#include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" void task_mem(struct seq_file *m, struct mm_struct *mm) { unsigned long data, text, lib; unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; /* * Note: to minimize their overhead, mm maintains hiwater_vm and * hiwater_rss only when about to *lower* total_vm or rss. Any * collector of these hiwater stats must therefore get total_vm * and rss too, which will usually be the higher. Barriers? not * worth the effort, such snapshots can always be inconsistent. */ hiwater_vm = total_vm = mm->total_vm; if (hiwater_vm < mm->hiwater_vm) hiwater_vm = mm->hiwater_vm; hiwater_rss = total_rss = get_mm_rss(mm); if (hiwater_rss < mm->hiwater_rss) hiwater_rss = mm->hiwater_rss; data = mm->total_vm - mm->shared_vm - mm->stack_vm; text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; seq_printf(m, "VmPeak:\t%8lu kB\n" "VmSize:\t%8lu kB\n" "VmLck:\t%8lu kB\n" "VmHWM:\t%8lu kB\n" "VmRSS:\t%8lu kB\n" "VmData:\t%8lu kB\n" "VmStk:\t%8lu kB\n" "VmExe:\t%8lu kB\n" "VmLib:\t%8lu kB\n" "VmPTE:\t%8lu kB\n", hiwater_vm << (PAGE_SHIFT-10), (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10), mm->locked_vm << (PAGE_SHIFT-10), hiwater_rss << (PAGE_SHIFT-10), total_rss << (PAGE_SHIFT-10), data << (PAGE_SHIFT-10), mm->stack_vm << (PAGE_SHIFT-10), text, lib, (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10); } unsigned long task_vsize(struct mm_struct *mm) { return PAGE_SIZE * mm->total_vm; } int task_statm(struct mm_struct *mm, int *shared, int *text, int *data, int *resident) { *shared = get_mm_counter(mm, file_rss); *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> PAGE_SHIFT; *data = mm->total_vm - mm->shared_vm; *resident = *shared + get_mm_counter(mm, anon_rss); return mm->total_vm; } static void pad_len_spaces(struct seq_file *m, int len) { len = 25 + sizeof(void*) * 6 - len; if (len < 1) len = 1; seq_printf(m, "%*c", len, ' '); } static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) { if (vma && vma != priv->tail_vma) { struct mm_struct *mm = vma->vm_mm; up_read(&mm->mmap_sem); mmput(mm); } } static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_maps_private *priv = m->private; unsigned long last_addr = m->version; struct mm_struct *mm; struct vm_area_struct *vma, *tail_vma = NULL; loff_t l = *pos; /* Clear the per syscall fields in priv */ priv->task = NULL; priv->tail_vma = NULL; /* * We remember last_addr rather than next_addr to hit with * mmap_cache most of the time. We have zero last_addr at * the beginning and also after lseek. We will have -1 last_addr * after the end of the vmas. */ if (last_addr == -1UL) return NULL; priv->task = get_pid_task(priv->pid, PIDTYPE_PID); if (!priv->task) return NULL; mm = mm_for_maps(priv->task); if (!mm) return NULL; down_read(&mm->mmap_sem); tail_vma = get_gate_vma(priv->task); priv->tail_vma = tail_vma; /* Start with last addr hint */ vma = find_vma(mm, last_addr); if (last_addr && vma) { vma = vma->vm_next; goto out; } /* * Check the vma index is within the range and do * sequential scan until m_index. */ vma = NULL; if ((unsigned long)l < mm->map_count) { vma = mm->mmap; while (l-- && vma) vma = vma->vm_next; goto out; } if (l != mm->map_count) tail_vma = NULL; /* After gate vma */ out: if (vma) return vma; /* End of vmas has been reached */ m->version = (tail_vma != NULL)? 0: -1UL; up_read(&mm->mmap_sem); mmput(mm); return tail_vma; } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct proc_maps_private *priv = m->private; struct vm_area_struct *vma = v; struct vm_area_struct *tail_vma = priv->tail_vma; (*pos)++; if (vma && (vma != tail_vma) && vma->vm_next) return vma->vm_next; vma_stop(priv, vma); return (vma != tail_vma)? tail_vma: NULL; } static void m_stop(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; struct vm_area_struct *vma = v; vma_stop(priv, vma); if (priv->task) put_task_struct(priv->task); } static int do_maps_open(struct inode *inode, struct file *file, const struct seq_operations *ops) { struct proc_maps_private *priv; int ret = -ENOMEM; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (priv) { priv->pid = proc_pid(inode); ret = seq_open(file, ops); if (!ret) { struct seq_file *m = file->private_data; m->private = priv; } else { kfree(priv); } } return ret; } static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; struct file *file = vma->vm_file; int flags = vma->vm_flags; unsigned long ino = 0; unsigned long start; dev_t dev = 0; int len; if (file) { struct inode *inode = vma->vm_file->f_path.dentry->d_inode; dev = inode->i_sb->s_dev; ino = inode->i_ino; } /* We don't show the stack guard page in /proc/maps */ start = vma->vm_start; if (vma->vm_flags & VM_GROWSDOWN) start += PAGE_SIZE; seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n", start, vma->vm_end, flags & VM_READ ? 'r' : '-', flags & VM_WRITE ? 'w' : '-', flags & VM_EXEC ? 'x' : '-', flags & VM_MAYSHARE ? 's' : 'p', ((loff_t)vma->vm_pgoff) << PAGE_SHIFT, MAJOR(dev), MINOR(dev), ino, &len); /* * Print the dentry name for named mappings, and a * special [heap] marker for the heap: */ if (file) { pad_len_spaces(m, len); seq_path(m, &file->f_path, "\n"); } else { const char *name = arch_vma_name(vma); if (!name) { if (mm) { if (vma->vm_start <= mm->start_brk && vma->vm_end >= mm->brk) { name = "[heap]"; } else if (vma->vm_start <= mm->start_stack && vma->vm_end >= mm->start_stack) { name = "[stack]"; } } else { name = "[vdso]"; } } if (name) { pad_len_spaces(m, len); seq_puts(m, name); } } seq_putc(m, '\n'); } static int show_map(struct seq_file *m, void *v) { struct vm_area_struct *vma = v; struct proc_maps_private *priv = m->private; struct task_struct *task = priv->task; if (maps_protect && !ptrace_may_access(task, PTRACE_MODE_READ)) return -EACCES; show_map_vma(m, vma); if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task))? vma->vm_start: 0; return 0; } static const struct seq_operations proc_pid_maps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_map }; static int maps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_maps_op); } const struct file_operations proc_maps_operations = { .open = maps_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; /* * Proportional Set Size(PSS): my share of RSS. * * PSS of a process is the count of pages it has in memory, where each * page is divided by the number of processes sharing it. So if a * process has 1000 pages all to itself, and 1000 shared with one other * process, its PSS will be 1500. * * To keep (accumulated) division errors low, we adopt a 64bit * fixed-point pss counter to minimize division errors. So (pss >> * PSS_SHIFT) would be the real byte count. * * A shift of 12 before division means (assuming 4K page size): * - 1M 3-user-pages add up to 8KB errors; * - supports mapcount up to 2^24, or 16M; * - supports PSS up to 2^52 bytes, or 4PB. */ #define PSS_SHIFT 12 #ifdef CONFIG_PROC_PAGE_MONITOR struct mem_size_stats { struct vm_area_struct *vma; unsigned long resident; unsigned long shared_clean; unsigned long shared_dirty; unsigned long private_clean; unsigned long private_dirty; unsigned long referenced; unsigned long swap; u64 pss; }; static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct mem_size_stats *mss = walk->private; struct vm_area_struct *vma = mss->vma; pte_t *pte, ptent; spinlock_t *ptl; struct page *page; int mapcount; pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { ptent = *pte; if (is_swap_pte(ptent)) { mss->swap += PAGE_SIZE; continue; } if (!pte_present(ptent)) continue; mss->resident += PAGE_SIZE; page = vm_normal_page(vma, addr, ptent); if (!page) continue; /* Accumulate the size in pages that have been accessed. */ if (pte_young(ptent) || PageReferenced(page)) mss->referenced += PAGE_SIZE; mapcount = page_mapcount(page); if (mapcount >= 2) { if (pte_dirty(ptent)) mss->shared_dirty += PAGE_SIZE; else mss->shared_clean += PAGE_SIZE; mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; } else { if (pte_dirty(ptent)) mss->private_dirty += PAGE_SIZE; else mss->private_clean += PAGE_SIZE; mss->pss += (PAGE_SIZE << PSS_SHIFT); } } pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } static int show_smap(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; struct task_struct *task = priv->task; struct vm_area_struct *vma = v; struct mem_size_stats mss; struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range, .mm = vma->vm_mm, .private = &mss, }; if (maps_protect && !ptrace_may_access(task, PTRACE_MODE_READ)) return -EACCES; memset(&mss, 0, sizeof mss); mss.vma = vma; if (vma->vm_mm && !is_vm_hugetlb_page(vma)) walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk); show_map_vma(m, vma); seq_printf(m, "Size: %8lu kB\n" "Rss: %8lu kB\n" "Pss: %8lu kB\n" "Shared_Clean: %8lu kB\n" "Shared_Dirty: %8lu kB\n" "Private_Clean: %8lu kB\n" "Private_Dirty: %8lu kB\n" "Referenced: %8lu kB\n" "Swap: %8lu kB\n", (vma->vm_end - vma->vm_start) >> 10, mss.resident >> 10, (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), mss.shared_clean >> 10, mss.shared_dirty >> 10, mss.private_clean >> 10, mss.private_dirty >> 10, mss.referenced >> 10, mss.swap >> 10); if (m->count < m->size) /* vma is copied successfully */ m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0; return 0; } static const struct seq_operations proc_pid_smaps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_smap }; static int smaps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_smaps_op); } const struct file_operations proc_smaps_operations = { .open = smaps_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->private; pte_t *pte, ptent; spinlock_t *ptl; struct page *page; pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { ptent = *pte; if (!pte_present(ptent)) continue; page = vm_normal_page(vma, addr, ptent); if (!page) continue; /* Clear accessed and referenced bits. */ ptep_test_and_clear_young(vma, addr, pte); ClearPageReferenced(page); } pte_unmap_unlock(pte - 1, ptl); cond_resched(); return 0; } static ssize_t clear_refs_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct task_struct *task; char buffer[PROC_NUMBUF], *end; struct mm_struct *mm; struct vm_area_struct *vma; memset(buffer, 0, sizeof(buffer)); if (count > sizeof(buffer) - 1) count = sizeof(buffer) - 1; if (copy_from_user(buffer, buf, count)) return -EFAULT; if (!simple_strtol(buffer, &end, 0)) return -EINVAL; if (*end == '\n') end++; task = get_proc_task(file->f_path.dentry->d_inode); if (!task) return -ESRCH; mm = get_task_mm(task); if (mm) { struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range, .mm = mm, }; down_read(&mm->mmap_sem); for (vma = mm->mmap; vma; vma = vma->vm_next) { clear_refs_walk.private = vma; if (!is_vm_hugetlb_page(vma)) walk_page_range(vma->vm_start, vma->vm_end, &clear_refs_walk); } flush_tlb_mm(mm); up_read(&mm->mmap_sem); mmput(mm); } put_task_struct(task); if (end - buffer == 0) return -EIO; return end - buffer; } const struct file_operations proc_clear_refs_operations = { .write = clear_refs_write, }; struct pagemapread { u64 __user *out, *end; }; #define PM_ENTRY_BYTES sizeof(u64) #define PM_STATUS_BITS 3 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) #define PM_PSHIFT_BITS 6 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) #define PM_PRESENT PM_STATUS(4LL) #define PM_SWAP PM_STATUS(2LL) #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT) #define PM_END_OF_BUFFER 1 static int add_to_pagemap(unsigned long addr, u64 pfn, struct pagemapread *pm) { if (put_user(pfn, pm->out)) return -EFAULT; pm->out++; if (pm->out >= pm->end) return PM_END_OF_BUFFER; return 0; } static int pagemap_pte_hole(unsigned long start, unsigned long end, struct mm_walk *walk) { struct pagemapread *pm = walk->private; unsigned long addr; int err = 0; for (addr = start; addr < end; addr += PAGE_SIZE) { err = add_to_pagemap(addr, PM_NOT_PRESENT, pm); if (err) break; } return err; } static u64 swap_pte_to_pagemap_entry(pte_t pte) { swp_entry_t e = pte_to_swp_entry(pte); return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT); } static u64 pte_to_pagemap_entry(pte_t pte) { u64 pme = 0; if (is_swap_pte(pte)) pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte)) | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP; else if (pte_present(pte)) pme = PM_PFRAME(pte_pfn(pte)) | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT; return pme; } static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma; struct pagemapread *pm = walk->private; pte_t *pte; int err = 0; /* find the first VMA at or above 'addr' */ vma = find_vma(walk->mm, addr); for (; addr != end; addr += PAGE_SIZE) { u64 pfn = PM_NOT_PRESENT; /* check to see if we've left 'vma' behind * and need a new, higher one */ if (vma && (addr >= vma->vm_end)) vma = find_vma(walk->mm, addr); /* check that 'vma' actually covers this address, * and that it isn't a huge page vma */ if (vma && (vma->vm_start <= addr) && !is_vm_hugetlb_page(vma)) { pte = pte_offset_map(pmd, addr); pfn = pte_to_pagemap_entry(*pte); /* unmap before userspace copy */ pte_unmap(pte); } err = add_to_pagemap(addr, pfn, pm); if (err) return err; } cond_resched(); return err; } /* * /proc/pid/pagemap - an array mapping virtual pages to pfns * * For each page in the address space, this file contains one 64-bit entry * consisting of the following: * * Bits 0-55 page frame number (PFN) if present * Bits 0-4 swap type if swapped * Bits 5-55 swap offset if swapped * Bits 55-60 page shift (page size = 1<f_path.dentry->d_inode); struct page **pages, *page; unsigned long uaddr, uend; struct mm_struct *mm; struct pagemapread pm; int pagecount; int ret = -ESRCH; struct mm_walk pagemap_walk = {}; unsigned long src; unsigned long svpfn; unsigned long start_vaddr; unsigned long end_vaddr; if (!task) goto out; ret = -EACCES; if (!ptrace_may_access(task, PTRACE_MODE_READ)) goto out_task; ret = -EINVAL; /* file position must be aligned */ if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) goto out_task; ret = 0; if (!count) goto out_task; mm = get_task_mm(task); if (!mm) goto out_task; uaddr = (unsigned long)buf & PAGE_MASK; uend = (unsigned long)(buf + count); pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE; ret = 0; if (pagecount == 0) goto out_mm; pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL); ret = -ENOMEM; if (!pages) goto out_mm; down_read(¤t->mm->mmap_sem); ret = get_user_pages(current, current->mm, uaddr, pagecount, 1, 0, pages, NULL); up_read(¤t->mm->mmap_sem); if (ret < 0) goto out_free; if (ret != pagecount) { pagecount = ret; ret = -EFAULT; goto out_pages; } pm.out = (u64 *)buf; pm.end = (u64 *)(buf + count); pagemap_walk.pmd_entry = pagemap_pte_range; pagemap_walk.pte_hole = pagemap_pte_hole; pagemap_walk.mm = mm; pagemap_walk.private = ± src = *ppos; svpfn = src / PM_ENTRY_BYTES; start_vaddr = svpfn << PAGE_SHIFT; end_vaddr = TASK_SIZE_OF(task); /* watch out for wraparound */ if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) start_vaddr = end_vaddr; /* * The odds are that this will stop walking way * before end_vaddr, because the length of the * user buffer is tracked in "pm", and the walk * will stop when we hit the end of the buffer. */ ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk); if (ret == PM_END_OF_BUFFER) ret = 0; /* don't need mmap_sem for these, but this looks cleaner */ *ppos += (char *)pm.out - buf; if (!ret) ret = (char *)pm.out - buf; out_pages: for (; pagecount; pagecount--) { page = pages[pagecount-1]; if (!PageReserved(page)) SetPageDirty(page); page_cache_release(page); } out_free: kfree(pages); out_mm: mmput(mm); out_task: put_task_struct(task); out: return ret; } const struct file_operations proc_pagemap_operations = { .llseek = mem_lseek, /* borrow this */ .read = pagemap_read, }; #endif /* CONFIG_PROC_PAGE_MONITOR */ #ifdef CONFIG_NUMA extern int show_numa_map(struct seq_file *m, void *v); static int show_numa_map_checked(struct seq_file *m, void *v) { struct proc_maps_private *priv = m->private; struct task_struct *task = priv->task; if (maps_protect && !ptrace_may_access(task, PTRACE_MODE_READ)) return -EACCES; return show_numa_map(m, v); } static const struct seq_operations proc_pid_numa_maps_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = show_numa_map_checked }; static int numa_maps_open(struct inode *inode, struct file *file) { return do_maps_open(inode, file, &proc_pid_numa_maps_op); } const struct file_operations proc_numa_maps_operations = { .open = numa_maps_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif