/* * linux/fs/namei.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * Some corrections by tytso. */ /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname * lookup logic. */ /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/pagemap.h> #include <linux/fsnotify.h> #include <linux/personality.h> #include <linux/security.h> #include <linux/ima.h> #include <linux/syscalls.h> #include <linux/mount.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/file.h> #include <linux/fcntl.h> #include <linux/device_cgroup.h> #include <asm/uaccess.h> #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) /* [Feb-1997 T. Schoebel-Theuer] * Fundamental changes in the pathname lookup mechanisms (namei) * were necessary because of omirr. The reason is that omirr needs * to know the _real_ pathname, not the user-supplied one, in case * of symlinks (and also when transname replacements occur). * * The new code replaces the old recursive symlink resolution with * an iterative one (in case of non-nested symlink chains). It does * this with calls to <fs>_follow_link(). * As a side effect, dir_namei(), _namei() and follow_link() are now * replaced with a single function lookup_dentry() that can handle all * the special cases of the former code. * * With the new dcache, the pathname is stored at each inode, at least as * long as the refcount of the inode is positive. As a side effect, the * size of the dcache depends on the inode cache and thus is dynamic. * * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink * resolution to correspond with current state of the code. * * Note that the symlink resolution is not *completely* iterative. * There is still a significant amount of tail- and mid- recursion in * the algorithm. Also, note that <fs>_readlink() is not used in * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() * may return different results than <fs>_follow_link(). Many virtual * filesystems (including /proc) exhibit this behavior. */ /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL * and the name already exists in form of a symlink, try to create the new * name indicated by the symlink. The old code always complained that the * name already exists, due to not following the symlink even if its target * is nonexistent. The new semantics affects also mknod() and link() when * the name is a symlink pointing to a non-existant name. * * I don't know which semantics is the right one, since I have no access * to standards. But I found by trial that HP-UX 9.0 has the full "new" * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the * "old" one. Personally, I think the new semantics is much more logical. * Note that "ln old new" where "new" is a symlink pointing to a non-existing * file does succeed in both HP-UX and SunOs, but not in Solaris * and in the old Linux semantics. */ /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink * semantics. See the comments in "open_namei" and "do_link" below. * * [10-Sep-98 Alan Modra] Another symlink change. */ /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: * inside the path - always follow. * in the last component in creation/removal/renaming - never follow. * if LOOKUP_FOLLOW passed - follow. * if the pathname has trailing slashes - follow. * otherwise - don't follow. * (applied in that order). * * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT * restored for 2.4. This is the last surviving part of old 4.2BSD bug. * During the 2.4 we need to fix the userland stuff depending on it - * hopefully we will be able to get rid of that wart in 2.5. So far only * XEmacs seems to be relying on it... */ /* * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives * any extra contention... */ static int __link_path_walk(const char *name, struct nameidata *nd); /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). * PATH_MAX includes the nul terminator --RR. */ static int do_getname(const char __user *filename, char *page) { int retval; unsigned long len = PATH_MAX; if (!segment_eq(get_fs(), KERNEL_DS)) { if ((unsigned long) filename >= TASK_SIZE) return -EFAULT; if (TASK_SIZE - (unsigned long) filename < PATH_MAX) len = TASK_SIZE - (unsigned long) filename; } retval = strncpy_from_user(page, filename, len); if (retval > 0) { if (retval < len) return 0; return -ENAMETOOLONG; } else if (!retval) retval = -ENOENT; return retval; } char * getname(const char __user * filename) { char *tmp, *result; result = ERR_PTR(-ENOMEM); tmp = __getname(); if (tmp) { int retval = do_getname(filename, tmp); result = tmp; if (retval < 0) { __putname(tmp); result = ERR_PTR(retval); } } audit_getname(result); return result; } #ifdef CONFIG_AUDITSYSCALL void putname(const char *name) { if (unlikely(!audit_dummy_context())) audit_putname(name); else __putname(name); } EXPORT_SYMBOL(putname); #endif /** * generic_permission - check for access rights on a Posix-like filesystem * @inode: inode to check access rights for * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * @check_acl: optional callback to check for Posix ACLs * * Used to check for read/write/execute permissions on a file. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things.. */ int generic_permission(struct inode *inode, int mask, int (*check_acl)(struct inode *inode, int mask)) { umode_t mode = inode->i_mode; mask &= MAY_READ | MAY_WRITE | MAY_EXEC; if (current_fsuid() == inode->i_uid) mode >>= 6; else { if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { int error = check_acl(inode, mask); if (error == -EACCES) goto check_capabilities; else if (error != -EAGAIN) return error; } if (in_group_p(inode->i_gid)) mode >>= 3; } /* * If the DACs are ok we don't need any capability check. */ if ((mask & ~mode) == 0) return 0; check_capabilities: /* * Read/write DACs are always overridable. * Executable DACs are overridable if at least one exec bit is set. */ if (!(mask & MAY_EXEC) || execute_ok(inode)) if (capable(CAP_DAC_OVERRIDE)) return 0; /* * Searching includes executable on directories, else just read. */ if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) if (capable(CAP_DAC_READ_SEARCH)) return 0; return -EACCES; } /** * inode_permission - check for access rights to a given inode * @inode: inode to check permission on * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Used to check for read/write/execute permissions on an inode. * We use "fsuid" for this, letting us set arbitrary permissions * for filesystem access without changing the "normal" uids which * are used for other things. */ int inode_permission(struct inode *inode, int mask) { int retval; if (mask & MAY_WRITE) { umode_t mode = inode->i_mode; /* * Nobody gets write access to a read-only fs. */ if (IS_RDONLY(inode) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) return -EROFS; /* * Nobody gets write access to an immutable file. */ if (IS_IMMUTABLE(inode)) return -EACCES; } if (inode->i_op->permission) retval = inode->i_op->permission(inode, mask); else retval = generic_permission(inode, mask, NULL); if (retval) return retval; retval = devcgroup_inode_permission(inode, mask); if (retval) return retval; return security_inode_permission(inode, mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); } /** * file_permission - check for additional access rights to a given file * @file: file to check access rights for * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) * * Used to check for read/write/execute permissions on an already opened * file. * * Note: * Do not use this function in new code. All access checks should * be done using inode_permission(). */ int file_permission(struct file *file, int mask) { return inode_permission(file->f_path.dentry->d_inode, mask); } /* * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * This is used for regular files. * We cannot support write (and maybe mmap read-write shared) accesses and * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode * can have the following values: * 0: no writers, no VM_DENYWRITE mappings * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist * > 0: (i_writecount) users are writing to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. Exclusion between them is provided by * the inode->i_lock spinlock. */ int get_write_access(struct inode * inode) { spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) < 0) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_inc(&inode->i_writecount); spin_unlock(&inode->i_lock); return 0; } int deny_write_access(struct file * file) { struct inode *inode = file->f_path.dentry->d_inode; spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) > 0) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_dec(&inode->i_writecount); spin_unlock(&inode->i_lock); return 0; } /** * path_get - get a reference to a path * @path: path to get the reference to * * Given a path increment the reference count to the dentry and the vfsmount. */ void path_get(struct path *path) { mntget(path->mnt); dget(path->dentry); } EXPORT_SYMBOL(path_get); /** * path_put - put a reference to a path * @path: path to put the reference to * * Given a path decrement the reference count to the dentry and the vfsmount. */ void path_put(struct path *path) { dput(path->dentry); mntput(path->mnt); } EXPORT_SYMBOL(path_put); /** * release_open_intent - free up open intent resources * @nd: pointer to nameidata */ void release_open_intent(struct nameidata *nd) { if (nd->intent.open.file->f_path.dentry == NULL) put_filp(nd->intent.open.file); else fput(nd->intent.open.file); } static inline struct dentry * do_revalidate(struct dentry *dentry, struct nameidata *nd) { int status = dentry->d_op->d_revalidate(dentry, nd); if (unlikely(status <= 0)) { /* * The dentry failed validation. * If d_revalidate returned 0 attempt to invalidate * the dentry otherwise d_revalidate is asking us * to return a fail status. */ if (!status) { if (!d_invalidate(dentry)) { dput(dentry); dentry = NULL; } } else { dput(dentry); dentry = ERR_PTR(status); } } return dentry; } /* * Internal lookup() using the new generic dcache. * SMP-safe */ static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) { struct dentry * dentry = __d_lookup(parent, name); /* lockess __d_lookup may fail due to concurrent d_move() * in some unrelated directory, so try with d_lookup */ if (!dentry) dentry = d_lookup(parent, name); if (dentry && dentry->d_op && dentry->d_op->d_revalidate) dentry = do_revalidate(dentry, nd); return dentry; } /* * Short-cut version of permission(), for calling by * path_walk(), when dcache lock is held. Combines parts * of permission() and generic_permission(), and tests ONLY for * MAY_EXEC permission. * * If appropriate, check DAC only. If not appropriate, or * short-cut DAC fails, then call permission() to do more * complete permission check. */ static int exec_permission_lite(struct inode *inode) { umode_t mode = inode->i_mode; if (inode->i_op->permission) return -EAGAIN; if (current_fsuid() == inode->i_uid) mode >>= 6; else if (in_group_p(inode->i_gid)) mode >>= 3; if (mode & MAY_EXEC) goto ok; if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) goto ok; if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) goto ok; if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) goto ok; return -EACCES; ok: return security_inode_permission(inode, MAY_EXEC); } /* * This is called when everything else fails, and we actually have * to go to the low-level filesystem to find out what we should do.. * * We get the directory semaphore, and after getting that we also * make sure that nobody added the entry to the dcache in the meantime.. * SMP-safe */ static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) { struct dentry * result; struct inode *dir = parent->d_inode; mutex_lock(&dir->i_mutex); /* * First re-do the cached lookup just in case it was created * while we waited for the directory semaphore.. * * FIXME! This could use version numbering or similar to * avoid unnecessary cache lookups. * * The "dcache_lock" is purely to protect the RCU list walker * from concurrent renames at this point (we mustn't get false * negatives from the RCU list walk here, unlike the optimistic * fast walk). * * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup */ result = d_lookup(parent, name); if (!result) { struct dentry *dentry; /* Don't create child dentry for a dead directory. */ result = ERR_PTR(-ENOENT); if (IS_DEADDIR(dir)) goto out_unlock; dentry = d_alloc(parent, name); result = ERR_PTR(-ENOMEM); if (dentry) { result = dir->i_op->lookup(dir, dentry, nd); if (result) dput(dentry); else result = dentry; } out_unlock: mutex_unlock(&dir->i_mutex); return result; } /* * Uhhuh! Nasty case: the cache was re-populated while * we waited on the semaphore. Need to revalidate. */ mutex_unlock(&dir->i_mutex); if (result->d_op && result->d_op->d_revalidate) { result = do_revalidate(result, nd); if (!result) result = ERR_PTR(-ENOENT); } return result; } /* * Wrapper to retry pathname resolution whenever the underlying * file system returns an ESTALE. * * Retry the whole path once, forcing real lookup requests * instead of relying on the dcache. */ static __always_inline int link_path_walk(const char *name, struct nameidata *nd) { struct path save = nd->path; int result; /* make sure the stuff we saved doesn't go away */ path_get(&save); result = __link_path_walk(name, nd); if (result == -ESTALE) { /* nd->path had been dropped */ nd->path = save; path_get(&nd->path); nd->flags |= LOOKUP_REVAL; result = __link_path_walk(name, nd); } path_put(&save); return result; } static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) { int res = 0; char *name; if (IS_ERR(link)) goto fail; if (*link == '/') { struct fs_struct *fs = current->fs; path_put(&nd->path); read_lock(&fs->lock); nd->path = fs->root; path_get(&fs->root); read_unlock(&fs->lock); } res = link_path_walk(link, nd); if (nd->depth || res || nd->last_type!=LAST_NORM) return res; /* * If it is an iterative symlinks resolution in open_namei() we * have to copy the last component. And all that crap because of * bloody create() on broken symlinks. Furrfu... */ name = __getname(); if (unlikely(!name)) { path_put(&nd->path); return -ENOMEM; } strcpy(name, nd->last.name); nd->last.name = name; return 0; fail: path_put(&nd->path); return PTR_ERR(link); } static void path_put_conditional(struct path *path, struct nameidata *nd) { dput(path->dentry); if (path->mnt != nd->path.mnt) mntput(path->mnt); } static inline void path_to_nameidata(struct path *path, struct nameidata *nd) { dput(nd->path.dentry); if (nd->path.mnt != path->mnt) mntput(nd->path.mnt); nd->path.mnt = path->mnt; nd->path.dentry = path->dentry; } static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) { int error; void *cookie; struct dentry *dentry = path->dentry; touch_atime(path->mnt, dentry); nd_set_link(nd, NULL); if (path->mnt != nd->path.mnt) { path_to_nameidata(path, nd); dget(dentry); } mntget(path->mnt); cookie = dentry->d_inode->i_op->follow_link(dentry, nd); error = PTR_ERR(cookie); if (!IS_ERR(cookie)) { char *s = nd_get_link(nd); error = 0; if (s) error = __vfs_follow_link(nd, s); if (dentry->d_inode->i_op->put_link) dentry->d_inode->i_op->put_link(dentry, nd, cookie); } path_put(path); return error; } /* * This limits recursive symlink follows to 8, while * limiting consecutive symlinks to 40. * * Without that kind of total limit, nasty chains of consecutive * symlinks can cause almost arbitrarily long lookups. */ static inline int do_follow_link(struct path *path, struct nameidata *nd) { int err = -ELOOP; if (current->link_count >= MAX_NESTED_LINKS) goto loop; if (current->total_link_count >= 40) goto loop; BUG_ON(nd->depth >= MAX_NESTED_LINKS); cond_resched(); err = security_inode_follow_link(path->dentry, nd); if (err) goto loop; current->link_count++; current->total_link_count++; nd->depth++; err = __do_follow_link(path, nd); current->link_count--; nd->depth--; return err; loop: path_put_conditional(path, nd); path_put(&nd->path); return err; } int follow_up(struct vfsmount **mnt, struct dentry **dentry) { struct vfsmount *parent; struct dentry *mountpoint; spin_lock(&vfsmount_lock); parent=(*mnt)->mnt_parent; if (parent == *mnt) { spin_unlock(&vfsmount_lock); return 0; } mntget(parent); mountpoint=dget((*mnt)->mnt_mountpoint); spin_unlock(&vfsmount_lock); dput(*dentry); *dentry = mountpoint; mntput(*mnt); *mnt = parent; return 1; } /* no need for dcache_lock, as serialization is taken care in * namespace.c */ static int __follow_mount(struct path *path) { int res = 0; while (d_mountpoint(path->dentry)) { struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); if (!mounted) break; dput(path->dentry); if (res) mntput(path->mnt); path->mnt = mounted; path->dentry = dget(mounted->mnt_root); res = 1; } return res; } static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) { while (d_mountpoint(*dentry)) { struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); if (!mounted) break; dput(*dentry); mntput(*mnt); *mnt = mounted; *dentry = dget(mounted->mnt_root); } } /* no need for dcache_lock, as serialization is taken care in * namespace.c */ int follow_down(struct vfsmount **mnt, struct dentry **dentry) { struct vfsmount *mounted; mounted = lookup_mnt(*mnt, *dentry); if (mounted) { dput(*dentry); mntput(*mnt); *mnt = mounted; *dentry = dget(mounted->mnt_root); return 1; } return 0; } static __always_inline void follow_dotdot(struct nameidata *nd) { struct fs_struct *fs = current->fs; while(1) { struct vfsmount *parent; struct dentry *old = nd->path.dentry; read_lock(&fs->lock); if (nd->path.dentry == fs->root.dentry && nd->path.mnt == fs->root.mnt) { read_unlock(&fs->lock); break; } read_unlock(&fs->lock); spin_lock(&dcache_lock); if (nd->path.dentry != nd->path.mnt->mnt_root) { nd->path.dentry = dget(nd->path.dentry->d_parent); spin_unlock(&dcache_lock); dput(old); break; } spin_unlock(&dcache_lock); spin_lock(&vfsmount_lock); parent = nd->path.mnt->mnt_parent; if (parent == nd->path.mnt) { spin_unlock(&vfsmount_lock); break; } mntget(parent); nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); spin_unlock(&vfsmount_lock); dput(old); mntput(nd->path.mnt); nd->path.mnt = parent; } follow_mount(&nd->path.mnt, &nd->path.dentry); } /* * It's more convoluted than I'd like it to be, but... it's still fairly * small and for now I'd prefer to have fast path as straight as possible. * It _is_ time-critical. */ static int do_lookup(struct nameidata *nd, struct qstr *name, struct path *path) { struct vfsmount *mnt = nd->path.mnt; struct dentry *dentry = __d_lookup(nd->path.dentry, name); if (!dentry) goto need_lookup; if (dentry->d_op && dentry->d_op->d_revalidate) goto need_revalidate; done: path->mnt = mnt; path->dentry = dentry; __follow_mount(path); return 0; need_lookup: dentry = real_lookup(nd->path.dentry, name, nd); if (IS_ERR(dentry)) goto fail; goto done; need_revalidate: dentry = do_revalidate(dentry, nd); if (!dentry) goto need_lookup; if (IS_ERR(dentry)) goto fail; goto done; fail: return PTR_ERR(dentry); } /* * Name resolution. * This is the basic name resolution function, turning a pathname into * the final dentry. We expect 'base' to be positive and a directory. * * Returns 0 and nd will have valid dentry and mnt on success. * Returns error and drops reference to input namei data on failure. */ static int __link_path_walk(const char *name, struct nameidata *nd) { struct path next; struct inode *inode; int err; unsigned int lookup_flags = nd->flags; while (*name=='/') name++; if (!*name) goto return_reval; inode = nd->path.dentry->d_inode; if (nd->depth) lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); /* At this point we know we have a real path component. */ for(;;) { unsigned long hash; struct qstr this; unsigned int c; nd->flags |= LOOKUP_CONTINUE; err = exec_permission_lite(inode); if (err == -EAGAIN) err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); if (!err) err = ima_path_check(&nd->path, MAY_EXEC); if (err) break; this.name = name; c = *(const unsigned char *)name; hash = init_name_hash(); do { name++; hash = partial_name_hash(c, hash); c = *(const unsigned char *)name; } while (c && (c != '/')); this.len = name - (const char *) this.name; this.hash = end_name_hash(hash); /* remove trailing slashes? */ if (!c) goto last_component; while (*++name == '/'); if (!*name) goto last_with_slashes; /* * "." and ".." are special - ".." especially so because it has * to be able to know about the current root directory and * parent relationships. */ if (this.name[0] == '.') switch (this.len) { default: break; case 2: if (this.name[1] != '.') break; follow_dotdot(nd); inode = nd->path.dentry->d_inode; /* fallthrough */ case 1: continue; } /* * See if the low-level filesystem might want * to use its own hash.. */ if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { err = nd->path.dentry->d_op->d_hash(nd->path.dentry, &this); if (err < 0) break; } /* This does the actual lookups.. */ err = do_lookup(nd, &this, &next); if (err) break; err = -ENOENT; inode = next.dentry->d_inode; if (!inode) goto out_dput; if (inode->i_op->follow_link) { err = do_follow_link(&next, nd); if (err) goto return_err; err = -ENOENT; inode = nd->path.dentry->d_inode; if (!inode) break; } else path_to_nameidata(&next, nd); err = -ENOTDIR; if (!inode->i_op->lookup) break; continue; /* here ends the main loop */ last_with_slashes: lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; last_component: /* Clear LOOKUP_CONTINUE iff it was previously unset */ nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; if (lookup_flags & LOOKUP_PARENT) goto lookup_parent; if (this.name[0] == '.') switch (this.len) { default: break; case 2: if (this.name[1] != '.') break; follow_dotdot(nd); inode = nd->path.dentry->d_inode; /* fallthrough */ case 1: goto return_reval; } if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { err = nd->path.dentry->d_op->d_hash(nd->path.dentry, &this); if (err < 0) break; } err = do_lookup(nd, &this, &next); if (err) break; inode = next.dentry->d_inode; if ((lookup_flags & LOOKUP_FOLLOW) && inode && inode->i_op->follow_link) { err = do_follow_link(&next, nd); if (err) goto return_err; inode = nd->path.dentry->d_inode; } else path_to_nameidata(&next, nd); err = -ENOENT; if (!inode) break; if (lookup_flags & LOOKUP_DIRECTORY) { err = -ENOTDIR; if (!inode->i_op->lookup) break; } goto return_base; lookup_parent: nd->last = this; nd->last_type = LAST_NORM; if (this.name[0] != '.') goto return_base; if (this.len == 1) nd->last_type = LAST_DOT; else if (this.len == 2 && this.name[1] == '.') nd->last_type = LAST_DOTDOT; else goto return_base; return_reval: /* * We bypassed the ordinary revalidation routines. * We may need to check the cached dentry for staleness. */ if (nd->path.dentry && nd->path.dentry->d_sb && (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { err = -ESTALE; /* Note: we do not d_invalidate() */ if (!nd->path.dentry->d_op->d_revalidate( nd->path.dentry, nd)) break; } return_base: return 0; out_dput: path_put_conditional(&next, nd); break; } path_put(&nd->path); return_err: return err; } static int path_walk(const char *name, struct nameidata *nd) { current->total_link_count = 0; return link_path_walk(name, nd); } /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ static int do_path_lookup(int dfd, const char *name, unsigned int flags, struct nameidata *nd) { int retval = 0; int fput_needed; struct file *file; struct fs_struct *fs = current->fs; nd->last_type = LAST_ROOT; /* if there are only slashes... */ nd->flags = flags; nd->depth = 0; if (*name=='/') { read_lock(&fs->lock); nd->path = fs->root; path_get(&fs->root); read_unlock(&fs->lock); } else if (dfd == AT_FDCWD) { read_lock(&fs->lock); nd->path = fs->pwd; path_get(&fs->pwd); read_unlock(&fs->lock); } else { struct dentry *dentry; file = fget_light(dfd, &fput_needed); retval = -EBADF; if (!file) goto out_fail; dentry = file->f_path.dentry; retval = -ENOTDIR; if (!S_ISDIR(dentry->d_inode->i_mode)) goto fput_fail; retval = file_permission(file, MAY_EXEC); if (retval) goto fput_fail; nd->path = file->f_path; path_get(&file->f_path); fput_light(file, fput_needed); } retval = path_walk(name, nd); if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && nd->path.dentry->d_inode)) audit_inode(name, nd->path.dentry); out_fail: return retval; fput_fail: fput_light(file, fput_needed); goto out_fail; } int path_lookup(const char *name, unsigned int flags, struct nameidata *nd) { return do_path_lookup(AT_FDCWD, name, flags, nd); } int kern_path(const char *name, unsigned int flags, struct path *path) { struct nameidata nd; int res = do_path_lookup(AT_FDCWD, name, flags, &nd); if (!res) *path = nd.path; return res; } /** * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair * @dentry: pointer to dentry of the base directory * @mnt: pointer to vfs mount of the base directory * @name: pointer to file name * @flags: lookup flags * @nd: pointer to nameidata */ int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, const char *name, unsigned int flags, struct nameidata *nd) { int retval; /* same as do_path_lookup */ nd->last_type = LAST_ROOT; nd->flags = flags; nd->depth = 0; nd->path.dentry = dentry; nd->path.mnt = mnt; path_get(&nd->path); retval = path_walk(name, nd); if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && nd->path.dentry->d_inode)) audit_inode(name, nd->path.dentry); return retval; } /** * path_lookup_open - lookup a file path with open intent * @dfd: the directory to use as base, or AT_FDCWD * @name: pointer to file name * @lookup_flags: lookup intent flags * @nd: pointer to nameidata * @open_flags: open intent flags */ int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, struct nameidata *nd, int open_flags) { struct file *filp = get_empty_filp(); int err; if (filp == NULL) return -ENFILE; nd->intent.open.file = filp; nd->intent.open.flags = open_flags; nd->intent.open.create_mode = 0; err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); if (IS_ERR(nd->intent.open.file)) { if (err == 0) { err = PTR_ERR(nd->intent.open.file); path_put(&nd->path); } } else if (err != 0) release_open_intent(nd); return err; } static struct dentry *__lookup_hash(struct qstr *name, struct dentry *base, struct nameidata *nd) { struct dentry *dentry; struct inode *inode; int err; inode = base->d_inode; /* * See if the low-level filesystem might want * to use its own hash.. */ if (base->d_op && base->d_op->d_hash) { err = base->d_op->d_hash(base, name); dentry = ERR_PTR(err); if (err < 0) goto out; } dentry = cached_lookup(base, name, nd); if (!dentry) { struct dentry *new; /* Don't create child dentry for a dead directory. */ dentry = ERR_PTR(-ENOENT); if (IS_DEADDIR(inode)) goto out; new = d_alloc(base, name); dentry = ERR_PTR(-ENOMEM); if (!new) goto out; dentry = inode->i_op->lookup(inode, new, nd); if (!dentry) dentry = new; else dput(new); } out: return dentry; } /* * Restricted form of lookup. Doesn't follow links, single-component only, * needs parent already locked. Doesn't follow mounts. * SMP-safe. */ static struct dentry *lookup_hash(struct nameidata *nd) { int err; err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); if (err) return ERR_PTR(err); return __lookup_hash(&nd->last, nd->path.dentry, nd); } static int __lookup_one_len(const char *name, struct qstr *this, struct dentry *base, int len) { unsigned long hash; unsigned int c; this->name = name; this->len = len; if (!len) return -EACCES; hash = init_name_hash(); while (len--) { c = *(const unsigned char *)name++; if (c == '/' || c == '\0') return -EACCES; hash = partial_name_hash(c, hash); } this->hash = end_name_hash(hash); return 0; } /** * lookup_one_len - filesystem helper to lookup single pathname component * @name: pathname component to lookup * @base: base directory to lookup from * @len: maximum length @len should be interpreted to * * Note that this routine is purely a helper for filesystem usage and should * not be called by generic code. Also note that by using this function the * nameidata argument is passed to the filesystem methods and a filesystem * using this helper needs to be prepared for that. */ struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) { int err; struct qstr this; err = __lookup_one_len(name, &this, base, len); if (err) return ERR_PTR(err); err = inode_permission(base->d_inode, MAY_EXEC); if (err) return ERR_PTR(err); return __lookup_hash(&this, base, NULL); } /** * lookup_one_noperm - bad hack for sysfs * @name: pathname component to lookup * @base: base directory to lookup from * * This is a variant of lookup_one_len that doesn't perform any permission * checks. It's a horrible hack to work around the braindead sysfs * architecture and should not be used anywhere else. * * DON'T USE THIS FUNCTION EVER, thanks. */ struct dentry *lookup_one_noperm(const char *name, struct dentry *base) { int err; struct qstr this; err = __lookup_one_len(name, &this, base, strlen(name)); if (err) return ERR_PTR(err); return __lookup_hash(&this, base, NULL); } int user_path_at(int dfd, const char __user *name, unsigned flags, struct path *path) { struct nameidata nd; char *tmp = getname(name); int err = PTR_ERR(tmp); if (!IS_ERR(tmp)) { BUG_ON(flags & LOOKUP_PARENT); err = do_path_lookup(dfd, tmp, flags, &nd); putname(tmp); if (!err) *path = nd.path; } return err; } static int user_path_parent(int dfd, const char __user *path, struct nameidata *nd, char **name) { char *s = getname(path); int error; if (IS_ERR(s)) return PTR_ERR(s); error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); if (error) putname(s); else *name = s; return error; } /* * It's inline, so penalty for filesystems that don't use sticky bit is * minimal. */ static inline int check_sticky(struct inode *dir, struct inode *inode) { uid_t fsuid = current_fsuid(); if (!(dir->i_mode & S_ISVTX)) return 0; if (inode->i_uid == fsuid) return 0; if (dir->i_uid == fsuid) return 0; return !capable(CAP_FOWNER); } /* * Check whether we can remove a link victim from directory dir, check * whether the type of victim is right. * 1. We can't do it if dir is read-only (done in permission()) * 2. We should have write and exec permissions on dir * 3. We can't remove anything from append-only dir * 4. We can't do anything with immutable dir (done in permission()) * 5. If the sticky bit on dir is set we should either * a. be owner of dir, or * b. be owner of victim, or * c. have CAP_FOWNER capability * 6. If the victim is append-only or immutable we can't do antyhing with * links pointing to it. * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. * 9. We can't remove a root or mountpoint. * 10. We don't allow removal of NFS sillyrenamed files; it's handled by * nfs_async_unlink(). */ static int may_delete(struct inode *dir,struct dentry *victim,int isdir) { int error; if (!victim->d_inode) return -ENOENT; BUG_ON(victim->d_parent->d_inode != dir); audit_inode_child(victim->d_name.name, victim, dir); error = inode_permission(dir, MAY_WRITE | MAY_EXEC); if (error) return error; if (IS_APPEND(dir)) return -EPERM; if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) return -EPERM; if (isdir) { if (!S_ISDIR(victim->d_inode->i_mode)) return -ENOTDIR; if (IS_ROOT(victim)) return -EBUSY; } else if (S_ISDIR(victim->d_inode->i_mode)) return -EISDIR; if (IS_DEADDIR(dir)) return -ENOENT; if (victim->d_flags & DCACHE_NFSFS_RENAMED) return -EBUSY; return 0; } /* Check whether we can create an object with dentry child in directory * dir. * 1. We can't do it if child already exists (open has special treatment for * this case, but since we are inlined it's OK) * 2. We can't do it if dir is read-only (done in permission()) * 3. We should have write and exec permissions on dir * 4. We can't do it if dir is immutable (done in permission()) */ static inline int may_create(struct inode *dir, struct dentry *child) { if (child->d_inode) return -EEXIST; if (IS_DEADDIR(dir)) return -ENOENT; return inode_permission(dir, MAY_WRITE | MAY_EXEC); } /* * O_DIRECTORY translates into forcing a directory lookup. */ static inline int lookup_flags(unsigned int f) { unsigned long retval = LOOKUP_FOLLOW; if (f & O_NOFOLLOW) retval &= ~LOOKUP_FOLLOW; if (f & O_DIRECTORY) retval |= LOOKUP_DIRECTORY; return retval; } /* * p1 and p2 should be directories on the same fs. */ struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) { struct dentry *p; if (p1 == p2) { mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); return NULL; } mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); p = d_ancestor(p2, p1); if (p) { mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); return p; } p = d_ancestor(p1, p2); if (p) { mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); return p; } mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); return NULL; } void unlock_rename(struct dentry *p1, struct dentry *p2) { mutex_unlock(&p1->d_inode->i_mutex); if (p1 != p2) { mutex_unlock(&p2->d_inode->i_mutex); mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); } } int vfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd) { int error = may_create(dir, dentry); if (error) return error; if (!dir->i_op->create) return -EACCES; /* shouldn't it be ENOSYS? */ mode &= S_IALLUGO; mode |= S_IFREG; error = security_inode_create(dir, dentry, mode); if (error) return error; vfs_dq_init(dir); error = dir->i_op->create(dir, dentry, mode, nd); if (!error) fsnotify_create(dir, dentry); return error; } int may_open(struct path *path, int acc_mode, int flag) { struct dentry *dentry = path->dentry; struct inode *inode = dentry->d_inode; int error; if (!inode) return -ENOENT; switch (inode->i_mode & S_IFMT) { case S_IFLNK: return -ELOOP; case S_IFDIR: if (acc_mode & MAY_WRITE) return -EISDIR; break; case S_IFBLK: case S_IFCHR: if (path->mnt->mnt_flags & MNT_NODEV) return -EACCES; /*FALLTHRU*/ case S_IFIFO: case S_IFSOCK: flag &= ~O_TRUNC; break; } error = inode_permission(inode, acc_mode); if (error) return error; error = ima_path_check(path, acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC)); if (error) return error; /* * An append-only file must be opened in append mode for writing. */ if (IS_APPEND(inode)) { if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) return -EPERM; if (flag & O_TRUNC) return -EPERM; } /* O_NOATIME can only be set by the owner or superuser */ if (flag & O_NOATIME) if (!is_owner_or_cap(inode)) return -EPERM; /* * Ensure there are no outstanding leases on the file. */ error = break_lease(inode, flag); if (error) return error; if (flag & O_TRUNC) { error = get_write_access(inode); if (error) return error; /* * Refuse to truncate files with mandatory locks held on them. */ error = locks_verify_locked(inode); if (!error) error = security_path_truncate(path, 0, ATTR_MTIME|ATTR_CTIME|ATTR_OPEN); if (!error) { vfs_dq_init(inode); error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, NULL); } put_write_access(inode); if (error) return error; } else if (flag & FMODE_WRITE) vfs_dq_init(inode); return 0; } /* * Be careful about ever adding any more callers of this * function. Its flags must be in the namei format, not * what get passed to sys_open(). */ static int __open_namei_create(struct nameidata *nd, struct path *path, int flag, int mode) { int error; struct dentry *dir = nd->path.dentry; if (!IS_POSIXACL(dir->d_inode)) mode &= ~current->fs->umask; error = security_path_mknod(&nd->path, path->dentry, mode, 0); if (error) goto out_unlock; error = vfs_create(dir->d_inode, path->dentry, mode, nd); out_unlock: mutex_unlock(&dir->d_inode->i_mutex); dput(nd->path.dentry); nd->path.dentry = path->dentry; if (error) return error; /* Don't check for write permission, don't truncate */ return may_open(&nd->path, 0, flag & ~O_TRUNC); } /* * Note that while the flag value (low two bits) for sys_open means: * 00 - read-only * 01 - write-only * 10 - read-write * 11 - special * it is changed into * 00 - no permissions needed * 01 - read-permission * 10 - write-permission * 11 - read-write * for the internal routines (ie open_namei()/follow_link() etc) * This is more logical, and also allows the 00 "no perm needed" * to be used for symlinks (where the permissions are checked * later). * */ static inline int open_to_namei_flags(int flag) { if ((flag+1) & O_ACCMODE) flag++; return flag; } static int open_will_write_to_fs(int flag, struct inode *inode) { /* * We'll never write to the fs underlying * a device file. */ if (special_file(inode->i_mode)) return 0; return (flag & O_TRUNC); } /* * Note that the low bits of the passed in "open_flag" * are not the same as in the local variable "flag". See * open_to_namei_flags() for more details. */ struct file *do_filp_open(int dfd, const char *pathname, int open_flag, int mode) { struct file *filp; struct nameidata nd; int acc_mode, error; struct path path; struct dentry *dir; int count = 0; int will_write; int flag = open_to_namei_flags(open_flag); acc_mode = MAY_OPEN | ACC_MODE(flag); /* O_TRUNC implies we need access checks for write permissions */ if (flag & O_TRUNC) acc_mode |= MAY_WRITE; /* Allow the LSM permission hook to distinguish append access from general write access. */ if (flag & O_APPEND) acc_mode |= MAY_APPEND; /* * The simplest case - just a plain lookup. */ if (!(flag & O_CREAT)) { error = path_lookup_open(dfd, pathname, lookup_flags(flag), &nd, flag); if (error) return ERR_PTR(error); goto ok; } /* * Create - we need to know the parent. */ error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); if (error) return ERR_PTR(error); /* * We have the parent and last component. First of all, check * that we are not asked to creat(2) an obvious directory - that * will not do. */ error = -EISDIR; if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) goto exit_parent; error = -ENFILE; filp = get_empty_filp(); if (filp == NULL) goto exit_parent; nd.intent.open.file = filp; nd.intent.open.flags = flag; nd.intent.open.create_mode = mode; dir = nd.path.dentry; nd.flags &= ~LOOKUP_PARENT; nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; if (flag & O_EXCL) nd.flags |= LOOKUP_EXCL; mutex_lock(&dir->d_inode->i_mutex); path.dentry = lookup_hash(&nd); path.mnt = nd.path.mnt; do_last: error = PTR_ERR(path.dentry); if (IS_ERR(path.dentry)) { mutex_unlock(&dir->d_inode->i_mutex); goto exit; } if (IS_ERR(nd.intent.open.file)) { error = PTR_ERR(nd.intent.open.file); goto exit_mutex_unlock; } /* Negative dentry, just create the file */ if (!path.dentry->d_inode) { /* * This write is needed to ensure that a * ro->rw transition does not occur between * the time when the file is created and when * a permanent write count is taken through * the 'struct file' in nameidata_to_filp(). */ error = mnt_want_write(nd.path.mnt); if (error) goto exit_mutex_unlock; error = __open_namei_create(&nd, &path, flag, mode); if (error) { mnt_drop_write(nd.path.mnt); goto exit; } filp = nameidata_to_filp(&nd, open_flag); mnt_drop_write(nd.path.mnt); return filp; } /* * It already exists. */ mutex_unlock(&dir->d_inode->i_mutex); audit_inode(pathname, path.dentry); error = -EEXIST; if (flag & O_EXCL) goto exit_dput; if (__follow_mount(&path)) { error = -ELOOP; if (flag & O_NOFOLLOW) goto exit_dput; } error = -ENOENT; if (!path.dentry->d_inode) goto exit_dput; if (path.dentry->d_inode->i_op->follow_link) goto do_link; path_to_nameidata(&path, &nd); error = -EISDIR; if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) goto exit; ok: /* * Consider: * 1. may_open() truncates a file * 2. a rw->ro mount transition occurs * 3. nameidata_to_filp() fails due to * the ro mount. * That would be inconsistent, and should * be avoided. Taking this mnt write here * ensures that (2) can not occur. */ will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); if (will_write) { error = mnt_want_write(nd.path.mnt); if (error) goto exit; } error = may_open(&nd.path, acc_mode, flag); if (error) { if (will_write) mnt_drop_write(nd.path.mnt); goto exit; } filp = nameidata_to_filp(&nd, open_flag); /* * It is now safe to drop the mnt write * because the filp has had a write taken * on its behalf. */ if (will_write) mnt_drop_write(nd.path.mnt); return filp; exit_mutex_unlock: mutex_unlock(&dir->d_inode->i_mutex); exit_dput: path_put_conditional(&path, &nd); exit: if (!IS_ERR(nd.intent.open.file)) release_open_intent(&nd); exit_parent: path_put(&nd.path); return ERR_PTR(error); do_link: error = -ELOOP; if (flag & O_NOFOLLOW) goto exit_dput; /* * This is subtle. Instead of calling do_follow_link() we do the * thing by hands. The reason is that this way we have zero link_count * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. * After that we have the parent and last component, i.e. * we are in the same situation as after the first path_walk(). * Well, almost - if the last component is normal we get its copy * stored in nd->last.name and we will have to putname() it when we * are done. Procfs-like symlinks just set LAST_BIND. */ nd.flags |= LOOKUP_PARENT; error = security_inode_follow_link(path.dentry, &nd); if (error) goto exit_dput; error = __do_follow_link(&path, &nd); if (error) { /* Does someone understand code flow here? Or it is only * me so stupid? Anathema to whoever designed this non-sense * with "intent.open". */ release_open_intent(&nd); return ERR_PTR(error); } nd.flags &= ~LOOKUP_PARENT; if (nd.last_type == LAST_BIND) goto ok; error = -EISDIR; if (nd.last_type != LAST_NORM) goto exit; if (nd.last.name[nd.last.len]) { __putname(nd.last.name); goto exit; } error = -ELOOP; if (count++==32) { __putname(nd.last.name); goto exit; } dir = nd.path.dentry; mutex_lock(&dir->d_inode->i_mutex); path.dentry = lookup_hash(&nd); path.mnt = nd.path.mnt; __putname(nd.last.name); goto do_last; } /** * filp_open - open file and return file pointer * * @filename: path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *filp_open(const char *filename, int flags, int mode) { return do_filp_open(AT_FDCWD, filename, flags, mode); } EXPORT_SYMBOL(filp_open); /** * lookup_create - lookup a dentry, creating it if it doesn't exist * @nd: nameidata info * @is_dir: directory flag * * Simple function to lookup and return a dentry and create it * if it doesn't exist. Is SMP-safe. * * Returns with nd->path.dentry->d_inode->i_mutex locked. */ struct dentry *lookup_create(struct nameidata *nd, int is_dir) { struct dentry *dentry = ERR_PTR(-EEXIST); mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); /* * Yucky last component or no last component at all? * (foo/., foo/.., /////) */ if (nd->last_type != LAST_NORM) goto fail; nd->flags &= ~LOOKUP_PARENT; nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; nd->intent.open.flags = O_EXCL; /* * Do the final lookup. */ dentry = lookup_hash(nd); if (IS_ERR(dentry)) goto fail; if (dentry->d_inode) goto eexist; /* * Special case - lookup gave negative, but... we had foo/bar/ * From the vfs_mknod() POV we just have a negative dentry - * all is fine. Let's be bastards - you had / on the end, you've * been asking for (non-existent) directory. -ENOENT for you. */ if (unlikely(!is_dir && nd->last.name[nd->last.len])) { dput(dentry); dentry = ERR_PTR(-ENOENT); } return dentry; eexist: dput(dentry); dentry = ERR_PTR(-EEXIST); fail: return dentry; } EXPORT_SYMBOL_GPL(lookup_create); int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) { int error = may_create(dir, dentry); if (error) return error; if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) return -EPERM; if (!dir->i_op->mknod) return -EPERM; error = devcgroup_inode_mknod(mode, dev); if (error) return error; error = security_inode_mknod(dir, dentry, mode, dev); if (error) return error; vfs_dq_init(dir); error = dir->i_op->mknod(dir, dentry, mode, dev); if (!error) fsnotify_create(dir, dentry); return error; } static int may_mknod(mode_t mode) { switch (mode & S_IFMT) { case S_IFREG: case S_IFCHR: case S_IFBLK: case S_IFIFO: case S_IFSOCK: case 0: /* zero mode translates to S_IFREG */ return 0; case S_IFDIR: return -EPERM; default: return -EINVAL; } } SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, unsigned, dev) { int error; char *tmp; struct dentry *dentry; struct nameidata nd; if (S_ISDIR(mode)) return -EPERM; error = user_path_parent(dfd, filename, &nd, &tmp); if (error) return error; dentry = lookup_create(&nd, 0); if (IS_ERR(dentry)) { error = PTR_ERR(dentry); goto out_unlock; } if (!IS_POSIXACL(nd.path.dentry->d_inode)) mode &= ~current->fs->umask; error = may_mknod(mode); if (error) goto out_dput; error = mnt_want_write(nd.path.mnt); if (error) goto out_dput; error = security_path_mknod(&nd.path, dentry, mode, dev); if (error) goto out_drop_write; switch (mode & S_IFMT) { case 0: case S_IFREG: error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); break; case S_IFCHR: case S_IFBLK: error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, new_decode_dev(dev)); break; case S_IFIFO: case S_IFSOCK: error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); break; } out_drop_write: mnt_drop_write(nd.path.mnt); out_dput: dput(dentry); out_unlock: mutex_unlock(&nd.path.dentry->d_inode->i_mutex); path_put(&nd.path); putname(tmp); return error; } SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) { return sys_mknodat(AT_FDCWD, filename, mode, dev); } int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { int error = may_create(dir, dentry); if (error) return error; if (!dir->i_op->mkdir) return -EPERM; mode &= (S_IRWXUGO|S_ISVTX); error = security_inode_mkdir(dir, dentry, mode); if (error) return error; vfs_dq_init(dir); error = dir->i_op->mkdir(dir, dentry, mode); if (!error) fsnotify_mkdir(dir, dentry); return error; } SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) { int error = 0; char * tmp; struct dentry *dentry; struct nameidata nd; error = user_path_parent(dfd, pathname, &nd, &tmp); if (error) goto out_err; dentry = lookup_create(&nd, 1); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_unlock; if (!IS_POSIXACL(nd.path.dentry->d_inode)) mode &= ~current->fs->umask; error = mnt_want_write(nd.path.mnt); if (error) goto out_dput; error = security_path_mkdir(&nd.path, dentry, mode); if (error) goto out_drop_write; error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); out_drop_write: mnt_drop_write(nd.path.mnt); out_dput: dput(dentry); out_unlock: mutex_unlock(&nd.path.dentry->d_inode->i_mutex); path_put(&nd.path); putname(tmp); out_err: return error; } SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) { return sys_mkdirat(AT_FDCWD, pathname, mode); } /* * We try to drop the dentry early: we should have * a usage count of 2 if we're the only user of this * dentry, and if that is true (possibly after pruning * the dcache), then we drop the dentry now. * * A low-level filesystem can, if it choses, legally * do a * * if (!d_unhashed(dentry)) * return -EBUSY; * * if it cannot handle the case of removing a directory * that is still in use by something else.. */ void dentry_unhash(struct dentry *dentry) { dget(dentry); shrink_dcache_parent(dentry); spin_lock(&dcache_lock); spin_lock(&dentry->d_lock); if (atomic_read(&dentry->d_count) == 2) __d_drop(dentry); spin_unlock(&dentry->d_lock); spin_unlock(&dcache_lock); } int vfs_rmdir(struct inode *dir, struct dentry *dentry) { int error = may_delete(dir, dentry, 1); if (error) return error; if (!dir->i_op->rmdir) return -EPERM; vfs_dq_init(dir); mutex_lock(&dentry->d_inode->i_mutex); dentry_unhash(dentry); if (d_mountpoint(dentry)) error = -EBUSY; else { error = security_inode_rmdir(dir, dentry); if (!error) { error = dir->i_op->rmdir(dir, dentry); if (!error) dentry->d_inode->i_flags |= S_DEAD; } } mutex_unlock(&dentry->d_inode->i_mutex); if (!error) { d_delete(dentry); } dput(dentry); return error; } static long do_rmdir(int dfd, const char __user *pathname) { int error = 0; char * name; struct dentry *dentry; struct nameidata nd; error = user_path_parent(dfd, pathname, &nd, &name); if (error) return error; switch(nd.last_type) { case LAST_DOTDOT: error = -ENOTEMPTY; goto exit1; case LAST_DOT: error = -EINVAL; goto exit1; case LAST_ROOT: error = -EBUSY; goto exit1; } nd.flags &= ~LOOKUP_PARENT; mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); dentry = lookup_hash(&nd); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto exit2; error = mnt_want_write(nd.path.mnt); if (error) goto exit3; error = security_path_rmdir(&nd.path, dentry); if (error) goto exit4; error = vfs_rmdir(nd.path.dentry->d_inode, dentry); exit4: mnt_drop_write(nd.path.mnt); exit3: dput(dentry); exit2: mutex_unlock(&nd.path.dentry->d_inode->i_mutex); exit1: path_put(&nd.path); putname(name); return error; } SYSCALL_DEFINE1(rmdir, const char __user *, pathname) { return do_rmdir(AT_FDCWD, pathname); } int vfs_unlink(struct inode *dir, struct dentry *dentry) { int error = may_delete(dir, dentry, 0); if (error) return error; if (!dir->i_op->unlink) return -EPERM; vfs_dq_init(dir); mutex_lock(&dentry->d_inode->i_mutex); if (d_mountpoint(dentry)) error = -EBUSY; else { error = security_inode_unlink(dir, dentry); if (!error) error = dir->i_op->unlink(dir, dentry); } mutex_unlock(&dentry->d_inode->i_mutex); /* We don't d_delete() NFS sillyrenamed files--they still exist. */ if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { fsnotify_link_count(dentry->d_inode); d_delete(dentry); } return error; } /* * Make sure that the actual truncation of the file will occur outside its * directory's i_mutex. Truncate can take a long time if there is a lot of * writeout happening, and we don't want to prevent access to the directory * while waiting on the I/O. */ static long do_unlinkat(int dfd, const char __user *pathname) { int error; char *name; struct dentry *dentry; struct nameidata nd; struct inode *inode = NULL; error = user_path_parent(dfd, pathname, &nd, &name); if (error) return error; error = -EISDIR; if (nd.last_type != LAST_NORM) goto exit1; nd.flags &= ~LOOKUP_PARENT; mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); dentry = lookup_hash(&nd); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { /* Why not before? Because we want correct error value */ if (nd.last.name[nd.last.len]) goto slashes; inode = dentry->d_inode; if (inode) atomic_inc(&inode->i_count); error = mnt_want_write(nd.path.mnt); if (error) goto exit2; error = security_path_unlink(&nd.path, dentry); if (error) goto exit3; error = vfs_unlink(nd.path.dentry->d_inode, dentry); exit3: mnt_drop_write(nd.path.mnt); exit2: dput(dentry); } mutex_unlock(&nd.path.dentry->d_inode->i_mutex); if (inode) iput(inode); /* truncate the inode here */ exit1: path_put(&nd.path); putname(name); return error; slashes: error = !dentry->d_inode ? -ENOENT : S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; goto exit2; } SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) { if ((flag & ~AT_REMOVEDIR) != 0) return -EINVAL; if (flag & AT_REMOVEDIR) return do_rmdir(dfd, pathname); return do_unlinkat(dfd, pathname); } SYSCALL_DEFINE1(unlink, const char __user *, pathname) { return do_unlinkat(AT_FDCWD, pathname); } int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) { int error = may_create(dir, dentry); if (error) return error; if (!dir->i_op->symlink) return -EPERM; error = security_inode_symlink(dir, dentry, oldname); if (error) return error; vfs_dq_init(dir); error = dir->i_op->symlink(dir, dentry, oldname); if (!error) fsnotify_create(dir, dentry); return error; } SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, int, newdfd, const char __user *, newname) { int error; char *from; char *to; struct dentry *dentry; struct nameidata nd; from = getname(oldname); if (IS_ERR(from)) return PTR_ERR(from); error = user_path_parent(newdfd, newname, &nd, &to); if (error) goto out_putname; dentry = lookup_create(&nd, 0); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_unlock; error = mnt_want_write(nd.path.mnt); if (error) goto out_dput; error = security_path_symlink(&nd.path, dentry, from); if (error) goto out_drop_write; error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); out_drop_write: mnt_drop_write(nd.path.mnt); out_dput: dput(dentry); out_unlock: mutex_unlock(&nd.path.dentry->d_inode->i_mutex); path_put(&nd.path); putname(to); out_putname: putname(from); return error; } SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) { return sys_symlinkat(oldname, AT_FDCWD, newname); } int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { struct inode *inode = old_dentry->d_inode; int error; if (!inode) return -ENOENT; error = may_create(dir, new_dentry); if (error) return error; if (dir->i_sb != inode->i_sb) return -EXDEV; /* * A link to an append-only or immutable file cannot be created. */ if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; if (!dir->i_op->link) return -EPERM; if (S_ISDIR(inode->i_mode)) return -EPERM; error = security_inode_link(old_dentry, dir, new_dentry); if (error) return error; mutex_lock(&inode->i_mutex); vfs_dq_init(dir); error = dir->i_op->link(old_dentry, dir, new_dentry); mutex_unlock(&inode->i_mutex); if (!error) fsnotify_link(dir, inode, new_dentry); return error; } /* * Hardlinks are often used in delicate situations. We avoid * security-related surprises by not following symlinks on the * newname. --KAB * * We don't follow them on the oldname either to be compatible * with linux 2.0, and to avoid hard-linking to directories * and other special files. --ADM */ SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname, int, flags) { struct dentry *new_dentry; struct nameidata nd; struct path old_path; int error; char *to; if ((flags & ~AT_SYMLINK_FOLLOW) != 0) return -EINVAL; error = user_path_at(olddfd, oldname, flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, &old_path); if (error) return error; error = user_path_parent(newdfd, newname, &nd, &to); if (error) goto out; error = -EXDEV; if (old_path.mnt != nd.path.mnt) goto out_release; new_dentry = lookup_create(&nd, 0); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto out_unlock; error = mnt_want_write(nd.path.mnt); if (error) goto out_dput; error = security_path_link(old_path.dentry, &nd.path, new_dentry); if (error) goto out_drop_write; error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); out_drop_write: mnt_drop_write(nd.path.mnt); out_dput: dput(new_dentry); out_unlock: mutex_unlock(&nd.path.dentry->d_inode->i_mutex); out_release: path_put(&nd.path); putname(to); out: path_put(&old_path); return error; } SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) { return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); } /* * The worst of all namespace operations - renaming directory. "Perverted" * doesn't even start to describe it. Somebody in UCB had a heck of a trip... * Problems: * a) we can get into loop creation. Check is done in is_subdir(). * b) race potential - two innocent renames can create a loop together. * That's where 4.4 screws up. Current fix: serialization on * sb->s_vfs_rename_mutex. We might be more accurate, but that's another * story. * c) we have to lock _three_ objects - parents and victim (if it exists). * And that - after we got ->i_mutex on parents (until then we don't know * whether the target exists). Solution: try to be smart with locking * order for inodes. We rely on the fact that tree topology may change * only under ->s_vfs_rename_mutex _and_ that parent of the object we * move will be locked. Thus we can rank directories by the tree * (ancestors first) and rank all non-directories after them. * That works since everybody except rename does "lock parent, lookup, * lock child" and rename is under ->s_vfs_rename_mutex. * HOWEVER, it relies on the assumption that any object with ->lookup() * has no more than 1 dentry. If "hybrid" objects will ever appear, * we'd better make sure that there's no link(2) for them. * d) some filesystems don't support opened-but-unlinked directories, * either because of layout or because they are not ready to deal with * all cases correctly. The latter will be fixed (taking this sort of * stuff into VFS), but the former is not going away. Solution: the same * trick as in rmdir(). * e) conversion from fhandle to dentry may come in the wrong moment - when * we are removing the target. Solution: we will have to grab ->i_mutex * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on * ->i_mutex on parents, which works but leads to some truely excessive * locking]. */ static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int error = 0; struct inode *target; /* * If we are going to change the parent - check write permissions, * we'll need to flip '..'. */ if (new_dir != old_dir) { error = inode_permission(old_dentry->d_inode, MAY_WRITE); if (error) return error; } error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); if (error) return error; target = new_dentry->d_inode; if (target) { mutex_lock(&target->i_mutex); dentry_unhash(new_dentry); } if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) error = -EBUSY; else error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); if (target) { if (!error) target->i_flags |= S_DEAD; mutex_unlock(&target->i_mutex); if (d_unhashed(new_dentry)) d_rehash(new_dentry); dput(new_dentry); } if (!error) if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) d_move(old_dentry,new_dentry); return error; } static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct inode *target; int error; error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); if (error) return error; dget(new_dentry); target = new_dentry->d_inode; if (target) mutex_lock(&target->i_mutex); if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) error = -EBUSY; else error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); if (!error) { if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) d_move(old_dentry, new_dentry); } if (target) mutex_unlock(&target->i_mutex); dput(new_dentry); return error; } int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { int error; int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); const char *old_name; if (old_dentry->d_inode == new_dentry->d_inode) return 0; error = may_delete(old_dir, old_dentry, is_dir); if (error) return error; if (!new_dentry->d_inode) error = may_create(new_dir, new_dentry); else error = may_delete(new_dir, new_dentry, is_dir); if (error) return error; if (!old_dir->i_op->rename) return -EPERM; vfs_dq_init(old_dir); vfs_dq_init(new_dir); old_name = fsnotify_oldname_init(old_dentry->d_name.name); if (is_dir) error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); else error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); if (!error) { const char *new_name = old_dentry->d_name.name; fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, new_dentry->d_inode, old_dentry); } fsnotify_oldname_free(old_name); return error; } SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, int, newdfd, const char __user *, newname) { struct dentry *old_dir, *new_dir; struct dentry *old_dentry, *new_dentry; struct dentry *trap; struct nameidata oldnd, newnd; char *from; char *to; int error; error = user_path_parent(olddfd, oldname, &oldnd, &from); if (error) goto exit; error = user_path_parent(newdfd, newname, &newnd, &to); if (error) goto exit1; error = -EXDEV; if (oldnd.path.mnt != newnd.path.mnt) goto exit2; old_dir = oldnd.path.dentry; error = -EBUSY; if (oldnd.last_type != LAST_NORM) goto exit2; new_dir = newnd.path.dentry; if (newnd.last_type != LAST_NORM) goto exit2; oldnd.flags &= ~LOOKUP_PARENT; newnd.flags &= ~LOOKUP_PARENT; newnd.flags |= LOOKUP_RENAME_TARGET; trap = lock_rename(new_dir, old_dir); old_dentry = lookup_hash(&oldnd); error = PTR_ERR(old_dentry); if (IS_ERR(old_dentry)) goto exit3; /* source must exist */ error = -ENOENT; if (!old_dentry->d_inode) goto exit4; /* unless the source is a directory trailing slashes give -ENOTDIR */ if (!S_ISDIR(old_dentry->d_inode->i_mode)) { error = -ENOTDIR; if (oldnd.last.name[oldnd.last.len]) goto exit4; if (newnd.last.name[newnd.last.len]) goto exit4; } /* source should not be ancestor of target */ error = -EINVAL; if (old_dentry == trap) goto exit4; new_dentry = lookup_hash(&newnd); error = PTR_ERR(new_dentry); if (IS_ERR(new_dentry)) goto exit4; /* target should not be an ancestor of source */ error = -ENOTEMPTY; if (new_dentry == trap) goto exit5; error = mnt_want_write(oldnd.path.mnt); if (error) goto exit5; error = security_path_rename(&oldnd.path, old_dentry, &newnd.path, new_dentry); if (error) goto exit6; error = vfs_rename(old_dir->d_inode, old_dentry, new_dir->d_inode, new_dentry); exit6: mnt_drop_write(oldnd.path.mnt); exit5: dput(new_dentry); exit4: dput(old_dentry); exit3: unlock_rename(new_dir, old_dir); exit2: path_put(&newnd.path); putname(to); exit1: path_put(&oldnd.path); putname(from); exit: return error; } SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) { return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); } int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) { int len; len = PTR_ERR(link); if (IS_ERR(link)) goto out; len = strlen(link); if (len > (unsigned) buflen) len = buflen; if (copy_to_user(buffer, link, len)) len = -EFAULT; out: return len; } /* * A helper for ->readlink(). This should be used *ONLY* for symlinks that * have ->follow_link() touching nd only in nd_set_link(). Using (or not * using) it for any given inode is up to filesystem. */ int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct nameidata nd; void *cookie; int res; nd.depth = 0; cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); if (IS_ERR(cookie)) return PTR_ERR(cookie); res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); if (dentry->d_inode->i_op->put_link) dentry->d_inode->i_op->put_link(dentry, &nd, cookie); return res; } int vfs_follow_link(struct nameidata *nd, const char *link) { return __vfs_follow_link(nd, link); } /* get the link contents into pagecache */ static char *page_getlink(struct dentry * dentry, struct page **ppage) { char *kaddr; struct page *page; struct address_space *mapping = dentry->d_inode->i_mapping; page = read_mapping_page(mapping, 0, NULL); if (IS_ERR(page)) return (char*)page; *ppage = page; kaddr = kmap(page); nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); return kaddr; } int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) { struct page *page = NULL; char *s = page_getlink(dentry, &page); int res = vfs_readlink(dentry,buffer,buflen,s); if (page) { kunmap(page); page_cache_release(page); } return res; } void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) { struct page *page = NULL; nd_set_link(nd, page_getlink(dentry, &page)); return page; } void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) { struct page *page = cookie; if (page) { kunmap(page); page_cache_release(page); } } /* * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS */ int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) { struct address_space *mapping = inode->i_mapping; struct page *page; void *fsdata; int err; char *kaddr; unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; if (nofs) flags |= AOP_FLAG_NOFS; retry: err = pagecache_write_begin(NULL, mapping, 0, len-1, flags, &page, &fsdata); if (err) goto fail; kaddr = kmap_atomic(page, KM_USER0); memcpy(kaddr, symname, len-1); kunmap_atomic(kaddr, KM_USER0); err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, page, fsdata); if (err < 0) goto fail; if (err < len-1) goto retry; mark_inode_dirty(inode); return 0; fail: return err; } int page_symlink(struct inode *inode, const char *symname, int len) { return __page_symlink(inode, symname, len, !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); } const struct inode_operations page_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = page_follow_link_light, .put_link = page_put_link, }; EXPORT_SYMBOL(user_path_at); EXPORT_SYMBOL(follow_down); EXPORT_SYMBOL(follow_up); EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ EXPORT_SYMBOL(getname); EXPORT_SYMBOL(lock_rename); EXPORT_SYMBOL(lookup_one_len); EXPORT_SYMBOL(page_follow_link_light); EXPORT_SYMBOL(page_put_link); EXPORT_SYMBOL(page_readlink); EXPORT_SYMBOL(__page_symlink); EXPORT_SYMBOL(page_symlink); EXPORT_SYMBOL(page_symlink_inode_operations); EXPORT_SYMBOL(path_lookup); EXPORT_SYMBOL(kern_path); EXPORT_SYMBOL(vfs_path_lookup); EXPORT_SYMBOL(inode_permission); EXPORT_SYMBOL(file_permission); EXPORT_SYMBOL(unlock_rename); EXPORT_SYMBOL(vfs_create); EXPORT_SYMBOL(vfs_follow_link); EXPORT_SYMBOL(vfs_link); EXPORT_SYMBOL(vfs_mkdir); EXPORT_SYMBOL(vfs_mknod); EXPORT_SYMBOL(generic_permission); EXPORT_SYMBOL(vfs_readlink); EXPORT_SYMBOL(vfs_rename); EXPORT_SYMBOL(vfs_rmdir); EXPORT_SYMBOL(vfs_symlink); EXPORT_SYMBOL(vfs_unlink); EXPORT_SYMBOL(dentry_unhash); EXPORT_SYMBOL(generic_readlink); /* to be mentioned only in INIT_TASK */ struct fs_struct init_fs = { .count = ATOMIC_INIT(1), .lock = __RW_LOCK_UNLOCKED(init_fs.lock), .umask = 0022, };