->i_lenEAttr; else ptr = epos->bh->b_data + epos->offset; switch (iinfo->i_alloc_type) { case ICBTAG_FLAG_AD_SHORT: sad = (struct short_ad *)ptr; sad->extLength = cpu_to_le32(elen); sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); adsize = sizeof(struct short_ad); break; case ICBTAG_FLAG_AD_LONG: lad = (struct long_ad *)ptr; lad->extLength = cpu_to_le32(elen); lad->extLocation = cpu_to_lelb(*eloc); memset(lad->impUse, 0x00, sizeof(lad->impUse)); adsize = sizeof(struct long_ad); break; default: return -1; } if (epos->bh) { if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data; udf_update_tag(epos->bh->b_data, le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc)); } mark_buffer_dirty_inode(epos->bh, inode); } else { mark_inode_dirty(inode); } if (inc) epos->offset += adsize; return (elen >> 30); } int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, struct kernel_lb_addr *eloc, uint32_t *elen, int inc) { int8_t etype; while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) { int block; epos->block = *eloc; epos->offset = sizeof(struct allocExtDesc); brelse(epos->bh); block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); epos->bh = udf_tread(inode->i_sb, block); if (!epos->bh) { udf_debug("reading block %d failed!\n", block); return -1; } } return etype; } int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, struct kernel_lb_addr *eloc, uint32_t *elen, int inc) { int alen; int8_t etype; uint8_t *ptr; struct short_ad *sad; struct long_ad *lad; struct udf_inode_info *iinfo = UDF_I(inode); if (!epos->bh) { if (!epos->offset) epos->offset = udf_file_entry_alloc_offset(inode); ptr = iinfo->i_ext.i_data + epos->offset - udf_file_entry_alloc_offset(inode) + iinfo->i_lenEAttr; alen = udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc; } else { if (!epos->offset) epos->offset = sizeof(struct allocExtDesc); ptr = epos->bh->b_data + epos->offset; alen = sizeof(struct allocExtDesc) + le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> lengthAllocDescs); } switch (iinfo->i_alloc_type) { case ICBTAG_FLAG_AD_SHORT: sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); if (!sad) return -1; etype = le32_to_cpu(sad->extLength) >> 30; eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); eloc->partitionReferenceNum = iinfo->i_location.partitionReferenceNum; *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; break; case ICBTAG_FLAG_AD_LONG: lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); if (!lad) return -1; etype = le32_to_cpu(lad->extLength) >> 30; *eloc = lelb_to_cpu(lad->extLocation); *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; break; default: udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type); return -1; } return etype; } static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos, struct kernel_lb_addr neloc, uint32_t nelen) { struct kernel_lb_addr oeloc; uint32_t oelen; int8_t etype; if (epos.bh) get_bh(epos.bh); while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { udf_write_aext(inode, &epos, &neloc, nelen, 1); neloc = oeloc; nelen = (etype << 30) | oelen; } udf_add_aext(inode, &epos, &neloc, nelen, 1); brelse(epos.bh); return (nelen >> 30); } int8_t udf_delete_aext(struct inode *inode, struct extent_position epos, struct kernel_lb_addr eloc, uint32_t elen) { struct extent_position oepos; int adsize; int8_t etype; struct allocExtDesc *aed; struct udf_inode_info *iinfo; if (epos.bh) { get_bh(epos.bh); get_bh(epos.bh); } iinfo = UDF_I(inode); if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) adsize = sizeof(struct short_ad); else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) adsize = sizeof(struct long_ad); else adsize = 0; oepos = epos; if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) return -1; while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); if (oepos.bh != epos.bh) { oepos.block = epos.block; brelse(oepos.bh); get_bh(epos.bh); oepos.bh = epos.bh; oepos.offset = epos.offset - adsize; } } memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); elen = 0; if (epos.bh != oepos.bh) { udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); udf_write_aext(inode, &oepos, &eloc, elen, 1); udf_write_aext(inode, &oepos, &eloc, elen, 1); if (!oepos.bh) { iinfo->i_lenAlloc -= (adsize * 2); mark_inode_dirty(inode); } else { aed = (struct allocExtDesc *)oepos.bh->b_data; le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize)); else udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc)); mark_buffer_dirty_inode(oepos.bh, inode); } } else { udf_write_aext(inode, &oepos, &eloc, elen, 1); if (!oepos.bh) { iinfo->i_lenAlloc -= adsize; mark_inode_dirty(inode); } else { aed = (struct allocExtDesc *)oepos.bh->b_data; le32_add_cpu(&aed->lengthAllocDescs, -adsize); if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) udf_update_tag(oepos.bh->b_data, epos.offset - adsize); else udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc)); mark_buffer_dirty_inode(oepos.bh, inode); } } brelse(epos.bh); brelse(oepos.bh); return (elen >> 30); } int8_t inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos, struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset) { unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; int8_t etype; struct udf_inode_info *iinfo; iinfo = UDF_I(inode); pos->offset = 0; pos->block = iinfo->i_location; pos->bh = NULL; *elen = 0; do { etype = udf_next_aext(inode, pos, eloc, elen, 1); if (etype == -1) { *offset = (bcount - lbcount) >> blocksize_bits; iinfo->i_lenExtents = lbcount; return -1; } lbcount += *elen; } while (lbcount <= bcount); *offset = (bcount + *elen - lbcount) >> blocksize_bits; return etype; } long udf_block_map(struct inode *inode, sector_t block) { struct kernel_lb_addr eloc; uint32_t elen; sector_t offset; struct extent_position epos = {}; int ret; lock_kernel(); if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30)) ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); else ret = 0; unlock_kernel(); brelse(epos.bh); if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) return udf_fixed_to_variable(ret); else return ret; }