#include "ceph_debug.h" #include #include #include #include #include #include #include #include #include #include "super.h" #include "messenger.h" #include "decode.h" /* * Ceph uses the messenger to exchange ceph_msg messages with other * hosts in the system. The messenger provides ordered and reliable * delivery. We tolerate TCP disconnects by reconnecting (with * exponential backoff) in the case of a fault (disconnection, bad * crc, protocol error). Acks allow sent messages to be discarded by * the sender. */ /* static tag bytes (protocol control messages) */ static char tag_msg = CEPH_MSGR_TAG_MSG; static char tag_ack = CEPH_MSGR_TAG_ACK; static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; static void queue_con(struct ceph_connection *con); static void con_work(struct work_struct *); static void ceph_fault(struct ceph_connection *con); const char *ceph_name_type_str(int t) { switch (t) { case CEPH_ENTITY_TYPE_MON: return "mon"; case CEPH_ENTITY_TYPE_MDS: return "mds"; case CEPH_ENTITY_TYPE_OSD: return "osd"; case CEPH_ENTITY_TYPE_CLIENT: return "client"; case CEPH_ENTITY_TYPE_ADMIN: return "admin"; default: return "???"; } } /* * nicely render a sockaddr as a string. */ #define MAX_ADDR_STR 20 static char addr_str[MAX_ADDR_STR][40]; static DEFINE_SPINLOCK(addr_str_lock); static int last_addr_str; const char *pr_addr(const struct sockaddr_storage *ss) { int i; char *s; struct sockaddr_in *in4 = (void *)ss; unsigned char *quad = (void *)&in4->sin_addr.s_addr; struct sockaddr_in6 *in6 = (void *)ss; spin_lock(&addr_str_lock); i = last_addr_str++; if (last_addr_str == MAX_ADDR_STR) last_addr_str = 0; spin_unlock(&addr_str_lock); s = addr_str[i]; switch (ss->ss_family) { case AF_INET: sprintf(s, "%u.%u.%u.%u:%u", (unsigned int)quad[0], (unsigned int)quad[1], (unsigned int)quad[2], (unsigned int)quad[3], (unsigned int)ntohs(in4->sin_port)); break; case AF_INET6: sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u", in6->sin6_addr.s6_addr16[0], in6->sin6_addr.s6_addr16[1], in6->sin6_addr.s6_addr16[2], in6->sin6_addr.s6_addr16[3], in6->sin6_addr.s6_addr16[4], in6->sin6_addr.s6_addr16[5], in6->sin6_addr.s6_addr16[6], in6->sin6_addr.s6_addr16[7], (unsigned int)ntohs(in6->sin6_port)); break; default: sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family); } return s; } static void encode_my_addr(struct ceph_messenger *msgr) { memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); ceph_encode_addr(&msgr->my_enc_addr); } /* * work queue for all reading and writing to/from the socket. */ struct workqueue_struct *ceph_msgr_wq; int __init ceph_msgr_init(void) { ceph_msgr_wq = create_workqueue("ceph-msgr"); if (IS_ERR(ceph_msgr_wq)) { int ret = PTR_ERR(ceph_msgr_wq); pr_err("msgr_init failed to create workqueue: %d\n", ret); ceph_msgr_wq = NULL; return ret; } return 0; } void ceph_msgr_exit(void) { destroy_workqueue(ceph_msgr_wq); } /* * socket callback functions */ /* data available on socket, or listen socket received a connect */ static void ceph_data_ready(struct sock *sk, int count_unused) { struct ceph_connection *con = (struct ceph_connection *)sk->sk_user_data; if (sk->sk_state != TCP_CLOSE_WAIT) { dout("ceph_data_ready on %p state = %lu, queueing work\n", con, con->state); queue_con(con); } } /* socket has buffer space for writing */ static void ceph_write_space(struct sock *sk) { struct ceph_connection *con = (struct ceph_connection *)sk->sk_user_data; /* only queue to workqueue if there is data we want to write. */ if (test_bit(WRITE_PENDING, &con->state)) { dout("ceph_write_space %p queueing write work\n", con); queue_con(con); } else { dout("ceph_write_space %p nothing to write\n", con); } /* since we have our own write_space, clear the SOCK_NOSPACE flag */ clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); } /* socket's state has changed */ static void ceph_state_change(struct sock *sk) { struct ceph_connection *con = (struct ceph_connection *)sk->sk_user_data; dout("ceph_state_change %p state = %lu sk_state = %u\n", con, con->state, sk->sk_state); if (test_bit(CLOSED, &con->state)) return; switch (sk->sk_state) { case TCP_CLOSE: dout("ceph_state_change TCP_CLOSE\n"); case TCP_CLOSE_WAIT: dout("ceph_state_change TCP_CLOSE_WAIT\n"); if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) { if (test_bit(CONNECTING, &con->state)) con->error_msg = "connection failed"; else con->error_msg = "socket closed"; queue_con(con); } break; case TCP_ESTABLISHED: dout("ceph_state_change TCP_ESTABLISHED\n"); queue_con(con); break; } } /* * set up socket callbacks */ static void set_sock_callbacks(struct socket *sock, struct ceph_connection *con) { struct sock *sk = sock->sk; sk->sk_user_data = (void *)con; sk->sk_data_ready = ceph_data_ready; sk->sk_write_space = ceph_write_space; sk->sk_state_change = ceph_state_change; } /* * socket helpers */ /* * initiate connection to a remote socket. */ static struct socket *ceph_tcp_connect(struct ceph_connection *con) { struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr; struct socket *sock; int ret; BUG_ON(con->sock); ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); if (ret) return ERR_PTR(ret); con->sock = sock; sock->sk->sk_allocation = GFP_NOFS; set_sock_callbacks(sock, con); dout("connect %s\n", pr_addr(&con->peer_addr.in_addr)); ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK); if (ret == -EINPROGRESS) { dout("connect %s EINPROGRESS sk_state = %u\n", pr_addr(&con->peer_addr.in_addr), sock->sk->sk_state); ret = 0; } if (ret < 0) { pr_err("connect %s error %d\n", pr_addr(&con->peer_addr.in_addr), ret); sock_release(sock); con->sock = NULL; con->error_msg = "connect error"; } if (ret < 0) return ERR_PTR(ret); return sock; } static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) { struct kvec iov = {buf, len}; struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); } /* * write something. @more is true if caller will be sending more data * shortly. */ static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, size_t kvlen, size_t len, int more) { struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; if (more) msg.msg_flags |= MSG_MORE; else msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ return kernel_sendmsg(sock, &msg, iov, kvlen, len); } /* * Shutdown/close the socket for the given connection. */ static int con_close_socket(struct ceph_connection *con) { int rc; dout("con_close_socket on %p sock %p\n", con, con->sock); if (!con->sock) return 0; set_bit(SOCK_CLOSED, &con->state); rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); sock_release(con->sock); con->sock = NULL; clear_bit(SOCK_CLOSED, &con->state); return rc; } /* * Reset a connection. Discard all incoming and outgoing messages * and clear *_seq state. */ static void ceph_msg_remove(struct ceph_msg *msg) { list_del_init(&msg->list_head); ceph_msg_put(msg); } static void ceph_msg_remove_list(struct list_head *head) { while (!list_empty(head)) { struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, list_head); ceph_msg_remove(msg); } } static void reset_connection(struct ceph_connection *con) { /* reset connection, out_queue, msg_ and connect_seq */ /* discard existing out_queue and msg_seq */ mutex_lock(&con->out_mutex); ceph_msg_remove_list(&con->out_queue); ceph_msg_remove_list(&con->out_sent); if (con->in_msg) { ceph_msg_put(con->in_msg); con->in_msg = NULL; } con->connect_seq = 0; con->out_seq = 0; if (con->out_msg) { ceph_msg_put(con->out_msg); con->out_msg = NULL; } con->in_seq = 0; mutex_unlock(&con->out_mutex); } /* * mark a peer down. drop any open connections. */ void ceph_con_close(struct ceph_connection *con) { dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr)); set_bit(CLOSED, &con->state); /* in case there's queued work */ clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */ reset_connection(con); queue_con(con); } /* * Reopen a closed connection, with a new peer address. */ void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr) { dout("con_open %p %s\n", con, pr_addr(&addr->in_addr)); set_bit(OPENING, &con->state); clear_bit(CLOSED, &con->state); memcpy(&con->peer_addr, addr, sizeof(*addr)); con->delay = 0; /* reset backoff memory */ queue_con(con); } /* * generic get/put */ struct ceph_connection *ceph_con_get(struct ceph_connection *con) { dout("con_get %p nref = %d -> %d\n", con, atomic_read(&con->nref), atomic_read(&con->nref) + 1); if (atomic_inc_not_zero(&con->nref)) return con; return NULL; } void ceph_con_put(struct ceph_connection *con) { dout("con_put %p nref = %d -> %d\n", con, atomic_read(&con->nref), atomic_read(&con->nref) - 1); BUG_ON(atomic_read(&con->nref) == 0); if (atomic_dec_and_test(&con->nref)) { BUG_ON(con->sock); kfree(con); } } /* * initialize a new connection. */ void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con) { dout("con_init %p\n", con); memset(con, 0, sizeof(*con)); atomic_set(&con->nref, 1); con->msgr = msgr; mutex_init(&con->out_mutex); INIT_LIST_HEAD(&con->out_queue); INIT_LIST_HEAD(&con->out_sent); INIT_DELAYED_WORK(&con->work, con_work); } /* * We maintain a global counter to order connection attempts. Get * a unique seq greater than @gt. */ static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) { u32 ret; spin_lock(&msgr->global_seq_lock); if (msgr->global_seq < gt) msgr->global_seq = gt; ret = ++msgr->global_seq; spin_unlock(&msgr->global_seq_lock); return ret; } /* * Prepare footer for currently outgoing message, and finish things * off. Assumes out_kvec* are already valid.. we just add on to the end. */ static void prepare_write_message_footer(struct ceph_connection *con, int v) { struct ceph_msg *m = con->out_msg; dout("prepare_write_message_footer %p\n", con); con->out_kvec_is_msg = true; con->out_kvec[v].iov_base = &m->footer; con->out_kvec[v].iov_len = sizeof(m->footer); con->out_kvec_bytes += sizeof(m->footer); con->out_kvec_left++; con->out_more = m->more_to_follow; con->out_msg_done = true; } /* * Prepare headers for the next outgoing message. */ static void prepare_write_message(struct ceph_connection *con) { struct ceph_msg *m; int v = 0; con->out_kvec_bytes = 0; con->out_kvec_is_msg = true; con->out_msg_done = false; /* Sneak an ack in there first? If we can get it into the same * TCP packet that's a good thing. */ if (con->in_seq > con->in_seq_acked) { con->in_seq_acked = con->in_seq; con->out_kvec[v].iov_base = &tag_ack; con->out_kvec[v++].iov_len = 1; con->out_temp_ack = cpu_to_le64(con->in_seq_acked); con->out_kvec[v].iov_base = &con->out_temp_ack; con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack); con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); } m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); con->out_msg = m; if (test_bit(LOSSYTX, &con->state)) { /* put message on sent list */ ceph_msg_get(m); list_move_tail(&m->list_head, &con->out_sent); } else { list_del_init(&m->list_head); } m->hdr.seq = cpu_to_le64(++con->out_seq); dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", m, con->out_seq, le16_to_cpu(m->hdr.type), le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), le32_to_cpu(m->hdr.data_len), m->nr_pages); BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); /* tag + hdr + front + middle */ con->out_kvec[v].iov_base = &tag_msg; con->out_kvec[v++].iov_len = 1; con->out_kvec[v].iov_base = &m->hdr; con->out_kvec[v++].iov_len = sizeof(m->hdr); con->out_kvec[v++] = m->front; if (m->middle) con->out_kvec[v++] = m->middle->vec; con->out_kvec_left = v; con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len + (m->middle ? m->middle->vec.iov_len : 0); con->out_kvec_cur = con->out_kvec; /* fill in crc (except data pages), footer */ con->out_msg->hdr.crc = cpu_to_le32(crc32c(0, (void *)&m->hdr, sizeof(m->hdr) - sizeof(m->hdr.crc))); con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE; con->out_msg->footer.front_crc = cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len)); if (m->middle) con->out_msg->footer.middle_crc = cpu_to_le32(crc32c(0, m->middle->vec.iov_base, m->middle->vec.iov_len)); else con->out_msg->footer.middle_crc = 0; con->out_msg->footer.data_crc = 0; dout("prepare_write_message front_crc %u data_crc %u\n", le32_to_cpu(con->out_msg->footer.front_crc), le32_to_cpu(con->out_msg->footer.middle_crc)); /* is there a data payload? */ if (le32_to_cpu(m->hdr.data_len) > 0) { /* initialize page iterator */ con->out_msg_pos.page = 0; con->out_msg_pos.page_pos = le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK; con->out_msg_pos.data_pos = 0; con->out_msg_pos.did_page_crc = 0; con->out_more = 1; /* data + footer will follow */ } else { /* no, queue up footer too and be done */ prepare_write_message_footer(con, v); } set_bit(WRITE_PENDING, &con->state); } /* * Prepare an ack. */ static void prepare_write_ack(struct ceph_connection *con) { dout("prepare_write_ack %p %llu -> %llu\n", con, con->in_seq_acked, con->in_seq); con->in_seq_acked = con->in_seq; con->out_kvec[0].iov_base = &tag_ack; con->out_kvec[0].iov_len = 1; con->out_temp_ack = cpu_to_le64(con->in_seq_acked); con->out_kvec[1].iov_base = &con->out_temp_ack; con->out_kvec[1].iov_len = sizeof(con->out_temp_ack); con->out_kvec_left = 2; con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); con->out_kvec_cur = con->out_kvec; con->out_more = 1; /* more will follow.. eventually.. */ set_bit(WRITE_PENDING, &con->state); } /* * Prepare to write keepalive byte. */ static void prepare_write_keepalive(struct ceph_connection *con) { dout("prepare_write_keepalive %p\n", con); con->out_kvec[0].iov_base = &tag_keepalive; con->out_kvec[0].iov_len = 1; con->out_kvec_left = 1; con->out_kvec_bytes = 1; con->out_kvec_cur = con->out_kvec; set_bit(WRITE_PENDING, &con->state); } /* * Connection negotiation. */ static void prepare_connect_authorizer(struct ceph_connection *con) { void *auth_buf; int auth_len = 0; int auth_protocol = 0; if (con->ops->get_authorizer) con->ops->get_authorizer(con, &auth_buf, &auth_len, &auth_protocol, &con->auth_reply_buf, &con->auth_reply_buf_len, con->auth_retry); con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol); con->out_connect.authorizer_len = cpu_to_le32(auth_len); con->out_kvec[con->out_kvec_left].iov_base = auth_buf; con->out_kvec[con->out_kvec_left].iov_len = auth_len; con->out_kvec_left++; con->out_kvec_bytes += auth_len; } /* * We connected to a peer and are saying hello. */ static void prepare_write_banner(struct ceph_messenger *msgr, struct ceph_connection *con) { int len = strlen(CEPH_BANNER); con->out_kvec[0].iov_base = CEPH_BANNER; con->out_kvec[0].iov_len = len; con->out_kvec[1].iov_base = &msgr->my_enc_addr; con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr); con->out_kvec_left = 2; con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr); con->out_kvec_cur = con->out_kvec; con->out_more = 0; set_bit(WRITE_PENDING, &con->state); } static void prepare_write_connect(struct ceph_messenger *msgr, struct ceph_connection *con, int after_banner) { unsigned global_seq = get_global_seq(con->msgr, 0); int proto; switch (con->peer_name.type) { case CEPH_ENTITY_TYPE_MON: proto = CEPH_MONC_PROTOCOL; break; case CEPH_ENTITY_TYPE_OSD: proto = CEPH_OSDC_PROTOCOL; break; case CEPH_ENTITY_TYPE_MDS: proto = CEPH_MDSC_PROTOCOL; break; default: BUG(); } dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, con->connect_seq, global_seq, proto); con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); con->out_connect.global_seq = cpu_to_le32(global_seq); con->out_connect.protocol_version = cpu_to_le32(proto); con->out_connect.flags = 0; if (!after_banner) { con->out_kvec_left = 0; con->out_kvec_bytes = 0; } con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect; con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect); con->out_kvec_left++; con->out_kvec_bytes += sizeof(con->out_connect); con->out_kvec_cur = con->out_kvec; con->out_more = 0; set_bit(WRITE_PENDING, &con->state); prepare_connect_authorizer(con); } /* * write as much of pending kvecs to the socket as we can. * 1 -> done * 0 -> socket full, but more to do * <0 -> error */ static int write_partial_kvec(struct ceph_connection *con) { int ret; dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); while (con->out_kvec_bytes > 0) { ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, con->out_kvec_left, con->out_kvec_bytes, con->out_more); if (ret <= 0) goto out; con->out_kvec_bytes -= ret; if (con->out_kvec_bytes == 0) break; /* done */ while (ret > 0) { if (ret >= con->out_kvec_cur->iov_len) { ret -= con->out_kvec_cur->iov_len; con->out_kvec_cur++; con->out_kvec_left--; } else { con->out_kvec_cur->iov_len -= ret; con->out_kvec_cur->iov_base += ret; ret = 0; break; } } } con->out_kvec_left = 0; con->out_kvec_is_msg = false; ret = 1; out: dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, con->out_kvec_bytes, con->out_kvec_left, ret); return ret; /* done! */ } /* * Write as much message data payload as we can. If we finish, queue * up the footer. * 1 -> done, footer is now queued in out_kvec[]. * 0 -> socket full, but more to do * <0 -> error */ static int write_partial_msg_pages(struct ceph_connection *con) { struct ceph_msg *msg = con->out_msg; unsigned data_len = le32_to_cpu(msg->hdr.data_len); size_t len; int crc = con->msgr->nocrc; int ret; dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages, con->out_msg_pos.page_pos); while (con->out_msg_pos.page < con->out_msg->nr_pages) { struct page *page = NULL; void *kaddr = NULL; /* * if we are calculating the data crc (the default), we need * to map the page. if our pages[] has been revoked, use the * zero page. */ if (msg->pages) { page = msg->pages[con->out_msg_pos.page]; if (crc) kaddr = kmap(page); } else { page = con->msgr->zero_page; if (crc) kaddr = page_address(con->msgr->zero_page); } len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos), (int)(data_len - con->out_msg_pos.data_pos)); if (crc && !con->out_msg_pos.did_page_crc) { void *base = kaddr + con->out_msg_pos.page_pos; u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc); BUG_ON(kaddr == NULL); con->out_msg->footer.data_crc = cpu_to_le32(crc32c(tmpcrc, base, len)); con->out_msg_pos.did_page_crc = 1; } ret = kernel_sendpage(con->sock, page, con->out_msg_pos.page_pos, len, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_MORE); if (crc && msg->pages) kunmap(page); if (ret <= 0) goto out; con->out_msg_pos.data_pos += ret; con->out_msg_pos.page_pos += ret; if (ret == len) { con->out_msg_pos.page_pos = 0; con->out_msg_pos.page++; con->out_msg_pos.did_page_crc = 0; } } dout("write_partial_msg_pages %p msg %p done\n", con, msg); /* prepare and queue up footer, too */ if (!crc) con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; con->out_kvec_bytes = 0; con->out_kvec_left = 0; con->out_kvec_cur = con->out_kvec; prepare_write_message_footer(con, 0); ret = 1; out: return ret; } /* * write some zeros */ static int write_partial_skip(struct ceph_connection *con) { int ret; while (con->out_skip > 0) { struct kvec iov = { .iov_base = page_address(con->msgr->zero_page), .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE) }; ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1); if (ret <= 0) goto out; con->out_skip -= ret; } ret = 1; out: return ret; } /* * Prepare to read connection handshake, or an ack. */ static void prepare_read_banner(struct ceph_connection *con) { dout("prepare_read_banner %p\n", con); con->in_base_pos = 0; } static void prepare_read_connect(struct ceph_connection *con) { dout("prepare_read_connect %p\n", con); con->in_base_pos = 0; } static void prepare_read_connect_retry(struct ceph_connection *con) { dout("prepare_read_connect_retry %p\n", con); con->in_base_pos = strlen(CEPH_BANNER) + sizeof(con->actual_peer_addr) + sizeof(con->peer_addr_for_me); } static void prepare_read_ack(struct ceph_connection *con) { dout("prepare_read_ack %p\n", con); con->in_base_pos = 0; } static void prepare_read_tag(struct ceph_connection *con) { dout("prepare_read_tag %p\n", con); con->in_base_pos = 0; con->in_tag = CEPH_MSGR_TAG_READY; } /* * Prepare to read a message. */ static int prepare_read_message(struct ceph_connection *con) { dout("prepare_read_message %p\n", con); BUG_ON(con->in_msg != NULL); con->in_base_pos = 0; con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; return 0; } static int read_partial(struct ceph_connection *con, int *to, int size, void *object) { *to += size; while (con->in_base_pos < *to) { int left = *to - con->in_base_pos; int have = size - left; int ret = ceph_tcp_recvmsg(con->sock, object + have, left); if (ret <= 0) return ret; con->in_base_pos += ret; } return 1; } /* * Read all or part of the connect-side handshake on a new connection */ static int read_partial_banner(struct ceph_connection *con) { int ret, to = 0; dout("read_partial_banner %p at %d\n", con, con->in_base_pos); /* peer's banner */ ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner); if (ret <= 0) goto out; ret = read_partial(con, &to, sizeof(con->actual_peer_addr), &con->actual_peer_addr); if (ret <= 0) goto out; ret = read_partial(con, &to, sizeof(con->peer_addr_for_me), &con->peer_addr_for_me); if (ret <= 0) goto out; out: return ret; } static int read_partial_connect(struct ceph_connection *con) { int ret, to = 0; dout("read_partial_connect %p at %d\n", con, con->in_base_pos); ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply); if (ret <= 0) goto out; ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len), con->auth_reply_buf); if (ret <= 0) goto out; dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", con, (int)con->in_reply.tag, le32_to_cpu(con->in_reply.connect_seq), le32_to_cpu(con->in_reply.global_seq)); out: return ret; } /* * Verify the hello banner looks okay. */ static int verify_hello(struct ceph_connection *con) { if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { pr_err("connect to %s got bad banner\n", pr_addr(&con->peer_addr.in_addr)); con->error_msg = "protocol error, bad banner"; return -1; } return 0; } static bool addr_is_blank(struct sockaddr_storage *ss) { switch (ss->ss_family) { case AF_INET: return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; case AF_INET6: return ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; } return false; } static int addr_port(struct sockaddr_storage *ss) { switch (ss->ss_family) { case AF_INET: return ntohs(((struct sockaddr_in *)ss)->sin_port); case AF_INET6: return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); } return 0; } static void addr_set_port(struct sockaddr_storage *ss, int p) { switch (ss->ss_family) { case AF_INET: ((struct sockaddr_in *)ss)->sin_port = htons(p); case AF_INET6: ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); } } /* * Parse an ip[:port] list into an addr array. Use the default * monitor port if a port isn't specified. */ int ceph_parse_ips(const char *c, const char *end, struct ceph_entity_addr *addr, int max_count, int *count) { int i; const char *p = c; dout("parse_ips on '%.*s'\n", (int)(end-c), c); for (i = 0; i < max_count; i++) { const char *ipend; struct sockaddr_storage *ss = &addr[i].in_addr; struct sockaddr_in *in4 = (void *)ss; struct sockaddr_in6 *in6 = (void *)ss; int port; memset(ss, 0, sizeof(*ss)); if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr, ',', &ipend)) { ss->ss_family = AF_INET; } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr, ',', &ipend)) { ss->ss_family = AF_INET6; } else { goto bad; } p = ipend; /* port? */ if (p < end && *p == ':') { port = 0; p++; while (p < end && *p >= '0' && *p <= '9') { port = (port * 10) + (*p - '0'); p++; } if (port > 65535 || port == 0) goto bad; } else { port = CEPH_MON_PORT; } addr_set_port(ss, port); dout("parse_ips got %s\n", pr_addr(ss)); if (p == end) break; if (*p != ',') goto bad; p++; } if (p != end) goto bad; if (count) *count = i + 1; return 0; bad: pr_err("parse_ips bad ip '%s'\n", c); return -EINVAL; } static int process_banner(struct ceph_connection *con) { dout("process_banner on %p\n", con); if (verify_hello(con) < 0) return -1; ceph_decode_addr(&con->actual_peer_addr); ceph_decode_addr(&con->peer_addr_for_me); /* * Make sure the other end is who we wanted. note that the other * end may not yet know their ip address, so if it's 0.0.0.0, give * them the benefit of the doubt. */ if (!ceph_entity_addr_is_local(&con->peer_addr, &con->actual_peer_addr) && !(addr_is_blank(&con->actual_peer_addr.in_addr) && con->actual_peer_addr.nonce == con->peer_addr.nonce)) { pr_err("wrong peer, want %s/%d, " "got %s/%d, wtf\n", pr_addr(&con->peer_addr.in_addr), con->peer_addr.nonce, pr_addr(&con->actual_peer_addr.in_addr), con->actual_peer_addr.nonce); con->error_msg = "protocol error, wrong peer"; return -1; } /* * did we learn our address? */ if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { int port = addr_port(&con->msgr->inst.addr.in_addr); memcpy(&con->msgr->inst.addr.in_addr, &con->peer_addr_for_me.in_addr, sizeof(con->peer_addr_for_me.in_addr)); addr_set_port(&con->msgr->inst.addr.in_addr, port); encode_my_addr(con->msgr); dout("process_banner learned my addr is %s\n", pr_addr(&con->msgr->inst.addr.in_addr)); } set_bit(NEGOTIATING, &con->state); prepare_read_connect(con); return 0; } static int process_connect(struct ceph_connection *con) { dout("process_connect on %p tag %d\n", con, (int)con->in_tag); switch (con->in_reply.tag) { case CEPH_MSGR_TAG_BADPROTOVER: dout("process_connect got BADPROTOVER my %d != their %d\n", le32_to_cpu(con->out_connect.protocol_version), le32_to_cpu(con->in_reply.protocol_version)); pr_err("%s%lld %s protocol version mismatch," " my %d != server's %d\n", ENTITY_NAME(con->peer_name), pr_addr(&con->peer_addr.in_addr), le32_to_cpu(con->out_connect.protocol_version), le32_to_cpu(con->in_reply.protocol_version)); con->error_msg = "protocol version mismatch"; if (con->ops->bad_proto) con->ops->bad_proto(con); reset_connection(con); set_bit(CLOSED, &con->state); /* in case there's queued work */ return -1; case CEPH_MSGR_TAG_BADAUTHORIZER: con->auth_retry++; dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, con->auth_retry); if (con->auth_retry == 2) { con->error_msg = "connect authorization failure"; reset_connection(con); set_bit(CLOSED, &con->state); return -1; } con->auth_retry = 1; prepare_write_connect(con->msgr, con, 0); prepare_read_connect_retry(con); break; case CEPH_MSGR_TAG_RESETSESSION: /* * If we connected with a large connect_seq but the peer * has no record of a session with us (no connection, or * connect_seq == 0), they will send RESETSESION to indicate * that they must have reset their session, and may have * dropped messages. */ dout("process_connect got RESET peer seq %u\n", le32_to_cpu(con->in_connect.connect_seq)); pr_err("%s%lld %s connection reset\n", ENTITY_NAME(con->peer_name), pr_addr(&con->peer_addr.in_addr)); reset_connection(con); prepare_write_connect(con->msgr, con, 0); prepare_read_connect(con); /* Tell ceph about it. */ pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); if (con->ops->peer_reset) con->ops->peer_reset(con); break; case CEPH_MSGR_TAG_RETRY_SESSION: /* * If we sent a smaller connect_seq than the peer has, try * again with a larger value. */ dout("process_connect got RETRY my seq = %u, peer_seq = %u\n", le32_to_cpu(con->out_connect.connect_seq), le32_to_cpu(con->in_connect.connect_seq)); con->connect_seq = le32_to_cpu(con->in_connect.connect_seq); prepare_write_connect(con->msgr, con, 0); prepare_read_connect(con); break; case CEPH_MSGR_TAG_RETRY_GLOBAL: /* * If we sent a smaller global_seq than the peer has, try * again with a larger value. */ dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", con->peer_global_seq, le32_to_cpu(con->in_connect.global_seq)); get_global_seq(con->msgr, le32_to_cpu(con->in_connect.global_seq)); prepare_write_connect(con->msgr, con, 0); prepare_read_connect(con); break; case CEPH_MSGR_TAG_READY: clear_bit(CONNECTING, &con->state); con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); con->connect_seq++; dout("process_connect got READY gseq %d cseq %d (%d)\n", con->peer_global_seq, le32_to_cpu(con->in_reply.connect_seq), con->connect_seq); WARN_ON(con->connect_seq != le32_to_cpu(con->in_reply.connect_seq)); if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) set_bit(LOSSYTX, &con->state); prepare_read_tag(con); break; case CEPH_MSGR_TAG_WAIT: /* * If there is a connection race (we are opening * connections to each other), one of us may just have * to WAIT. This shouldn't happen if we are the * client. */ pr_err("process_connect peer connecting WAIT\n"); default: pr_err("connect protocol error, will retry\n"); con->error_msg = "protocol error, garbage tag during connect"; return -1; } return 0; } /* * read (part of) an ack */ static int read_partial_ack(struct ceph_connection *con) { int to = 0; return read_partial(con, &to, sizeof(con->in_temp_ack), &con->in_temp_ack); } /* * We can finally discard anything that's been acked. */ static void process_ack(struct ceph_connection *con) { struct ceph_msg *m; u64 ack = le64_to_cpu(con->in_temp_ack); u64 seq; mutex_lock(&con->out_mutex); while (!list_empty(&con->out_sent)) { m = list_first_entry(&con->out_sent, struct ceph_msg, list_head); seq = le64_to_cpu(m->hdr.seq); if (seq > ack) break; dout("got ack for seq %llu type %d at %p\n", seq, le16_to_cpu(m->hdr.type), m); ceph_msg_remove(m); } mutex_unlock(&con->out_mutex); prepare_read_tag(con); } /* * read (part of) a message. */ static int read_partial_message(struct ceph_connection *con) { struct ceph_msg *m = con->in_msg; void *p; int ret; int to, want, left; unsigned front_len, middle_len, data_len, data_off; int datacrc = con->msgr->nocrc; dout("read_partial_message con %p msg %p\n", con, m); /* header */ while (con->in_base_pos < sizeof(con->in_hdr)) { left = sizeof(con->in_hdr) - con->in_base_pos; ret = ceph_tcp_recvmsg(con->sock, (char *)&con->in_hdr + con->in_base_pos, left); if (ret <= 0) return ret; con->in_base_pos += ret; if (con->in_base_pos == sizeof(con->in_hdr)) { u32 crc = crc32c(0, (void *)&con->in_hdr, sizeof(con->in_hdr) - sizeof(con->in_hdr.crc)); if (crc != le32_to_cpu(con->in_hdr.crc)) { pr_err("read_partial_message bad hdr " " crc %u != expected %u\n", crc, con->in_hdr.crc); return -EBADMSG; } } } front_len = le32_to_cpu(con->in_hdr.front_len); if (front_len > CEPH_MSG_MAX_FRONT_LEN) return -EIO; middle_len = le32_to_cpu(con->in_hdr.middle_len); if (middle_len > CEPH_MSG_MAX_DATA_LEN) return -EIO; data_len = le32_to_cpu(con->in_hdr.data_len); if (data_len > CEPH_MSG_MAX_DATA_LEN) return -EIO; /* allocate message? */ if (!con->in_msg) { dout("got hdr type %d front %d data %d\n", con->in_hdr.type, con->in_hdr.front_len, con->in_hdr.data_len); con->in_msg = con->ops->alloc_msg(con, &con->in_hdr); if (!con->in_msg) { /* skip this message */ pr_err("alloc_msg returned NULL, skipping message\n"); con->in_base_pos = -front_len - middle_len - data_len - sizeof(m->footer); con->in_tag = CEPH_MSGR_TAG_READY; return 0; } if (IS_ERR(con->in_msg)) { ret = PTR_ERR(con->in_msg); con->in_msg = NULL; con->error_msg = "out of memory for incoming message"; return ret; } m = con->in_msg; m->front.iov_len = 0; /* haven't read it yet */ memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr)); } /* front */ while (m->front.iov_len < front_len) { BUG_ON(m->front.iov_base == NULL); left = front_len - m->front.iov_len; ret = ceph_tcp_recvmsg(con->sock, (char *)m->front.iov_base + m->front.iov_len, left); if (ret <= 0) return ret; m->front.iov_len += ret; if (m->front.iov_len == front_len) con->in_front_crc = crc32c(0, m->front.iov_base, m->front.iov_len); } /* middle */ while (middle_len > 0 && (!m->middle || m->middle->vec.iov_len < middle_len)) { if (m->middle == NULL) { ret = -EOPNOTSUPP; if (con->ops->alloc_middle) ret = con->ops->alloc_middle(con, m); if (ret < 0) { pr_err("alloc_middle fail skipping payload\n"); con->in_base_pos = -middle_len - data_len - sizeof(m->footer); ceph_msg_put(con->in_msg); con->in_msg = NULL; con->in_tag = CEPH_MSGR_TAG_READY; return 0; } m->middle->vec.iov_len = 0; } left = middle_len - m->middle->vec.iov_len; ret = ceph_tcp_recvmsg(con->sock, (char *)m->middle->vec.iov_base + m->middle->vec.iov_len, left); if (ret <= 0) return ret; m->middle->vec.iov_len += ret; if (m->middle->vec.iov_len == middle_len) con->in_middle_crc = crc32c(0, m->middle->vec.iov_base, m->middle->vec.iov_len); } /* (page) data */ data_off = le16_to_cpu(m->hdr.data_off); if (data_len == 0) goto no_data; if (m->nr_pages == 0) { con->in_msg_pos.page = 0; con->in_msg_pos.page_pos = data_off & ~PAGE_MASK; con->in_msg_pos.data_pos = 0; /* find pages for data payload */ want = calc_pages_for(data_off & ~PAGE_MASK, data_len); ret = -1; if (con->ops->prepare_pages) ret = con->ops->prepare_pages(con, m, want); if (ret < 0) { dout("%p prepare_pages failed, skipping payload\n", m); con->in_base_pos = -data_len - sizeof(m->footer); ceph_msg_put(con->in_msg); con->in_msg = NULL; con->in_tag = CEPH_MSGR_TAG_READY; return 0; } BUG_ON(m->nr_pages < want); } while (con->in_msg_pos.data_pos < data_len) { left = min((int)(data_len - con->in_msg_pos.data_pos), (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); BUG_ON(m->pages == NULL); p = kmap(m->pages[con->in_msg_pos.page]); ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left); if (ret > 0 && datacrc) con->in_data_crc = crc32c(con->in_data_crc, p + con->in_msg_pos.page_pos, ret); kunmap(m->pages[con->in_msg_pos.page]); if (ret <= 0) return ret; con->in_msg_pos.data_pos += ret; con->in_msg_pos.page_pos += ret; if (con->in_msg_pos.page_pos == PAGE_SIZE) { con->in_msg_pos.page_pos = 0; con->in_msg_pos.page++; } } no_data: /* footer */ to = sizeof(m->hdr) + sizeof(m->footer); while (con->in_base_pos < to) { left = to - con->in_base_pos; ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer + (con->in_base_pos - sizeof(m->hdr)), left); if (ret <= 0) return ret; con->in_base_pos += ret; } dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", m, front_len, m->footer.front_crc, middle_len, m->footer.middle_crc, data_len, m->footer.data_crc); /* crc ok? */ if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { pr_err("read_partial_message %p front crc %u != exp. %u\n", m, con->in_front_crc, m->footer.front_crc); return -EBADMSG; } if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { pr_err("read_partial_message %p middle crc %u != exp %u\n", m, con->in_middle_crc, m->footer.middle_crc); return -EBADMSG; } if (datacrc && (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { pr_err("read_partial_message %p data crc %u != exp. %u\n", m, con->in_data_crc, le32_to_cpu(m->footer.data_crc)); return -EBADMSG; } return 1; /* done! */ } /* * Process message. This happens in the worker thread. The callback should * be careful not to do anything that waits on other incoming messages or it * may deadlock. */ static void process_message(struct ceph_connection *con) { struct ceph_msg *msg; msg = con->in_msg; con->in_msg = NULL; /* if first message, set peer_name */ if (con->peer_name.type == 0) con->peer_name = msg->hdr.src.name; mutex_lock(&con->out_mutex); con->in_seq++; mutex_unlock(&con->out_mutex); dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", msg, le64_to_cpu(msg->hdr.seq), ENTITY_NAME(msg->hdr.src.name), le16_to_cpu(msg->hdr.type), ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), le32_to_cpu(msg->hdr.front_len), le32_to_cpu(msg->hdr.data_len), con->in_front_crc, con->in_middle_crc, con->in_data_crc); con->ops->dispatch(con, msg); prepare_read_tag(con); } /* * Write something to the socket. Called in a worker thread when the * socket appears to be writeable and we have something ready to send. */ static int try_write(struct ceph_connection *con) { struct ceph_messenger *msgr = con->msgr; int ret = 1; dout("try_write start %p state %lu nref %d\n", con, con->state, atomic_read(&con->nref)); mutex_lock(&con->out_mutex); more: dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); /* open the socket first? */ if (con->sock == NULL) { /* * if we were STANDBY and are reconnecting _this_ * connection, bump connect_seq now. Always bump * global_seq. */ if (test_and_clear_bit(STANDBY, &con->state)) con->connect_seq++; prepare_write_banner(msgr, con); prepare_write_connect(msgr, con, 1); prepare_read_banner(con); set_bit(CONNECTING, &con->state); clear_bit(NEGOTIATING, &con->state); BUG_ON(con->in_msg); con->in_tag = CEPH_MSGR_TAG_READY; dout("try_write initiating connect on %p new state %lu\n", con, con->state); con->sock = ceph_tcp_connect(con); if (IS_ERR(con->sock)) { con->sock = NULL; con->error_msg = "connect error"; ret = -1; goto out; } } more_kvec: /* kvec data queued? */ if (con->out_skip) { ret = write_partial_skip(con); if (ret <= 0) goto done; if (ret < 0) { dout("try_write write_partial_skip err %d\n", ret); goto done; } } if (con->out_kvec_left) { ret = write_partial_kvec(con); if (ret <= 0) goto done; if (ret < 0) { dout("try_write write_partial_kvec err %d\n", ret); goto done; } } /* msg pages? */ if (con->out_msg) { if (con->out_msg_done) { ceph_msg_put(con->out_msg); con->out_msg = NULL; /* we're done with this one */ goto do_next; } ret = write_partial_msg_pages(con); if (ret == 1) goto more_kvec; /* we need to send the footer, too! */ if (ret == 0) goto done; if (ret < 0) { dout("try_write write_partial_msg_pages err %d\n", ret); goto done; } } do_next: if (!test_bit(CONNECTING, &con->state)) { /* is anything else pending? */ if (!list_empty(&con->out_queue)) { prepare_write_message(con); goto more; } if (con->in_seq > con->in_seq_acked) { prepare_write_ack(con); goto more; } if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) { prepare_write_keepalive(con); goto more; } } /* Nothing to do! */ clear_bit(WRITE_PENDING, &con->state); dout("try_write nothing else to write.\n"); done: ret = 0; out: mutex_unlock(&con->out_mutex); dout("try_write done on %p\n", con); return ret; } /* * Read what we can from the socket. */ static int try_read(struct ceph_connection *con) { struct ceph_messenger *msgr; int ret = -1; if (!con->sock) return 0; if (test_bit(STANDBY, &con->state)) return 0; dout("try_read start on %p\n", con); msgr = con->msgr; more: dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, con->in_base_pos); if (test_bit(CONNECTING, &con->state)) { if (!test_bit(NEGOTIATING, &con->state)) { dout("try_read connecting\n"); ret = read_partial_banner(con); if (ret <= 0) goto done; if (process_banner(con) < 0) { ret = -1; goto out; } } ret = read_partial_connect(con); if (ret <= 0) goto done; if (process_connect(con) < 0) { ret = -1; goto out; } goto more; } if (con->in_base_pos < 0) { /* * skipping + discarding content. * * FIXME: there must be a better way to do this! */ static char buf[1024]; int skip = min(1024, -con->in_base_pos); dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); ret = ceph_tcp_recvmsg(con->sock, buf, skip); if (ret <= 0) goto done; con->in_base_pos += ret; if (con->in_base_pos) goto more; } if (con->in_tag == CEPH_MSGR_TAG_READY) { /* * what's next? */ ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); if (ret <= 0) goto done; dout("try_read got tag %d\n", (int)con->in_tag); switch (con->in_tag) { case CEPH_MSGR_TAG_MSG: prepare_read_message(con); break; case CEPH_MSGR_TAG_ACK: prepare_read_ack(con); break; case CEPH_MSGR_TAG_CLOSE: set_bit(CLOSED, &con->state); /* fixme */ goto done; default: goto bad_tag; } } if (con->in_tag == CEPH_MSGR_TAG_MSG) { ret = read_partial_message(con); if (ret <= 0) { switch (ret) { case -EBADMSG: con->error_msg = "bad crc"; ret = -EIO; goto out; case -EIO: con->error_msg = "io error"; goto out; default: goto done; } } if (con->in_tag == CEPH_MSGR_TAG_READY) goto more; process_message(con); goto more; } if (con->in_tag == CEPH_MSGR_TAG_ACK) { ret = read_partial_ack(con); if (ret <= 0) goto done; process_ack(con); goto more; } done: ret = 0; out: dout("try_read done on %p\n", con); return ret; bad_tag: pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); con->error_msg = "protocol error, garbage tag"; ret = -1; goto out; } /* * Atomically queue work on a connection. Bump @con reference to * avoid races with connection teardown. * * There is some trickery going on with QUEUED and BUSY because we * only want a _single_ thread operating on each connection at any * point in time, but we want to use all available CPUs. * * The worker thread only proceeds if it can atomically set BUSY. It * clears QUEUED and does it's thing. When it thinks it's done, it * clears BUSY, then rechecks QUEUED.. if it's set again, it loops * (tries again to set BUSY). * * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we * try to queue work. If that fails (work is already queued, or BUSY) * we give up (work also already being done or is queued) but leave QUEUED * set so that the worker thread will loop if necessary. */ static void queue_con(struct ceph_connection *con) { if (test_bit(DEAD, &con->state)) { dout("queue_con %p ignoring: DEAD\n", con); return; } if (!con->ops->get(con)) { dout("queue_con %p ref count 0\n", con); return; } set_bit(QUEUED, &con->state); if (test_bit(BUSY, &con->state)) { dout("queue_con %p - already BUSY\n", con); con->ops->put(con); } else if (!queue_work(ceph_msgr_wq, &con->work.work)) { dout("queue_con %p - already queued\n", con); con->ops->put(con); } else { dout("queue_con %p\n", con); } } /* * Do some work on a connection. Drop a connection ref when we're done. */ static void con_work(struct work_struct *work) { struct ceph_connection *con = container_of(work, struct ceph_connection, work.work); int backoff = 0; more: if (test_and_set_bit(BUSY, &con->state) != 0) { dout("con_work %p BUSY already set\n", con); goto out; } dout("con_work %p start, clearing QUEUED\n", con); clear_bit(QUEUED, &con->state); if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */ dout("con_work CLOSED\n"); con_close_socket(con); goto done; } if (test_and_clear_bit(OPENING, &con->state)) { /* reopen w/ new peer */ dout("con_work OPENING\n"); con_close_socket(con); } if (test_and_clear_bit(SOCK_CLOSED, &con->state) || try_read(con) < 0 || try_write(con) < 0) { backoff = 1; ceph_fault(con); /* error/fault path */ } done: clear_bit(BUSY, &con->state); dout("con->state=%lu\n", con->state); if (test_bit(QUEUED, &con->state)) { if (!backoff) { dout("con_work %p QUEUED reset, looping\n", con); goto more; } dout("con_work %p QUEUED reset, but just faulted\n", con); clear_bit(QUEUED, &con->state); } dout("con_work %p done\n", con); out: con->ops->put(con); } /* * Generic error/fault handler. A retry mechanism is used with * exponential backoff */ static void ceph_fault(struct ceph_connection *con) { pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), pr_addr(&con->peer_addr.in_addr), con->error_msg); dout("fault %p state %lu to peer %s\n", con, con->state, pr_addr(&con->peer_addr.in_addr)); if (test_bit(LOSSYTX, &con->state)) { dout("fault on LOSSYTX channel\n"); goto out; } clear_bit(BUSY, &con->state); /* to avoid an improbable race */ con_close_socket(con); if (con->in_msg) { ceph_msg_put(con->in_msg); con->in_msg = NULL; } /* If there are no messages in the queue, place the connection * in a STANDBY state (i.e., don't try to reconnect just yet). */ mutex_lock(&con->out_mutex); if (list_empty(&con->out_queue) && !con->out_keepalive_pending) { dout("fault setting STANDBY\n"); set_bit(STANDBY, &con->state); mutex_unlock(&con->out_mutex); goto out; } /* Requeue anything that hasn't been acked, and retry after a * delay. */ list_splice_init(&con->out_sent, &con->out_queue); mutex_unlock(&con->out_mutex); if (con->delay == 0) con->delay = BASE_DELAY_INTERVAL; else if (con->delay < MAX_DELAY_INTERVAL) con->delay *= 2; /* explicitly schedule work to try to reconnect again later. */ dout("fault queueing %p delay %lu\n", con, con->delay); con->ops->get(con); if (queue_delayed_work(ceph_msgr_wq, &con->work, round_jiffies_relative(con->delay)) == 0) con->ops->put(con); out: if (con->ops->fault) con->ops->fault(con); } /* * create a new messenger instance */ struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr) { struct ceph_messenger *msgr; msgr = kzalloc(sizeof(*msgr), GFP_KERNEL); if (msgr == NULL) return ERR_PTR(-ENOMEM); spin_lock_init(&msgr->global_seq_lock); /* the zero page is needed if a request is "canceled" while the message * is being written over the socket */ msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!msgr->zero_page) { kfree(msgr); return ERR_PTR(-ENOMEM); } kmap(msgr->zero_page); if (myaddr) msgr->inst.addr = *myaddr; /* select a random nonce */ get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); encode_my_addr(msgr); dout("messenger_create %p\n", msgr); return msgr; } void ceph_messenger_destroy(struct ceph_messenger *msgr) { dout("destroy %p\n", msgr); kunmap(msgr->zero_page); __free_page(msgr->zero_page); kfree(msgr); dout("destroyed messenger %p\n", msgr); } /* * Queue up an outgoing message on the given connection. */ void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) { if (test_bit(CLOSED, &con->state)) { dout("con_send %p closed, dropping %p\n", con, msg); ceph_msg_put(msg); return; } /* set src+dst */ msg->hdr.src.name = con->msgr->inst.name; msg->hdr.src.addr = con->msgr->my_enc_addr; msg->hdr.orig_src = msg->hdr.src; msg->hdr.dst_erank = con->peer_addr.erank; /* queue */ mutex_lock(&con->out_mutex); BUG_ON(!list_empty(&msg->list_head)); list_add_tail(&msg->list_head, &con->out_queue); dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), le32_to_cpu(msg->hdr.front_len), le32_to_cpu(msg->hdr.middle_len), le32_to_cpu(msg->hdr.data_len)); mutex_unlock(&con->out_mutex); /* if there wasn't anything waiting to send before, queue * new work */ if (test_and_set_bit(WRITE_PENDING, &con->state) == 0) queue_con(con); } /* * Revoke a message that was previously queued for send */ void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg) { mutex_lock(&con->out_mutex); if (!list_empty(&msg->list_head)) { dout("con_revoke %p msg %p\n", con, msg); list_del_init(&msg->list_head); ceph_msg_put(msg); msg->hdr.seq = 0; if (con->out_msg == msg) { ceph_msg_put(con->out_msg); con->out_msg = NULL; } if (con->out_kvec_is_msg) { con->out_skip = con->out_kvec_bytes; con->out_kvec_is_msg = false; } } else { dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg); } mutex_unlock(&con->out_mutex); } /* * Queue a keepalive byte to ensure the tcp connection is alive. */ void ceph_con_keepalive(struct ceph_connection *con) { if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 && test_and_set_bit(WRITE_PENDING, &con->state) == 0) queue_con(con); } /* * construct a new message with given type, size * the new msg has a ref count of 1. */ struct ceph_msg *ceph_msg_new(int type, int front_len, int page_len, int page_off, struct page **pages) { struct ceph_msg *m; m = kmalloc(sizeof(*m), GFP_NOFS); if (m == NULL) goto out; kref_init(&m->kref); INIT_LIST_HEAD(&m->list_head); m->hdr.type = cpu_to_le16(type); m->hdr.front_len = cpu_to_le32(front_len); m->hdr.middle_len = 0; m->hdr.data_len = cpu_to_le32(page_len); m->hdr.data_off = cpu_to_le16(page_off); m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); m->footer.front_crc = 0; m->footer.middle_crc = 0; m->footer.data_crc = 0; m->front_max = front_len; m->front_is_vmalloc = false; m->more_to_follow = false; m->pool = NULL; /* front */ if (front_len) { if (front_len > PAGE_CACHE_SIZE) { m->front.iov_base = __vmalloc(front_len, GFP_NOFS, PAGE_KERNEL); m->front_is_vmalloc = true; } else { m->front.iov_base = kmalloc(front_len, GFP_NOFS); } if (m->front.iov_base == NULL) { pr_err("msg_new can't allocate %d bytes\n", front_len); goto out2; } } else { m->front.iov_base = NULL; } m->front.iov_len = front_len; /* middle */ m->middle = NULL; /* data */ m->nr_pages = calc_pages_for(page_off, page_len); m->pages = pages; dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len, m->nr_pages); return m; out2: ceph_msg_put(m); out: pr_err("msg_new can't create type %d len %d\n", type, front_len); return ERR_PTR(-ENOMEM); } /* * Generic message allocator, for incoming messages. */ struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, struct ceph_msg_header *hdr) { int type = le16_to_cpu(hdr->type); int front_len = le32_to_cpu(hdr->front_len); struct ceph_msg *msg = ceph_msg_new(type, front_len, 0, 0, NULL); if (!msg) { pr_err("unable to allocate msg type %d len %d\n", type, front_len); return ERR_PTR(-ENOMEM); } return msg; } /* * Allocate "middle" portion of a message, if it is needed and wasn't * allocated by alloc_msg. This allows us to read a small fixed-size * per-type header in the front and then gracefully fail (i.e., * propagate the error to the caller based on info in the front) when * the middle is too large. */ int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) { int type = le16_to_cpu(msg->hdr.type); int middle_len = le32_to_cpu(msg->hdr.middle_len); dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, ceph_msg_type_name(type), middle_len); BUG_ON(!middle_len); BUG_ON(msg->middle); msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); if (!msg->middle) return -ENOMEM; return 0; } /* * Free a generically kmalloc'd message. */ void ceph_msg_kfree(struct ceph_msg *m) { dout("msg_kfree %p\n", m); if (m->front_is_vmalloc) vfree(m->front.iov_base); else kfree(m->front.iov_base); kfree(m); } /* * Drop a msg ref. Destroy as needed. */ void ceph_msg_last_put(struct kref *kref) { struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); dout("ceph_msg_put last one on %p\n", m); WARN_ON(!list_empty(&m->list_head)); /* drop middle, data, if any */ if (m->middle) { ceph_buffer_put(m->middle); m->middle = NULL; } m->nr_pages = 0; m->pages = NULL; if (m->pool) ceph_msgpool_put(m->pool, m); else ceph_msg_kfree(m); } void ceph_msg_dump(struct ceph_msg *msg) { pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg, msg->front_max, msg->nr_pages); print_hex_dump(KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 16, 1, &msg->hdr, sizeof(msg->hdr), true); print_hex_dump(KERN_DEBUG, " front: ", DUMP_PREFIX_OFFSET, 16, 1, msg->front.iov_base, msg->front.iov_len, true); if (msg->middle) print_hex_dump(KERN_DEBUG, "middle: ", DUMP_PREFIX_OFFSET, 16, 1, msg->middle->vec.iov_base, msg->middle->vec.iov_len, true); print_hex_dump(KERN_DEBUG, "footer: ", DUMP_PREFIX_OFFSET, 16, 1, &msg->footer, sizeof(msg->footer), true); }