/* * Copyright (C) 2005, 2006 * Avishay Traeger (avishay@gmail.com) * Copyright (C) 2008, 2009 * Boaz Harrosh <bharrosh@panasas.com> * * Copyrights for code taken from ext2: * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * from * linux/fs/minix/inode.c * Copyright (C) 1991, 1992 Linus Torvalds * * This file is part of exofs. * * exofs is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. Since it is based on ext2, and the only * valid version of GPL for the Linux kernel is version 2, the only valid * version of GPL for exofs is version 2. * * exofs is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with exofs; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/slab.h> #include <linux/writeback.h> #include <linux/buffer_head.h> #include <scsi/scsi_device.h> #include "exofs.h" #define EXOFS_DBGMSG2(M...) do {} while (0) enum { BIO_MAX_PAGES_KMALLOC = (PAGE_SIZE - sizeof(struct bio)) / sizeof(struct bio_vec), MAX_PAGES_KMALLOC = PAGE_SIZE / sizeof(struct page *), }; struct page_collect { struct exofs_sb_info *sbi; struct inode *inode; unsigned expected_pages; struct exofs_io_state *ios; struct page **pages; unsigned alloc_pages; unsigned nr_pages; unsigned long length; loff_t pg_first; /* keep 64bit also in 32-arches */ }; static void _pcol_init(struct page_collect *pcol, unsigned expected_pages, struct inode *inode) { struct exofs_sb_info *sbi = inode->i_sb->s_fs_info; pcol->sbi = sbi; pcol->inode = inode; pcol->expected_pages = expected_pages; pcol->ios = NULL; pcol->pages = NULL; pcol->alloc_pages = 0; pcol->nr_pages = 0; pcol->length = 0; pcol->pg_first = -1; } static void _pcol_reset(struct page_collect *pcol) { pcol->expected_pages -= min(pcol->nr_pages, pcol->expected_pages); pcol->pages = NULL; pcol->alloc_pages = 0; pcol->nr_pages = 0; pcol->length = 0; pcol->pg_first = -1; pcol->ios = NULL; /* this is probably the end of the loop but in writes * it might not end here. don't be left with nothing */ if (!pcol->expected_pages) pcol->expected_pages = MAX_PAGES_KMALLOC; } static int pcol_try_alloc(struct page_collect *pcol) { unsigned pages = min_t(unsigned, pcol->expected_pages, MAX_PAGES_KMALLOC); if (!pcol->ios) { /* First time allocate io_state */ int ret = exofs_get_io_state(&pcol->sbi->layout, &pcol->ios); if (ret) return ret; } /* TODO: easily support bio chaining */ pages = min_t(unsigned, pages, pcol->sbi->layout.group_width * BIO_MAX_PAGES_KMALLOC); for (; pages; pages >>= 1) { pcol->pages = kmalloc(pages * sizeof(struct page *), GFP_KERNEL); if (likely(pcol->pages)) { pcol->alloc_pages = pages; return 0; } } EXOFS_ERR("Failed to kmalloc expected_pages=%u\n", pcol->expected_pages); return -ENOMEM; } static void pcol_free(struct page_collect *pcol) { kfree(pcol->pages); pcol->pages = NULL; if (pcol->ios) { exofs_put_io_state(pcol->ios); pcol->ios = NULL; } } static int pcol_add_page(struct page_collect *pcol, struct page *page, unsigned len) { if (unlikely(pcol->nr_pages >= pcol->alloc_pages)) return -ENOMEM; pcol->pages[pcol->nr_pages++] = page; pcol->length += len; return 0; } static int update_read_page(struct page *page, int ret) { if (ret == 0) { /* Everything is OK */ SetPageUptodate(page); if (PageError(page)) ClearPageError(page); } else if (ret == -EFAULT) { /* In this case we were trying to read something that wasn't on * disk yet - return a page full of zeroes. This should be OK, * because the object should be empty (if there was a write * before this read, the read would be waiting with the page * locked */ clear_highpage(page); SetPageUptodate(page); if (PageError(page)) ClearPageError(page); ret = 0; /* recovered error */ EXOFS_DBGMSG("recovered read error\n"); } else /* Error */ SetPageError(page); return ret; } static void update_write_page(struct page *page, int ret) { if (ret) { mapping_set_error(page->mapping, ret); SetPageError(page); } end_page_writeback(page); } /* Called at the end of reads, to optionally unlock pages and update their * status. */ static int __readpages_done(struct page_collect *pcol, bool do_unlock) { int i; u64 resid; u64 good_bytes; u64 length = 0; int ret = exofs_check_io(pcol->ios, &resid); if (likely(!ret)) good_bytes = pcol->length; else good_bytes = pcol->length - resid; EXOFS_DBGMSG2("readpages_done(0x%lx) good_bytes=0x%llx" " length=0x%lx nr_pages=%u\n", pcol->inode->i_ino, _LLU(good_bytes), pcol->length, pcol->nr_pages); for (i = 0; i < pcol->nr_pages; i++) { struct page *page = pcol->pages[i]; struct inode *inode = page->mapping->host; int page_stat; if (inode != pcol->inode) continue; /* osd might add more pages at end */ if (likely(length < good_bytes)) page_stat = 0; else page_stat = ret; EXOFS_DBGMSG2(" readpages_done(0x%lx, 0x%lx) %s\n", inode->i_ino, page->index, page_stat ? "bad_bytes" : "good_bytes"); ret = update_read_page(page, page_stat); if (do_unlock) unlock_page(page); length += PAGE_SIZE; } pcol_free(pcol); EXOFS_DBGMSG2("readpages_done END\n"); return ret; } /* callback of async reads */ static void readpages_done(struct exofs_io_state *ios, void *p) { struct page_collect *pcol = p; __readpages_done(pcol, true); atomic_dec(&pcol->sbi->s_curr_pending); kfree(pcol); } static void _unlock_pcol_pages(struct page_collect *pcol, int ret, int rw) { int i; for (i = 0; i < pcol->nr_pages; i++) { struct page *page = pcol->pages[i]; if (rw == READ) update_read_page(page, ret); else update_write_page(page, ret); unlock_page(page); } } static int read_exec(struct page_collect *pcol, bool is_sync) { struct exofs_i_info *oi = exofs_i(pcol->inode); struct exofs_io_state *ios = pcol->ios; struct page_collect *pcol_copy = NULL; int ret; if (!pcol->pages) return 0; /* see comment in _readpage() about sync reads */ WARN_ON(is_sync && (pcol->nr_pages != 1)); ios->pages = pcol->pages; ios->nr_pages = pcol->nr_pages; ios->length = pcol->length; ios->offset = pcol->pg_first << PAGE_CACHE_SHIFT; if (is_sync) { exofs_oi_read(oi, pcol->ios); return __readpages_done(pcol, false); } pcol_copy = kmalloc(sizeof(*pcol_copy), GFP_KERNEL); if (!pcol_copy) { ret = -ENOMEM; goto err; } *pcol_copy = *pcol; ios->done = readpages_done; ios->private = pcol_copy; ret = exofs_oi_read(oi, ios); if (unlikely(ret)) goto err; atomic_inc(&pcol->sbi->s_curr_pending); EXOFS_DBGMSG2("read_exec obj=0x%llx start=0x%llx length=0x%lx\n", ios->obj.id, _LLU(ios->offset), pcol->length); /* pages ownership was passed to pcol_copy */ _pcol_reset(pcol); return 0; err: if (!is_sync) _unlock_pcol_pages(pcol, ret, READ); pcol_free(pcol); kfree(pcol_copy); return ret; } /* readpage_strip is called either directly from readpage() or by the VFS from * within read_cache_pages(), to add one more page to be read. It will try to * collect as many contiguous pages as posible. If a discontinuity is * encountered, or it runs out of resources, it will submit the previous segment * and will start a new collection. Eventually caller must submit the last * segment if present. */ static int readpage_strip(void *data, struct page *page) { struct page_collect *pcol = data; struct inode *inode = pcol->inode; struct exofs_i_info *oi = exofs_i(inode); loff_t i_size = i_size_read(inode); pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; size_t len; int ret; /* FIXME: Just for debugging, will be removed */ if (PageUptodate(page)) EXOFS_ERR("PageUptodate(0x%lx, 0x%lx)\n", pcol->inode->i_ino, page->index); if (page->index < end_index) len = PAGE_CACHE_SIZE; else if (page->index == end_index) len = i_size & ~PAGE_CACHE_MASK; else len = 0; if (!len || !obj_created(oi)) { /* this will be out of bounds, or doesn't exist yet. * Current page is cleared and the request is split */ clear_highpage(page); SetPageUptodate(page); if (PageError(page)) ClearPageError(page); unlock_page(page); EXOFS_DBGMSG("readpage_strip(0x%lx, 0x%lx) empty page," " splitting\n", inode->i_ino, page->index); return read_exec(pcol, false); } try_again: if (unlikely(pcol->pg_first == -1)) { pcol->pg_first = page->index; } else if (unlikely((pcol->pg_first + pcol->nr_pages) != page->index)) { /* Discontinuity detected, split the request */ ret = read_exec(pcol, false); if (unlikely(ret)) goto fail; goto try_again; } if (!pcol->pages) { ret = pcol_try_alloc(pcol); if (unlikely(ret)) goto fail; } if (len != PAGE_CACHE_SIZE) zero_user(page, len, PAGE_CACHE_SIZE - len); EXOFS_DBGMSG2(" readpage_strip(0x%lx, 0x%lx) len=0x%zx\n", inode->i_ino, page->index, len); ret = pcol_add_page(pcol, page, len); if (ret) { EXOFS_DBGMSG2("Failed pcol_add_page pages[i]=%p " "this_len=0x%zx nr_pages=%u length=0x%lx\n", page, len, pcol->nr_pages, pcol->length); /* split the request, and start again with current page */ ret = read_exec(pcol, false); if (unlikely(ret)) goto fail; goto try_again; } return 0; fail: /* SetPageError(page); ??? */ unlock_page(page); return ret; } static int exofs_readpages(struct file *file, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { struct page_collect pcol; int ret; _pcol_init(&pcol, nr_pages, mapping->host); ret = read_cache_pages(mapping, pages, readpage_strip, &pcol); if (ret) { EXOFS_ERR("read_cache_pages => %d\n", ret); return ret; } return read_exec(&pcol, false); } static int _readpage(struct page *page, bool is_sync) { struct page_collect pcol; int ret; _pcol_init(&pcol, 1, page->mapping->host); /* readpage_strip might call read_exec(,is_sync==false) at several * places but not if we have a single page. */ ret = readpage_strip(&pcol, page); if (ret) { EXOFS_ERR("_readpage => %d\n", ret); return ret; } return read_exec(&pcol, is_sync); } /* * We don't need the file */ static int exofs_readpage(struct file *file, struct page *page) { return _readpage(page, false); } /* Callback for osd_write. All writes are asynchronous */ static void writepages_done(struct exofs_io_state *ios, void *p) { struct page_collect *pcol = p; int i; u64 resid; u64 good_bytes; u64 length = 0; int ret = exofs_check_io(ios, &resid); atomic_dec(&pcol->sbi->s_curr_pending); if (likely(!ret)) good_bytes = pcol->length; else good_bytes = pcol->length - resid; EXOFS_DBGMSG2("writepages_done(0x%lx) good_bytes=0x%llx" " length=0x%lx nr_pages=%u\n", pcol->inode->i_ino, _LLU(good_bytes), pcol->length, pcol->nr_pages); for (i = 0; i < pcol->nr_pages; i++) { struct page *page = pcol->pages[i]; struct inode *inode = page->mapping->host; int page_stat; if (inode != pcol->inode) continue; /* osd might add more pages to a bio */ if (likely(length < good_bytes)) page_stat = 0; else page_stat = ret; update_write_page(page, page_stat); unlock_page(page); EXOFS_DBGMSG2(" writepages_done(0x%lx, 0x%lx) status=%d\n", inode->i_ino, page->index, page_stat); length += PAGE_SIZE; } pcol_free(pcol); kfree(pcol); EXOFS_DBGMSG2("writepages_done END\n"); } static int write_exec(struct page_collect *pcol) { struct exofs_i_info *oi = exofs_i(pcol->inode); struct exofs_io_state *ios = pcol->ios; struct page_collect *pcol_copy = NULL; int ret; if (!pcol->pages) return 0; pcol_copy = kmalloc(sizeof(*pcol_copy), GFP_KERNEL); if (!pcol_copy) { EXOFS_ERR("write_exec: Faild to kmalloc(pcol)\n"); ret = -ENOMEM; goto err; } *pcol_copy = *pcol; ios->pages = pcol_copy->pages; ios->nr_pages = pcol_copy->nr_pages; ios->offset = pcol_copy->pg_first << PAGE_CACHE_SHIFT; ios->length = pcol_copy->length; ios->done = writepages_done; ios->private = pcol_copy; ret = exofs_oi_write(oi, ios); if (unlikely(ret)) { EXOFS_ERR("write_exec: exofs_oi_write() Faild\n"); goto err; } atomic_inc(&pcol->sbi->s_curr_pending); EXOFS_DBGMSG2("write_exec(0x%lx, 0x%llx) start=0x%llx length=0x%lx\n", pcol->inode->i_ino, pcol->pg_first, _LLU(ios->offset), pcol->length); /* pages ownership was passed to pcol_copy */ _pcol_reset(pcol); return 0; err: _unlock_pcol_pages(pcol, ret, WRITE); pcol_free(pcol); kfree(pcol_copy); return ret; } /* writepage_strip is called either directly from writepage() or by the VFS from * within write_cache_pages(), to add one more page to be written to storage. * It will try to collect as many contiguous pages as possible. If a * discontinuity is encountered or it runs out of resources it will submit the * previous segment and will start a new collection. * Eventually caller must submit the last segment if present. */ static int writepage_strip(struct page *page, struct writeback_control *wbc_unused, void *data) { struct page_collect *pcol = data; struct inode *inode = pcol->inode; struct exofs_i_info *oi = exofs_i(inode); loff_t i_size = i_size_read(inode); pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; size_t len; int ret; BUG_ON(!PageLocked(page)); ret = wait_obj_created(oi); if (unlikely(ret)) goto fail; if (page->index < end_index) /* in this case, the page is within the limits of the file */ len = PAGE_CACHE_SIZE; else { len = i_size & ~PAGE_CACHE_MASK; if (page->index > end_index || !len) { /* in this case, the page is outside the limits * (truncate in progress) */ ret = write_exec(pcol); if (unlikely(ret)) goto fail; if (PageError(page)) ClearPageError(page); unlock_page(page); EXOFS_DBGMSG("writepage_strip(0x%lx, 0x%lx) " "outside the limits\n", inode->i_ino, page->index); return 0; } } try_again: if (unlikely(pcol->pg_first == -1)) { pcol->pg_first = page->index; } else if (unlikely((pcol->pg_first + pcol->nr_pages) != page->index)) { /* Discontinuity detected, split the request */ ret = write_exec(pcol); if (unlikely(ret)) goto fail; EXOFS_DBGMSG("writepage_strip(0x%lx, 0x%lx) Discontinuity\n", inode->i_ino, page->index); goto try_again; } if (!pcol->pages) { ret = pcol_try_alloc(pcol); if (unlikely(ret)) goto fail; } EXOFS_DBGMSG2(" writepage_strip(0x%lx, 0x%lx) len=0x%zx\n", inode->i_ino, page->index, len); ret = pcol_add_page(pcol, page, len); if (unlikely(ret)) { EXOFS_DBGMSG2("Failed pcol_add_page " "nr_pages=%u total_length=0x%lx\n", pcol->nr_pages, pcol->length); /* split the request, next loop will start again */ ret = write_exec(pcol); if (unlikely(ret)) { EXOFS_DBGMSG("write_exec faild => %d", ret); goto fail; } goto try_again; } BUG_ON(PageWriteback(page)); set_page_writeback(page); return 0; fail: EXOFS_DBGMSG("Error: writepage_strip(0x%lx, 0x%lx)=>%d\n", inode->i_ino, page->index, ret); set_bit(AS_EIO, &page->mapping->flags); unlock_page(page); return ret; } static int exofs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct page_collect pcol; long start, end, expected_pages; int ret; start = wbc->range_start >> PAGE_CACHE_SHIFT; end = (wbc->range_end == LLONG_MAX) ? start + mapping->nrpages : wbc->range_end >> PAGE_CACHE_SHIFT; if (start || end) expected_pages = end - start + 1; else expected_pages = mapping->nrpages; if (expected_pages < 32L) expected_pages = 32L; EXOFS_DBGMSG2("inode(0x%lx) wbc->start=0x%llx wbc->end=0x%llx " "nrpages=%lu start=0x%lx end=0x%lx expected_pages=%ld\n", mapping->host->i_ino, wbc->range_start, wbc->range_end, mapping->nrpages, start, end, expected_pages); _pcol_init(&pcol, expected_pages, mapping->host); ret = write_cache_pages(mapping, wbc, writepage_strip, &pcol); if (ret) { EXOFS_ERR("write_cache_pages => %d\n", ret); return ret; } return write_exec(&pcol); } static int exofs_writepage(struct page *page, struct writeback_control *wbc) { struct page_collect pcol; int ret; _pcol_init(&pcol, 1, page->mapping->host); ret = writepage_strip(page, NULL, &pcol); if (ret) { EXOFS_ERR("exofs_writepage => %d\n", ret); return ret; } return write_exec(&pcol); } int exofs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret = 0; struct page *page; page = *pagep; if (page == NULL) { ret = simple_write_begin(file, mapping, pos, len, flags, pagep, fsdata); if (ret) { EXOFS_DBGMSG("simple_write_begin faild\n"); return ret; } page = *pagep; } /* read modify write */ if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { ret = _readpage(page, true); if (ret) { /*SetPageError was done by _readpage. Is it ok?*/ unlock_page(page); EXOFS_DBGMSG("__readpage_filler faild\n"); } } return ret; } static int exofs_write_begin_export(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { *pagep = NULL; return exofs_write_begin(file, mapping, pos, len, flags, pagep, fsdata); } static int exofs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = mapping->host; /* According to comment in simple_write_end i_mutex is held */ loff_t i_size = inode->i_size; int ret; ret = simple_write_end(file, mapping,pos, len, copied, page, fsdata); if (i_size != inode->i_size) mark_inode_dirty(inode); return ret; } const struct address_space_operations exofs_aops = { .readpage = exofs_readpage, .readpages = exofs_readpages, .writepage = exofs_writepage, .writepages = exofs_writepages, .write_begin = exofs_write_begin_export, .write_end = exofs_write_end, }; /****************************************************************************** * INODE OPERATIONS *****************************************************************************/ /* * Test whether an inode is a fast symlink. */ static inline int exofs_inode_is_fast_symlink(struct inode *inode) { struct exofs_i_info *oi = exofs_i(inode); return S_ISLNK(inode->i_mode) && (oi->i_data[0] != 0); } /* * get_block_t - Fill in a buffer_head * An OSD takes care of block allocation so we just fake an allocation by * putting in the inode's sector_t in the buffer_head. * TODO: What about the case of create==0 and @iblock does not exist in the * object? */ static int exofs_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { map_bh(bh_result, inode->i_sb, iblock); return 0; } const struct osd_attr g_attr_logical_length = ATTR_DEF( OSD_APAGE_OBJECT_INFORMATION, OSD_ATTR_OI_LOGICAL_LENGTH, 8); static int _do_truncate(struct inode *inode) { struct exofs_i_info *oi = exofs_i(inode); loff_t isize = i_size_read(inode); int ret; inode->i_mtime = inode->i_ctime = CURRENT_TIME; nobh_truncate_page(inode->i_mapping, isize, exofs_get_block); ret = exofs_oi_truncate(oi, (u64)isize); EXOFS_DBGMSG("(0x%lx) size=0x%llx\n", inode->i_ino, isize); return ret; } /* * Truncate a file to the specified size - all we have to do is set the size * attribute. We make sure the object exists first. */ void exofs_truncate(struct inode *inode) { struct exofs_i_info *oi = exofs_i(inode); int ret; if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return; if (exofs_inode_is_fast_symlink(inode)) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; /* if we are about to truncate an object, and it hasn't been * created yet, wait */ if (unlikely(wait_obj_created(oi))) goto fail; ret = _do_truncate(inode); if (ret) goto fail; out: mark_inode_dirty(inode); return; fail: make_bad_inode(inode); goto out; } /* * Set inode attributes - just call generic functions. */ int exofs_setattr(struct dentry *dentry, struct iattr *iattr) { struct inode *inode = dentry->d_inode; int error; error = inode_change_ok(inode, iattr); if (error) return error; error = inode_setattr(inode, iattr); return error; } static const struct osd_attr g_attr_inode_file_layout = ATTR_DEF( EXOFS_APAGE_FS_DATA, EXOFS_ATTR_INODE_FILE_LAYOUT, 0); static const struct osd_attr g_attr_inode_dir_layout = ATTR_DEF( EXOFS_APAGE_FS_DATA, EXOFS_ATTR_INODE_DIR_LAYOUT, 0); /* * Read the Linux inode info from the OSD, and return it as is. In exofs the * inode info is in an application specific page/attribute of the osd-object. */ static int exofs_get_inode(struct super_block *sb, struct exofs_i_info *oi, struct exofs_fcb *inode) { struct exofs_sb_info *sbi = sb->s_fs_info; struct osd_attr attrs[] = { [0] = g_attr_inode_data, [1] = g_attr_inode_file_layout, [2] = g_attr_inode_dir_layout, }; struct exofs_io_state *ios; struct exofs_on_disk_inode_layout *layout; int ret; ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) { EXOFS_ERR("%s: exofs_get_io_state failed.\n", __func__); return ret; } ios->obj.id = exofs_oi_objno(oi); exofs_make_credential(oi->i_cred, &ios->obj); ios->cred = oi->i_cred; attrs[1].len = exofs_on_disk_inode_layout_size(sbi->layout.s_numdevs); attrs[2].len = exofs_on_disk_inode_layout_size(sbi->layout.s_numdevs); ios->in_attr = attrs; ios->in_attr_len = ARRAY_SIZE(attrs); ret = exofs_sbi_read(ios); if (unlikely(ret)) { EXOFS_ERR("object(0x%llx) corrupted, return empty file=>%d\n", _LLU(ios->obj.id), ret); memset(inode, 0, sizeof(*inode)); inode->i_mode = 0040000 | (0777 & ~022); /* If object is lost on target we might as well enable it's * delete. */ if ((ret == -ENOENT) || (ret == -EINVAL)) ret = 0; goto out; } ret = extract_attr_from_ios(ios, &attrs[0]); if (ret) { EXOFS_ERR("%s: extract_attr of inode_data failed\n", __func__); goto out; } WARN_ON(attrs[0].len != EXOFS_INO_ATTR_SIZE); memcpy(inode, attrs[0].val_ptr, EXOFS_INO_ATTR_SIZE); ret = extract_attr_from_ios(ios, &attrs[1]); if (ret) { EXOFS_ERR("%s: extract_attr of inode_data failed\n", __func__); goto out; } if (attrs[1].len) { layout = attrs[1].val_ptr; if (layout->gen_func != cpu_to_le16(LAYOUT_MOVING_WINDOW)) { EXOFS_ERR("%s: unsupported files layout %d\n", __func__, layout->gen_func); ret = -ENOTSUPP; goto out; } } ret = extract_attr_from_ios(ios, &attrs[2]); if (ret) { EXOFS_ERR("%s: extract_attr of inode_data failed\n", __func__); goto out; } if (attrs[2].len) { layout = attrs[2].val_ptr; if (layout->gen_func != cpu_to_le16(LAYOUT_MOVING_WINDOW)) { EXOFS_ERR("%s: unsupported meta-data layout %d\n", __func__, layout->gen_func); ret = -ENOTSUPP; goto out; } } out: exofs_put_io_state(ios); return ret; } static void __oi_init(struct exofs_i_info *oi) { init_waitqueue_head(&oi->i_wq); oi->i_flags = 0; } /* * Fill in an inode read from the OSD and set it up for use */ struct inode *exofs_iget(struct super_block *sb, unsigned long ino) { struct exofs_i_info *oi; struct exofs_fcb fcb; struct inode *inode; int ret; inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; oi = exofs_i(inode); __oi_init(oi); /* read the inode from the osd */ ret = exofs_get_inode(sb, oi, &fcb); if (ret) goto bad_inode; set_obj_created(oi); /* copy stuff from on-disk struct to in-memory struct */ inode->i_mode = le16_to_cpu(fcb.i_mode); inode->i_uid = le32_to_cpu(fcb.i_uid); inode->i_gid = le32_to_cpu(fcb.i_gid); inode->i_nlink = le16_to_cpu(fcb.i_links_count); inode->i_ctime.tv_sec = (signed)le32_to_cpu(fcb.i_ctime); inode->i_atime.tv_sec = (signed)le32_to_cpu(fcb.i_atime); inode->i_mtime.tv_sec = (signed)le32_to_cpu(fcb.i_mtime); inode->i_ctime.tv_nsec = inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = 0; oi->i_commit_size = le64_to_cpu(fcb.i_size); i_size_write(inode, oi->i_commit_size); inode->i_blkbits = EXOFS_BLKSHIFT; inode->i_generation = le32_to_cpu(fcb.i_generation); oi->i_dir_start_lookup = 0; if ((inode->i_nlink == 0) && (inode->i_mode == 0)) { ret = -ESTALE; goto bad_inode; } if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { if (fcb.i_data[0]) inode->i_rdev = old_decode_dev(le32_to_cpu(fcb.i_data[0])); else inode->i_rdev = new_decode_dev(le32_to_cpu(fcb.i_data[1])); } else { memcpy(oi->i_data, fcb.i_data, sizeof(fcb.i_data)); } if (S_ISREG(inode->i_mode)) { inode->i_op = &exofs_file_inode_operations; inode->i_fop = &exofs_file_operations; inode->i_mapping->a_ops = &exofs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &exofs_dir_inode_operations; inode->i_fop = &exofs_dir_operations; inode->i_mapping->a_ops = &exofs_aops; } else if (S_ISLNK(inode->i_mode)) { if (exofs_inode_is_fast_symlink(inode)) inode->i_op = &exofs_fast_symlink_inode_operations; else { inode->i_op = &exofs_symlink_inode_operations; inode->i_mapping->a_ops = &exofs_aops; } } else { inode->i_op = &exofs_special_inode_operations; if (fcb.i_data[0]) init_special_inode(inode, inode->i_mode, old_decode_dev(le32_to_cpu(fcb.i_data[0]))); else init_special_inode(inode, inode->i_mode, new_decode_dev(le32_to_cpu(fcb.i_data[1]))); } unlock_new_inode(inode); return inode; bad_inode: iget_failed(inode); return ERR_PTR(ret); } int __exofs_wait_obj_created(struct exofs_i_info *oi) { if (!obj_created(oi)) { BUG_ON(!obj_2bcreated(oi)); wait_event(oi->i_wq, obj_created(oi)); } return unlikely(is_bad_inode(&oi->vfs_inode)) ? -EIO : 0; } /* * Callback function from exofs_new_inode(). The important thing is that we * set the obj_created flag so that other methods know that the object exists on * the OSD. */ static void create_done(struct exofs_io_state *ios, void *p) { struct inode *inode = p; struct exofs_i_info *oi = exofs_i(inode); struct exofs_sb_info *sbi = inode->i_sb->s_fs_info; int ret; ret = exofs_check_io(ios, NULL); exofs_put_io_state(ios); atomic_dec(&sbi->s_curr_pending); if (unlikely(ret)) { EXOFS_ERR("object=0x%llx creation faild in pid=0x%llx", _LLU(exofs_oi_objno(oi)), _LLU(sbi->layout.s_pid)); /*TODO: When FS is corrupted creation can fail, object already * exist. Get rid of this asynchronous creation, if exist * increment the obj counter and try the next object. Until we * succeed. All these dangling objects will be made into lost * files by chkfs.exofs */ } set_obj_created(oi); atomic_dec(&inode->i_count); wake_up(&oi->i_wq); } /* * Set up a new inode and create an object for it on the OSD */ struct inode *exofs_new_inode(struct inode *dir, int mode) { struct super_block *sb; struct inode *inode; struct exofs_i_info *oi; struct exofs_sb_info *sbi; struct exofs_io_state *ios; int ret; sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); oi = exofs_i(inode); __oi_init(oi); set_obj_2bcreated(oi); sbi = sb->s_fs_info; sb->s_dirt = 1; inode->i_uid = current->cred->fsuid; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else { inode->i_gid = current->cred->fsgid; } inode->i_mode = mode; inode->i_ino = sbi->s_nextid++; inode->i_blkbits = EXOFS_BLKSHIFT; inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; oi->i_commit_size = inode->i_size = 0; spin_lock(&sbi->s_next_gen_lock); inode->i_generation = sbi->s_next_generation++; spin_unlock(&sbi->s_next_gen_lock); insert_inode_hash(inode); mark_inode_dirty(inode); ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) { EXOFS_ERR("exofs_new_inode: exofs_get_io_state failed\n"); return ERR_PTR(ret); } ios->obj.id = exofs_oi_objno(oi); exofs_make_credential(oi->i_cred, &ios->obj); /* increment the refcount so that the inode will still be around when we * reach the callback */ atomic_inc(&inode->i_count); ios->done = create_done; ios->private = inode; ios->cred = oi->i_cred; ret = exofs_sbi_create(ios); if (ret) { atomic_dec(&inode->i_count); exofs_put_io_state(ios); return ERR_PTR(ret); } atomic_inc(&sbi->s_curr_pending); return inode; } /* * struct to pass two arguments to update_inode's callback */ struct updatei_args { struct exofs_sb_info *sbi; struct exofs_fcb fcb; }; /* * Callback function from exofs_update_inode(). */ static void updatei_done(struct exofs_io_state *ios, void *p) { struct updatei_args *args = p; exofs_put_io_state(ios); atomic_dec(&args->sbi->s_curr_pending); kfree(args); } /* * Write the inode to the OSD. Just fill up the struct, and set the attribute * synchronously or asynchronously depending on the do_sync flag. */ static int exofs_update_inode(struct inode *inode, int do_sync) { struct exofs_i_info *oi = exofs_i(inode); struct super_block *sb = inode->i_sb; struct exofs_sb_info *sbi = sb->s_fs_info; struct exofs_io_state *ios; struct osd_attr attr; struct exofs_fcb *fcb; struct updatei_args *args; int ret; args = kzalloc(sizeof(*args), GFP_KERNEL); if (!args) { EXOFS_DBGMSG("Faild kzalloc of args\n"); return -ENOMEM; } fcb = &args->fcb; fcb->i_mode = cpu_to_le16(inode->i_mode); fcb->i_uid = cpu_to_le32(inode->i_uid); fcb->i_gid = cpu_to_le32(inode->i_gid); fcb->i_links_count = cpu_to_le16(inode->i_nlink); fcb->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); fcb->i_atime = cpu_to_le32(inode->i_atime.tv_sec); fcb->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); oi->i_commit_size = i_size_read(inode); fcb->i_size = cpu_to_le64(oi->i_commit_size); fcb->i_generation = cpu_to_le32(inode->i_generation); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { if (old_valid_dev(inode->i_rdev)) { fcb->i_data[0] = cpu_to_le32(old_encode_dev(inode->i_rdev)); fcb->i_data[1] = 0; } else { fcb->i_data[0] = 0; fcb->i_data[1] = cpu_to_le32(new_encode_dev(inode->i_rdev)); fcb->i_data[2] = 0; } } else memcpy(fcb->i_data, oi->i_data, sizeof(fcb->i_data)); ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) { EXOFS_ERR("%s: exofs_get_io_state failed.\n", __func__); goto free_args; } attr = g_attr_inode_data; attr.val_ptr = fcb; ios->out_attr_len = 1; ios->out_attr = &attr; if (!obj_created(oi)) { EXOFS_DBGMSG("!obj_created\n"); BUG_ON(!obj_2bcreated(oi)); wait_event(oi->i_wq, obj_created(oi)); EXOFS_DBGMSG("wait_event done\n"); } if (!do_sync) { args->sbi = sbi; ios->done = updatei_done; ios->private = args; } ret = exofs_oi_write(oi, ios); if (!do_sync && !ret) { atomic_inc(&sbi->s_curr_pending); goto out; /* deallocation in updatei_done */ } exofs_put_io_state(ios); free_args: kfree(args); out: EXOFS_DBGMSG("(0x%lx) do_sync=%d ret=>%d\n", inode->i_ino, do_sync, ret); return ret; } int exofs_write_inode(struct inode *inode, struct writeback_control *wbc) { return exofs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); } /* * Callback function from exofs_delete_inode() - don't have much cleaning up to * do. */ static void delete_done(struct exofs_io_state *ios, void *p) { struct exofs_sb_info *sbi = p; exofs_put_io_state(ios); atomic_dec(&sbi->s_curr_pending); } /* * Called when the refcount of an inode reaches zero. We remove the object * from the OSD here. We make sure the object was created before we try and * delete it. */ void exofs_delete_inode(struct inode *inode) { struct exofs_i_info *oi = exofs_i(inode); struct super_block *sb = inode->i_sb; struct exofs_sb_info *sbi = sb->s_fs_info; struct exofs_io_state *ios; int ret; truncate_inode_pages(&inode->i_data, 0); if (is_bad_inode(inode)) goto no_delete; mark_inode_dirty(inode); exofs_update_inode(inode, inode_needs_sync(inode)); inode->i_size = 0; if (inode->i_blocks) exofs_truncate(inode); clear_inode(inode); ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) { EXOFS_ERR("%s: exofs_get_io_state failed\n", __func__); return; } /* if we are deleting an obj that hasn't been created yet, wait */ if (!obj_created(oi)) { BUG_ON(!obj_2bcreated(oi)); wait_event(oi->i_wq, obj_created(oi)); } ios->obj.id = exofs_oi_objno(oi); ios->done = delete_done; ios->private = sbi; ios->cred = oi->i_cred; ret = exofs_sbi_remove(ios); if (ret) { EXOFS_ERR("%s: exofs_sbi_remove failed\n", __func__); exofs_put_io_state(ios); return; } atomic_inc(&sbi->s_curr_pending); return; no_delete: clear_inode(inode); }