/* * linux/fs/pipe.c * * Copyright (C) 1991, 1992, 1999 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct kmem_cache *pipe_info_cache __read_mostly; /* * We use a start+len construction, which provides full use of the * allocated memory. * -- Florian Coosmann (FGC) * * Reads with count = 0 should always return 0. * -- Julian Bradfield 1999-06-07. * * FIFOs and Pipes now generate SIGIO for both readers and writers. * -- Jeremy Elson 2001-08-16 * * pipe_read & write cleanup * -- Manfred Spraul 2002-05-09 */ static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) { if (pipe->inode) mutex_lock_nested(&pipe->inode->i_mutex, subclass); } void pipe_lock(struct pipe_inode_info *pipe) { /* * pipe_lock() nests non-pipe inode locks (for writing to a file) */ pipe_lock_nested(pipe, I_MUTEX_PARENT); } EXPORT_SYMBOL(pipe_lock); void pipe_unlock(struct pipe_inode_info *pipe) { if (pipe->inode) mutex_unlock(&pipe->inode->i_mutex); } EXPORT_SYMBOL(pipe_unlock); void pipe_double_lock(struct pipe_inode_info *pipe1, struct pipe_inode_info *pipe2) { BUG_ON(pipe1 == pipe2); if (pipe1 < pipe2) { pipe_lock_nested(pipe1, I_MUTEX_PARENT); pipe_lock_nested(pipe2, I_MUTEX_CHILD); } else { pipe_lock_nested(pipe2, I_MUTEX_PARENT); pipe_lock_nested(pipe1, I_MUTEX_CHILD); } } /* Drop the inode semaphore and wait for a pipe event, atomically */ void pipe_wait(struct pipe_inode_info *pipe) { DEFINE_WAIT(wait); /* * Pipes are system-local resources, so sleeping on them * is considered a noninteractive wait: */ prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE); pipe_unlock(pipe); schedule(); finish_wait(&pipe->wait, &wait); pipe_lock(pipe); } static int pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len, int atomic) { unsigned long copy; while (len > 0) { while (!iov->iov_len) iov++; copy = min_t(unsigned long, len, iov->iov_len); if (atomic) { if (__copy_from_user_inatomic(to, iov->iov_base, copy)) return -EFAULT; } else { if (copy_from_user(to, iov->iov_base, copy)) return -EFAULT; } to += copy; len -= copy; iov->iov_base += copy; iov->iov_len -= copy; } return 0; } static int pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len, int atomic) { unsigned long copy; while (len > 0) { while (!iov->iov_len) iov++; copy = min_t(unsigned long, len, iov->iov_len); if (atomic) { if (__copy_to_user_inatomic(iov->iov_base, from, copy)) return -EFAULT; } else { if (copy_to_user(iov->iov_base, from, copy)) return -EFAULT; } from += copy; len -= copy; iov->iov_base += copy; iov->iov_len -= copy; } return 0; } /* * Attempt to pre-fault in the user memory, so we can use atomic copies. * Returns the number of bytes not faulted in. */ static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len) { while (!iov->iov_len) iov++; while (len > 0) { unsigned long this_len; this_len = min_t(unsigned long, len, iov->iov_len); if (fault_in_pages_writeable(iov->iov_base, this_len)) break; len -= this_len; iov++; } return len; } /* * Pre-fault in the user memory, so we can use atomic copies. */ static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len) { while (!iov->iov_len) iov++; while (len > 0) { unsigned long this_len; this_len = min_t(unsigned long, len, iov->iov_len); fault_in_pages_readable(iov->iov_base, this_len); len -= this_len; iov++; } } static void anon_pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { struct page *page = buf->page; /* * If nobody else uses this page, and we don't already have a * temporary page, let's keep track of it as a one-deep * allocation cache. (Otherwise just release our reference to it) */ if (page_count(page) == 1 && !pipe->tmp_page) pipe->tmp_page = page; else page_cache_release(page); } /** * generic_pipe_buf_map - virtually map a pipe buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer that should be mapped * @atomic: whether to use an atomic map * * Description: * This function returns a kernel virtual address mapping for the * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided * and the caller has to be careful not to fault before calling * the unmap function. * * Note that this function occupies KM_USER0 if @atomic != 0. */ void *generic_pipe_buf_map(struct pipe_inode_info *pipe, struct pipe_buffer *buf, int atomic) { if (atomic) { buf->flags |= PIPE_BUF_FLAG_ATOMIC; return kmap_atomic(buf->page, KM_USER0); } return kmap(buf->page); } /** * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer that should be unmapped * @map_data: the data that the mapping function returned * * Description: * This function undoes the mapping that ->map() provided. */ void generic_pipe_buf_unmap(struct pipe_inode_info *pipe, struct pipe_buffer *buf, void *map_data) { if (buf->flags & PIPE_BUF_FLAG_ATOMIC) { buf->flags &= ~PIPE_BUF_FLAG_ATOMIC; kunmap_atomic(map_data, KM_USER0); } else kunmap(buf->page); } /** * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to attempt to steal * * Description: * This function attempts to steal the &struct page attached to * @buf. If successful, this function returns 0 and returns with * the page locked. The caller may then reuse the page for whatever * he wishes; the typical use is insertion into a different file * page cache. */ int generic_pipe_buf_steal(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { struct page *page = buf->page; /* * A reference of one is golden, that means that the owner of this * page is the only one holding a reference to it. lock the page * and return OK. */ if (page_count(page) == 1) { lock_page(page); return 0; } return 1; } /** * generic_pipe_buf_get - get a reference to a &struct pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to get a reference to * * Description: * This function grabs an extra reference to @buf. It's used in * in the tee() system call, when we duplicate the buffers in one * pipe into another. */ void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { page_cache_get(buf->page); } /** * generic_pipe_buf_confirm - verify contents of the pipe buffer * @info: the pipe that the buffer belongs to * @buf: the buffer to confirm * * Description: * This function does nothing, because the generic pipe code uses * pages that are always good when inserted into the pipe. */ int generic_pipe_buf_confirm(struct pipe_inode_info *info, struct pipe_buffer *buf) { return 0; } /** * generic_pipe_buf_release - put a reference to a &struct pipe_buffer * @pipe: the pipe that the buffer belongs to * @buf: the buffer to put a reference to * * Description: * This function releases a reference to @buf. */ void generic_pipe_buf_release(struct pipe_inode_info *pipe, struct pipe_buffer *buf) { page_cache_release(buf->page); } static const struct pipe_buf_operations anon_pipe_buf_ops = { .can_merge = 1, .map = generic_pipe_buf_map, .unmap = generic_pipe_buf_unmap, .confirm = generic_pipe_buf_confirm, .release = anon_pipe_buf_release, .steal = generic_pipe_buf_steal, .get = generic_pipe_buf_get, }; static ssize_t pipe_read(struct kiocb *iocb, const struct iovec *_iov, unsigned long nr_segs, loff_t pos) { struct file *filp = iocb->ki_filp; struct inode *inode = filp->f_path.dentry->d_inode; struct pipe_inode_info *pipe; int do_wakeup; ssize_t ret; struct iovec *iov = (struct iovec *)_iov; size_t total_len; total_len = iov_length(iov, nr_segs); /* Null read succeeds. */ if (unlikely(total_len == 0)) return 0; do_wakeup = 0; ret = 0; mutex_lock(&inode->i_mutex); pipe = inode->i_pipe; for (;;) { int bufs = pipe->nrbufs; if (bufs) { int curbuf = pipe->curbuf; struct pipe_buffer *buf = pipe->bufs + curbuf; const struct pipe_buf_operations *ops = buf->ops; void *addr; size_t chars = buf->len; int error, atomic; if (chars > total_len) chars = total_len; error = ops->confirm(pipe, buf); if (error) { if (!ret) error = ret; break; } atomic = !iov_fault_in_pages_write(iov, chars); redo: addr = ops->map(pipe, buf, atomic); error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic); ops->unmap(pipe, buf, addr); if (unlikely(error)) { /* * Just retry with the slow path if we failed. */ if (atomic) { atomic = 0; goto redo; } if (!ret) ret = error; break; } ret += chars; buf->offset += chars; buf->len -= chars; if (!buf->len) { buf->ops = NULL; ops->release(pipe, buf); curbuf = (curbuf + 1) & (PIPE_BUFFERS-1); pipe->curbuf = curbuf; pipe->nrbufs = --bufs; do_wakeup = 1; } total_len -= chars; if (!total_len) break; /* common path: read succeeded */ } if (bufs) /* More to do? */ continue; if (!pipe->writers) break; if (!pipe->waiting_writers) { /* syscall merging: Usually we must not sleep * if O_NONBLOCK is set, or if we got some data. * But if a writer sleeps in kernel space, then * we can wait for that data without violating POSIX. */ if (ret) break; if (filp->f_flags & O_NONBLOCK) { ret = -EAGAIN; break; } } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } if (do_wakeup) { wake_up_interruptible_sync(&pipe->wait); kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); } pipe_wait(pipe); } mutex_unlock(&inode->i_mutex); /* Signal writers asynchronously that there is more room. */ if (do_wakeup) { wake_up_interruptible_sync(&pipe->wait); kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); } if (ret > 0) file_accessed(filp); return ret; } static ssize_t pipe_write(struct kiocb *iocb, const struct iovec *_iov, unsigned long nr_segs, loff_t ppos) { struct file *filp = iocb->ki_filp; struct inode *inode = filp->f_path.dentry->d_inode; struct pipe_inode_info *pipe; ssize_t ret; int do_wakeup; struct iovec *iov = (struct iovec *)_iov; size_t total_len; ssize_t chars; total_len = iov_length(iov, nr_segs); /* Null write succeeds. */ if (unlikely(total_len == 0)) return 0; do_wakeup = 0; ret = 0; mutex_lock(&inode->i_mutex); pipe = inode->i_pipe; if (!pipe->readers) { send_sig(SIGPIPE, current, 0); ret = -EPIPE; goto out; } /* We try to merge small writes */ chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */ if (pipe->nrbufs && chars != 0) { int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) & (PIPE_BUFFERS-1); struct pipe_buffer *buf = pipe->bufs + lastbuf; const struct pipe_buf_operations *ops = buf->ops; int offset = buf->offset + buf->len; if (ops->can_merge && offset + chars <= PAGE_SIZE) { int error, atomic = 1; void *addr; error = ops->confirm(pipe, buf); if (error) goto out; iov_fault_in_pages_read(iov, chars); redo1: addr = ops->map(pipe, buf, atomic); error = pipe_iov_copy_from_user(offset + addr, iov, chars, atomic); ops->unmap(pipe, buf, addr); ret = error; do_wakeup = 1; if (error) { if (atomic) { atomic = 0; goto redo1; } goto out; } buf->len += chars; total_len -= chars; ret = chars; if (!total_len) goto out; } } for (;;) { int bufs; if (!pipe->readers) { send_sig(SIGPIPE, current, 0); if (!ret) ret = -EPIPE; break; } bufs = pipe->nrbufs; if (bufs < PIPE_BUFFERS) { int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1); struct pipe_buffer *buf = pipe->bufs + newbuf; struct page *page = pipe->tmp_page; char *src; int error, atomic = 1; if (!page) { page = alloc_page(GFP_HIGHUSER); if (unlikely(!page)) { ret = ret ? : -ENOMEM; break; } pipe->tmp_page = page; } /* Always wake up, even if the copy fails. Otherwise * we lock up (O_NONBLOCK-)readers that sleep due to * syscall merging. * FIXME! Is this really true? */ do_wakeup = 1; chars = PAGE_SIZE; if (chars > total_len) chars = total_len; iov_fault_in_pages_read(iov, chars); redo2: if (atomic) src = kmap_atomic(page, KM_USER0); else src = kmap(page); error = pipe_iov_copy_from_user(src, iov, chars, atomic); if (atomic) kunmap_atomic(src, KM_USER0); else kunmap(page); if (unlikely(error)) { if (atomic) { atomic = 0; goto redo2; } if (!ret) ret = error; break; } ret += chars; /* Insert it into the buffer array */ buf->page = page; buf->ops = &anon_pipe_buf_ops; buf->offset = 0; buf->len = chars; pipe->nrbufs = ++bufs; pipe->tmp_page = NULL; total_len -= chars; if (!total_len) break; } if (bufs < PIPE_BUFFERS) continue; if (filp->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } if (do_wakeup) { wake_up_interruptible_sync(&pipe->wait); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); do_wakeup = 0; } pipe->waiting_writers++; pipe_wait(pipe); pipe->waiting_writers--; } out: mutex_unlock(&inode->i_mutex); if (do_wakeup) { wake_up_interruptible_sync(&pipe->wait); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); } if (ret > 0) file_update_time(filp); return ret; } static ssize_t bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { return -EBADF; } static ssize_t bad_pipe_w(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { return -EBADF; } static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = filp->f_path.dentry->d_inode; struct pipe_inode_info *pipe; int count, buf, nrbufs; switch (cmd) { case FIONREAD: mutex_lock(&inode->i_mutex); pipe = inode->i_pipe; count = 0; buf = pipe->curbuf; nrbufs = pipe->nrbufs; while (--nrbufs >= 0) { count += pipe->bufs[buf].len; buf = (buf+1) & (PIPE_BUFFERS-1); } mutex_unlock(&inode->i_mutex); return put_user(count, (int __user *)arg); default: return -EINVAL; } } /* No kernel lock held - fine */ static unsigned int pipe_poll(struct file *filp, poll_table *wait) { unsigned int mask; struct inode *inode = filp->f_path.dentry->d_inode; struct pipe_inode_info *pipe = inode->i_pipe; int nrbufs; poll_wait(filp, &pipe->wait, wait); /* Reading only -- no need for acquiring the semaphore. */ nrbufs = pipe->nrbufs; mask = 0; if (filp->f_mode & FMODE_READ) { mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0; if (!pipe->writers && filp->f_version != pipe->w_counter) mask |= POLLHUP; } if (filp->f_mode & FMODE_WRITE) { mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0; /* * Most Unices do not set POLLERR for FIFOs but on Linux they * behave exactly like pipes for poll(). */ if (!pipe->readers) mask |= POLLERR; } return mask; } static int pipe_release(struct inode *inode, int decr, int decw) { struct pipe_inode_info *pipe; mutex_lock(&inode->i_mutex); pipe = inode->i_pipe; pipe->readers -= decr; pipe->writers -= decw; if (!pipe->readers && !pipe->writers) { free_pipe_info(inode); } else { wake_up_interruptible_sync(&pipe->wait); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); } mutex_unlock(&inode->i_mutex); return 0; } static int pipe_read_fasync(int fd, struct file *filp, int on) { struct inode *inode = filp->f_path.dentry->d_inode; int retval; mutex_lock(&inode->i_mutex); retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers); mutex_unlock(&inode->i_mutex); return retval; } static int pipe_write_fasync(int fd, struct file *filp, int on) { struct inode *inode = filp->f_path.dentry->d_inode; int retval; mutex_lock(&inode->i_mutex); retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers); mutex_unlock(&inode->i_mutex); return retval; } static int pipe_rdwr_fasync(int fd, struct file *filp, int on) { struct inode *inode = filp->f_path.dentry->d_inode; struct pipe_inode_info *pipe = inode->i_pipe; int retval; mutex_lock(&inode->i_mutex); retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); if (retval >= 0) { retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); if (retval < 0) /* this can happen only if on == T */ fasync_helper(-1, filp, 0, &pipe->fasync_readers); } mutex_unlock(&inode->i_mutex); return retval; } static int pipe_read_release(struct inode *inode, struct file *filp) { return pipe_release(inode, 1, 0); } static int pipe_write_release(struct inode *inode, struct file *filp) { return pipe_release(inode, 0, 1); } static int pipe_rdwr_release(struct inode *inode, struct file *filp) { int decr, decw; decr = (filp->f_mode & FMODE_READ) != 0; decw = (filp->f_mode & FMODE_WRITE) != 0; return pipe_release(inode, decr, decw); } static int pipe_read_open(struct inode *inode, struct file *filp) { int ret = -ENOENT; mutex_lock(&inode->i_mutex); if (inode->i_pipe) { ret = 0; inode->i_pipe->readers++; } mutex_unlock(&inode->i_mutex); return ret; } static int pipe_write_open(struct inode *inode, struct file *filp) { int ret = -ENOENT; mutex_lock(&inode->i_mutex); if (inode->i_pipe) { ret = 0; inode->i_pipe->writers++; } mutex_unlock(&inode->i_mutex); return ret; } static int pipe_rdwr_open(struct inode *inode, struct file *filp) { int ret = -ENOENT; mutex_lock(&inode->i_mutex); if (inode->i_pipe) { ret = 0; if (filp->f_mode & FMODE_READ) inode->i_pipe->readers++; if (filp->f_mode & FMODE_WRITE) inode->i_pipe->writers++; } mutex_unlock(&inode->i_mutex); return ret; } /* * The file_operations structs are not static because they * are also used in linux/fs/fifo.c to do operations on FIFOs. * * Pipes reuse fifos' file_operations structs. */ const struct file_operations read_pipefifo_fops = { .llseek = no_llseek, .read = do_sync_read, .aio_read = pipe_read, .write = bad_pipe_w, .poll = pipe_poll, .unlocked_ioctl = pipe_ioctl, .open = pipe_read_open, .release = pipe_read_release, .fasync = pipe_read_fasync, }; const struct file_operations write_pipefifo_fops = { .llseek = no_llseek, .read = bad_pipe_r, .write = do_sync_write, .aio_write = pipe_write, .poll = pipe_poll, .unlocked_ioctl = pipe_ioctl, .open = pipe_write_open, .release = pipe_write_release, .fasync = pipe_write_fasync, }; const struct file_operations rdwr_pipefifo_fops = { .llseek = no_llseek, .read = do_sync_read, .aio_read = pipe_read, .write = do_sync_write, .aio_write = pipe_write, .poll = pipe_poll, .unlocked_ioctl = pipe_ioctl, .open = pipe_rdwr_open, .release = pipe_rdwr_release, .fasync = pipe_rdwr_fasync, }; struct pipe_inode_info * alloc_pipe_info(struct inode *inode) { struct pipe_inode_info *pipe; pipe = kmem_cache_zalloc(pipe_info_cache, GFP_KERNEL); if (pipe) { init_waitqueue_head(&pipe->wait); pipe->r_counter = pipe->w_counter = 1; pipe->inode = inode; } return pipe; } void __free_pipe_info(struct pipe_inode_info *pipe) { int i; for (i = 0; i < PIPE_BUFFERS; i++) { struct pipe_buffer *buf = pipe->bufs + i; if (buf->ops) buf->ops->release(pipe, buf); } if (pipe->tmp_page) __free_page(pipe->tmp_page); kmem_cache_free(pipe_info_cache, pipe); } void free_pipe_info(struct inode *inode) { __free_pipe_info(inode->i_pipe); inode->i_pipe = NULL; } static struct vfsmount *pipe_mnt __read_mostly; static int pipefs_delete_dentry(struct dentry *dentry) { /* * At creation time, we pretended this dentry was hashed * (by clearing DCACHE_UNHASHED bit in d_flags) * At delete time, we restore the truth : not hashed. * (so that dput() can proceed correctly) */ dentry->d_flags |= DCACHE_UNHASHED; return 0; } /* * pipefs_dname() is called from d_path(). */ static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", dentry->d_inode->i_ino); } static const struct dentry_operations pipefs_dentry_operations = { .d_delete = pipefs_delete_dentry, .d_dname = pipefs_dname, }; static struct inode * get_pipe_inode(void) { struct inode *inode = new_inode(pipe_mnt->mnt_sb); struct pipe_inode_info *pipe; if (!inode) goto fail_inode; pipe = alloc_pipe_info(inode); if (!pipe) goto fail_iput; inode->i_pipe = pipe; pipe->readers = pipe->writers = 1; inode->i_fop = &rdwr_pipefifo_fops; /* * Mark the inode dirty from the very beginning, * that way it will never be moved to the dirty * list because "mark_inode_dirty()" will think * that it already _is_ on the dirty list. */ inode->i_state = I_DIRTY; inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; return inode; fail_iput: iput(inode); fail_inode: return NULL; } struct file *create_write_pipe(int flags) { int err; struct inode *inode; struct file *f; struct dentry *dentry; struct qstr name = { .name = "" }; err = -ENFILE; inode = get_pipe_inode(); if (!inode) goto err; err = -ENOMEM; dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name); if (!dentry) goto err_inode; dentry->d_op = &pipefs_dentry_operations; /* * We dont want to publish this dentry into global dentry hash table. * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED * This permits a working /proc/$pid/fd/XXX on pipes */ dentry->d_flags &= ~DCACHE_UNHASHED; d_instantiate(dentry, inode); err = -ENFILE; f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops); if (!f) goto err_dentry; f->f_mapping = inode->i_mapping; f->f_flags = O_WRONLY | (flags & O_NONBLOCK); f->f_version = 0; return f; err_dentry: free_pipe_info(inode); dput(dentry); return ERR_PTR(err); err_inode: free_pipe_info(inode); iput(inode); err: return ERR_PTR(err); } void free_write_pipe(struct file *f) { free_pipe_info(f->f_dentry->d_inode); path_put(&f->f_path); put_filp(f); } struct file *create_read_pipe(struct file *wrf, int flags) { struct file *f = get_empty_filp(); if (!f) return ERR_PTR(-ENFILE); /* Grab pipe from the writer */ f->f_path = wrf->f_path; path_get(&wrf->f_path); f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping; f->f_pos = 0; f->f_flags = O_RDONLY | (flags & O_NONBLOCK); f->f_op = &read_pipefifo_fops; f->f_mode = FMODE_READ; f->f_version = 0; return f; } int do_pipe_flags(int *fd, int flags) { struct file *fw, *fr; int error; int fdw, fdr; if (flags & ~(O_CLOEXEC | O_NONBLOCK)) return -EINVAL; fw = create_write_pipe(flags); if (IS_ERR(fw)) return PTR_ERR(fw); fr = create_read_pipe(fw, flags); error = PTR_ERR(fr); if (IS_ERR(fr)) goto err_write_pipe; error = get_unused_fd_flags(flags); if (error < 0) goto err_read_pipe; fdr = error; error = get_unused_fd_flags(flags); if (error < 0) goto err_fdr; fdw = error; audit_fd_pair(fdr, fdw); fd_install(fdr, fr); fd_install(fdw, fw); fd[0] = fdr; fd[1] = fdw; return 0; err_fdr: put_unused_fd(fdr); err_read_pipe: path_put(&fr->f_path); put_filp(fr); err_write_pipe: free_write_pipe(fw); return error; } /* * sys_pipe() is the normal C calling standard for creating * a pipe. It's not the way Unix traditionally does this, though. */ SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) { int fd[2]; int error; error = do_pipe_flags(fd, flags); if (!error) { if (copy_to_user(fildes, fd, sizeof(fd))) { sys_close(fd[0]); sys_close(fd[1]); error = -EFAULT; } } return error; } SYSCALL_DEFINE1(pipe, int __user *, fildes) { return sys_pipe2(fildes, 0); } /* * pipefs should _never_ be mounted by userland - too much of security hassle, * no real gain from having the whole whorehouse mounted. So we don't need * any operations on the root directory. However, we need a non-trivial * d_name - pipe: will go nicely and kill the special-casing in procfs. */ static int pipefs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt); } static struct file_system_type pipe_fs_type = { .name = "pipefs", .get_sb = pipefs_get_sb, .kill_sb = kill_anon_super, }; static int __init init_pipe_fs(void) { int err = register_filesystem(&pipe_fs_type); if (!err) { pipe_mnt = kern_mount(&pipe_fs_type); if (IS_ERR(pipe_mnt)) { err = PTR_ERR(pipe_mnt); unregister_filesystem(&pipe_fs_type); } } if (!err) { pipe_info_cache = KMEM_CACHE(pipe_inode_info, SLAB_PANIC); printk(KERN_INFO "%s: pipe_inode_cache initialized\n", __FUNCTION__); } return err; } static void __exit exit_pipe_fs(void) { unregister_filesystem(&pipe_fs_type); mntput(pipe_mnt); } fs_initcall(init_pipe_fs); module_exit(exit_pipe_fs);