/* ==========================================================================
* $File: //dwh/usb_iip/dev/software/otg_ipmate/linux/drivers/dwc_otg_pcd.c $
* $Revision: #18 $
* $Date: 2007/02/07 $
* $Change: 791271 $
*
* Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
* "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
* otherwise expressly agreed to in writing between Synopsys and you.
*
* The Software IS NOT an item of Licensed Software or Licensed Product under
* any End User Software License Agreement or Agreement for Licensed Product
* with Synopsys or any supplement thereto. You are permitted to use and
* redistribute this Software in source and binary forms, with or without
* modification, provided that redistributions of source code must retain this
* notice. You may not view, use, disclose, copy or distribute this file or
* any information contained herein except pursuant to this license grant from
* Synopsys. If you do not agree with this notice, including the disclaimer
* below, then you are not authorized to use the Software.
*
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
* ========================================================================== */
#ifndef CONFIG_DWC_HOST_ONLY
/** @file
* This file implements the Peripheral Controller Driver.
*
* The Peripheral Controller Driver (PCD) is responsible for
* translating requests from the Function Driver into the appropriate
* actions on the DWC_otg controller. It isolates the Function Driver
* from the specifics of the controller by providing an API to the
* Function Driver.
*
* The Peripheral Controller Driver for Linux will implement the
* Gadget API, so that the existing Gadget drivers can be used.
* (Gadget Driver is the Linux terminology for a Function Driver.)
*
* The Linux Gadget API is defined in the header file
*
. The USB EP operations API is
* defined in the structure usb_ep_ops
and the USB
* Controller API is defined in the structure
* usb_gadget_ops
.
*
* An important function of the PCD is managing interrupts generated
* by the DWC_otg controller. The implementation of the DWC_otg device
* mode interrupt service routines is in dwc_otg_pcd_intr.c.
*
* @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
* @todo Does it work when the request size is greater than DEPTSIZ
* transfer size
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "dwc_otg_driver.h"
#include "dwc_otg_pcd.h"
/**
* Static PCD pointer for use in usb_gadget_register_driver and
* usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
*/
static dwc_otg_pcd_t *s_pcd = 0;
/* Display the contents of the buffer */
extern void dump_msg(const u8 * buf, unsigned int length);
/**
* This function completes a request. It call's the request call back.
*/
void request_done(dwc_otg_pcd_ep_t * _ep, dwc_otg_pcd_request_t * _req,
int _status)
{
unsigned stopped = _ep->stopped;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _ep);
if (_req->mapped) {
dma_unmap_single(_ep->pcd->gadget.dev.parent,
_req->req.dma, _req->req.length,
_ep->dwc_ep.is_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
_req->req.dma = DMA_ADDR_INVALID;
_req->mapped = 0;
} else
dma_sync_single_for_cpu(_ep->pcd->gadget.dev.parent,
_req->req.dma, _req->req.length,
_ep->dwc_ep.is_in
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
list_del_init(&_req->queue);
if (_req->req.status == -EINPROGRESS) {
_req->req.status = _status;
} else {
_status = _req->req.status;
}
/* don't modify queue heads during completion callback */
_ep->stopped = 1;
SPIN_UNLOCK(&_ep->pcd->lock);
_req->req.complete(&_ep->ep, &_req->req);
SPIN_LOCK(&_ep->pcd->lock);
if (_ep->pcd->request_pending > 0) {
--_ep->pcd->request_pending;
}
_ep->stopped = stopped;
#ifdef CONFIG_405EZ
/*
* Added-sr: 2007-07-26
*
* Finally, when the current request is done, mark this endpoint
* as not active, so that new requests can be processed.
*/
_ep->dwc_ep.active = 0;
#endif
}
/**
* This function terminates all the requsts in the EP request queue.
*/
void request_nuke(dwc_otg_pcd_ep_t * _ep)
{
dwc_otg_pcd_request_t * req;
_ep->stopped = 1;
/* called with irqs blocked?? */
while (!list_empty(&_ep->queue)) {
req = list_entry(_ep->queue.next, dwc_otg_pcd_request_t, queue);
request_done(_ep, req, -ESHUTDOWN);
}
}
/* USB Endpoint Operations */
/*
* The following sections briefly describe the behavior of the Gadget
* API endpoint operations implemented in the DWC_otg driver
* software. Detailed descriptions of the generic behavior of each of
* these functions can be found in the Linux header file
* include/linux/usb_gadget.h.
*
* The Gadget API provides wrapper functions for each of the function
* pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
* function, which then calls the underlying PCD function. The
* following sections are named according to the wrapper
* functions. Within each section, the corresponding DWC_otg PCD
* function name is specified.
*
*/
/**
* This function assigns periodic Tx FIFO to an periodic EP
* in shared Tx FIFO mode
*/
static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t * core_if)
{
uint32_t PerTxMsk = 1;
int i;
for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i) {
if ((PerTxMsk & core_if->p_tx_msk) == 0) {
core_if->p_tx_msk |= PerTxMsk;
return i + 1;
}
PerTxMsk <<= 1;
}
return 0;
}
/**
* This function releases periodic Tx FIFO
* in shared Tx FIFO mode
*/
static void release_perio_tx_fifo(dwc_otg_core_if_t * core_if,
uint32_t fifo_num)
{
core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
}
/**
* This function assigns periodic Tx FIFO to an periodic EP
* in shared Tx FIFO mode
*/
static uint32_t assign_tx_fifo(dwc_otg_core_if_t * core_if)
{
uint32_t TxMsk = 1;
int i;
for (i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i) {
if ((TxMsk & core_if->tx_msk) == 0) {
core_if->tx_msk |= TxMsk;
return i + 1;
}
TxMsk <<= 1;
}
return 0;
}
/**
* This function releases periodic Tx FIFO
* in shared Tx FIFO mode
*/
static void release_tx_fifo(dwc_otg_core_if_t * core_if, uint32_t fifo_num)
{
core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
}
/**
* This function is called by the Gadget Driver for each EP to be
* configured for the current configuration (SET_CONFIGURATION).
*
* This function initializes the dwc_otg_ep_t data structure, and then
* calls dwc_otg_ep_activate.
*/
static int dwc_otg_pcd_ep_enable(struct usb_ep *_ep,
const struct usb_endpoint_descriptor *_desc)
{
dwc_otg_pcd_ep_t * ep = 0;
dwc_otg_pcd_t * pcd = 0;
unsigned long flags;
DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, _ep, _desc);
ep = container_of(_ep, dwc_otg_pcd_ep_t, ep);
if (!_ep || !_desc || ep->desc
|| _desc->bDescriptorType != USB_DT_ENDPOINT) {
DWC_WARN("%s, bad ep or descriptor\n", __func__);
return -EINVAL;
}
if (ep == &ep->pcd->ep0) {
DWC_WARN("%s, bad ep(0)\n", __func__);
return -EINVAL;
}
/* Check FIFO size? */
if (!_desc->wMaxPacketSize) {
DWC_WARN("%s, bad %s maxpacket\n", __func__, _ep->name);
return -ERANGE;
}
pcd = ep->pcd;
if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
DWC_WARN("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
ep->desc = _desc;
ep->ep.maxpacket = le16_to_cpu(_desc->wMaxPacketSize);
/*
* Activate the EP
*/
ep->stopped = 0;
ep->dwc_ep.is_in = (USB_DIR_IN & _desc->bEndpointAddress) != 0;
ep->dwc_ep.maxpacket = ep->ep.maxpacket;
ep->dwc_ep.type = _desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
if (ep->dwc_ep.is_in) {
if (!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
ep->dwc_ep.tx_fifo_num = 0;
if ((_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_ISOC) {
/*
* if ISOC EP then assign a Periodic Tx FIFO.
*/
ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
}
} else {
/*
* if Dedicated FIFOs mode is on then assign a Tx FIFO.
*/
ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
}
}
/* Set initial data PID. */
if ((_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_BULK) {
ep->dwc_ep.data_pid_start = 0;
}
DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
ep->ep.name, (ep->dwc_ep.is_in ? "IN" : "OUT"),
ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
return 0;
}
/**
* This function is called when an EP is disabled due to disconnect or
* change in configuration. Any pending requests will terminate with a
* status of -ESHUTDOWN.
*
* This function modifies the dwc_otg_ep_t data structure for this EP,
* and then calls dwc_otg_ep_deactivate.
*/
static int dwc_otg_pcd_ep_disable(struct usb_ep *_ep)
{
dwc_otg_pcd_ep_t * ep;
unsigned long flags;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _ep);
ep = container_of(_ep, dwc_otg_pcd_ep_t, ep);
if (!_ep || !ep->desc) {
DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
request_nuke(ep);
dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
ep->desc = 0;
ep->stopped = 1;
if (ep->dwc_ep.is_in) {
release_perio_tx_fifo(GET_CORE_IF(ep->pcd),ep->dwc_ep.tx_fifo_num);
release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
}
SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
DWC_DEBUGPL(DBG_PCD, "%s disabled\n", _ep->name);
return 0;
}
/**
* This function allocates a request object to use with the specified
* endpoint.
*
* @param _ep The endpoint to be used with with the request
* @param _gfp_flags the GFP_* flags to use.
*/
static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *_ep,
gfp_t _gfp_flags)
{
dwc_otg_pcd_request_t * req;
DWC_DEBUGPL(DBG_PCDV, "%s(%p,%d)\n", __func__, _ep, _gfp_flags);
if (0 == _ep) {
DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
return 0;
}
req = kmalloc(sizeof(dwc_otg_pcd_request_t), _gfp_flags);
if (0 == req) {
DWC_WARN("%s() %s\n", __func__,"request allocation failed!\n");
return 0;
}
memset(req, 0, sizeof(dwc_otg_pcd_request_t));
req->req.dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD(&req->queue);
return &req->req;
}
/**
* This function frees a request object.
*
* @param _ep The endpoint associated with the request
* @param _req The request being freed
*/
static void dwc_otg_pcd_free_request(struct usb_ep *_ep,
struct usb_request *_req)
{
dwc_otg_pcd_request_t * req;
DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, _ep, _req);
if (0 == _ep || 0 == _req) {
DWC_WARN("%s() %s\n", __func__,"Invalid ep or req argument!\n");
return;
}
req = container_of(_req, dwc_otg_pcd_request_t, req);
kfree(req);
}
/**
* This function is used to submit an I/O Request to an EP.
*
* - When the request completes the request's completion callback
* is called to return the request to the driver.
* - An EP, except control EPs, may have multiple requests
* pending.
* - Once submitted the request cannot be examined or modified.
* - Each request is turned into one or more packets.
* - A BULK EP can queue any amount of data; the transfer is
* packetized.
* - Zero length Packets are specified with the request 'zero'
* flag.
*/
static int dwc_otg_pcd_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t _gfp_flags)
{
int prevented = 0;
dwc_otg_pcd_request_t * req;
dwc_otg_pcd_ep_t * ep;
dwc_otg_pcd_t * pcd;
unsigned long flags = 0;
DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p,%d)\n", __func__, _ep, _req,
_gfp_flags);
req = container_of(_req, dwc_otg_pcd_request_t, req);
if (!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue)) {
DWC_WARN("%s, bad params\n", __func__);
return -EINVAL;
}
ep = container_of(_ep, dwc_otg_pcd_ep_t, ep);
if (!_ep || (!ep->desc && ep->dwc_ep.num != 0)) {
DWC_WARN("%s, bad ep\n", __func__);
return -EINVAL;
}
pcd = ep->pcd;
if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
DWC_WARN("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n", _ep->name,
_req, _req->length, _req->buf);
if (!GET_CORE_IF(pcd)->core_params->opt) {
if (ep->dwc_ep.num != 0) {
DWC_ERROR("%s queue req %p, len %d buf %p\n",
_ep->name, _req, _req->length, _req->buf);
}
}
SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
#if defined(CONFIG_DWC_DEBUG) & defined(VERBOSE)
dump_msg(_req->buf, _req->length);
#endif /* */
_req->status = -EINPROGRESS;
_req->actual = 0;
/*
* For EP0 IN without premature status, zlp is required?
*/
if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", _ep->name);
//_req->zero = 1;
}
/* map virtual address to hardware */
if (_req->dma == DMA_ADDR_INVALID) {
_req->dma = dma_map_single(ep->pcd->gadget.dev.parent,
_req->buf,
_req->length,
ep->dwc_ep.is_in
? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
req->mapped = 1;
} else {
dma_sync_single_for_device(ep->pcd->gadget.dev.parent,
_req->dma, _req->length,
ep->dwc_ep.is_in
? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
req->mapped = 0;
}
/* Start the transfer */
if (list_empty(&ep->queue) && !ep->stopped) {
/* EP0 Transfer? */
if (ep->dwc_ep.num == 0) {
switch (pcd->ep0state) {
case EP0_IN_DATA_PHASE:
DWC_DEBUGPL(DBG_PCD, "%s ep0: EP0_IN_DATA_PHASE\n",
__func__);
break;
case EP0_OUT_DATA_PHASE:
DWC_DEBUGPL(DBG_PCD, "%s ep0: EP0_OUT_DATA_PHASE\n",
__func__);
if (pcd->request_config) {
/* Complete STATUS PHASE */
ep->dwc_ep.is_in = 1;
pcd->ep0state = EP0_STATUS;
}
break;
default:
DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
pcd->ep0state);
SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
return -EL2HLT;
}
ep->dwc_ep.dma_addr = _req->dma;
ep->dwc_ep.start_xfer_buff = _req->buf;
ep->dwc_ep.xfer_buff = _req->buf;
ep->dwc_ep.xfer_len = _req->length;
ep->dwc_ep.xfer_count = 0;
ep->dwc_ep.sent_zlp = 0;
ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd),
&ep->dwc_ep);
} else {
/* Setup and start the Transfer */
ep->dwc_ep.dma_addr = _req->dma;
ep->dwc_ep.start_xfer_buff = _req->buf;
ep->dwc_ep.xfer_buff = _req->buf;
ep->dwc_ep.xfer_len = _req->length;
ep->dwc_ep.xfer_count = 0;
ep->dwc_ep.sent_zlp = 0;
ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
dwc_otg_ep_start_transfer(GET_CORE_IF(pcd),
&ep->dwc_ep);
}
}
if ((req != 0) || prevented) {
++pcd->request_pending;
list_add_tail(&req->queue, &ep->queue);
if (ep->dwc_ep.is_in && ep->stopped
&& !(GET_CORE_IF(pcd)->dma_enable)) {
/** @todo NGS Create a function for this. */
diepmsk_data_t diepmsk = {.d32 = 0};
diepmsk.b.intktxfemp = 1;
dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0,
diepmsk.d32);
}
}
SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
return 0;
}
/**
* This function cancels an I/O request from an EP.
*/
static int dwc_otg_pcd_ep_dequeue(struct usb_ep *_ep,
struct usb_request *_req)
{
dwc_otg_pcd_request_t * req;
dwc_otg_pcd_ep_t * ep;
dwc_otg_pcd_t * pcd;
unsigned long flags;
DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, _ep, _req);
ep = container_of(_ep, dwc_otg_pcd_ep_t, ep);
if (!_ep || !_req || (!ep->desc && ep->dwc_ep.num != 0)) {
DWC_WARN("%s, bad argument\n", __func__);
return -EINVAL;
}
pcd = ep->pcd;
if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
DWC_WARN("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, _ep->name,
ep->dwc_ep.is_in ? "IN" : "OUT", _req);
/* make sure it's actually queued on this endpoint */
list_for_each_entry(req, &ep->queue, queue) {
if (&req->req == _req) {
break;
}
}
if (&req->req != _req) {
SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
return -EINVAL;
}
if (!list_empty(&req->queue)) {
request_done(ep, req, -ECONNRESET);
} else {
req = 0;
}
SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
return req ? 0 : -EOPNOTSUPP;
}
/**
* usb_ep_set_halt stalls an endpoint.
*
* usb_ep_clear_halt clears an endpoint halt and resets its data
* toggle.
*
* Both of these functions are implemented with the same underlying
* function. The behavior depends on the value argument.
*
* @param[in] _ep the Endpoint to halt or clear halt.
* @param[in] _value
* - 0 means clear_halt.
* - 1 means set_halt,
* - 2 means clear stall lock flag.
* - 3 means set stall lock flag.
*/
static int dwc_otg_pcd_ep_set_halt(struct usb_ep *_ep, int _value)
{
int retval = 0;
unsigned long flags;
dwc_otg_pcd_ep_t * ep = 0;
DWC_DEBUGPL(DBG_PCD, "HALT %s %d\n", _ep->name, _value);
ep = container_of(_ep, dwc_otg_pcd_ep_t, ep);
if (!_ep || (!ep->desc && ep != &ep->pcd->ep0)
|| ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
DWC_WARN("%s, bad ep\n", __func__);
return -EINVAL;
}
SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
if (ep->dwc_ep.is_in && !list_empty(&ep->queue)) {
DWC_WARN("%s() %s XFer In process\n", __func__, _ep->name);
retval = -EAGAIN;
} else if (_value == 0) {
dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,&ep->dwc_ep);
} else if (_value == 1) {
if (ep->dwc_ep.num == 0) {
ep->pcd->ep0state = EP0_STALL;
}
ep->stopped = 1;
dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if, &ep->dwc_ep);
} else if (_value == 2) {
ep->dwc_ep.stall_clear_flag = 0;
} else if (_value == 3) {
ep->dwc_ep.stall_clear_flag = 1;
}
SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
return retval;
}
static struct usb_ep_ops dwc_otg_pcd_ep_ops =
{
.enable = dwc_otg_pcd_ep_enable,
.disable = dwc_otg_pcd_ep_disable,
.alloc_request = dwc_otg_pcd_alloc_request,
.free_request = dwc_otg_pcd_free_request,
.queue = dwc_otg_pcd_ep_queue,
.dequeue = dwc_otg_pcd_ep_dequeue,
.set_halt = dwc_otg_pcd_ep_set_halt,
.fifo_status = 0,
.fifo_flush = 0,
};
/* Gadget Operations */
/**
* The following gadget operations will be implemented in the DWC_otg
* PCD. Functions in the API that are not described below are not
* implemented.
*
* The Gadget API provides wrapper functions for each of the function
* pointers defined in usb_gadget_ops. The Gadget Driver calls the
* wrapper function, which then calls the underlying PCD function. The
* following sections are named according to the wrapper functions
* (except for ioctl, which doesn't have a wrapper function). Within
* each section, the corresponding DWC_otg PCD function name is
* specified.
*
*/
/**
*Gets the USB Frame number of the last SOF.
*/
static int dwc_otg_pcd_get_frame(struct usb_gadget *_gadget)
{
dwc_otg_pcd_t * pcd;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _gadget);
if (_gadget == 0) {
return -ENODEV;
} else {
pcd = container_of(_gadget, dwc_otg_pcd_t, gadget);
dwc_otg_get_frame_number(GET_CORE_IF(pcd));
}
return 0;
}
void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t * _pcd)
{
uint32_t * addr = (uint32_t *) &(GET_CORE_IF(_pcd)->core_global_regs->gotgctl);
gotgctl_data_t mem;
gotgctl_data_t val;
val.d32 = dwc_read_reg32(addr);
if (val.b.sesreq) {
DWC_ERROR("Session Request Already active!\n");
return;
}
DWC_NOTICE("Session Request Initated\n");
mem.d32 = dwc_read_reg32(addr);
mem.b.sesreq = 1;
dwc_write_reg32(addr, mem.d32);
/* Start the SRP timer */
dwc_otg_pcd_start_srp_timer(_pcd);
return;
}
void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t * _pcd, int set)
{
dctl_data_t dctl = {.d32 = 0};
volatile uint32_t *addr = &(GET_CORE_IF(_pcd)->dev_if->dev_global_regs->dctl);
if (dwc_otg_is_device_mode(GET_CORE_IF(_pcd))) {
if (_pcd->remote_wakeup_enable) {
if (set) {
dctl.b.rmtwkupsig = 1;
dwc_modify_reg32(addr, 0, dctl.d32);
DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
mdelay(1);
dwc_modify_reg32(addr, dctl.d32, 0);
DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
} else {
}
} else {
DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
}
}
return;
}
/**
* Initiates Session Request Protocol (SRP) to wakeup the host if no
* session is in progress. If a session is already in progress, but
* the device is suspended, remote wakeup signaling is started.
*
*/
static int dwc_otg_pcd_wakeup(struct usb_gadget *_gadget)
{
unsigned long flags;
dwc_otg_pcd_t * pcd;
dsts_data_t dsts;
gotgctl_data_t gotgctl;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _gadget);
if (_gadget == 0) {
return -ENODEV;
} else {
pcd = container_of(_gadget, dwc_otg_pcd_t, gadget);
}
SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
/*
* This function starts the Protocol if no session is in progress. If
* a session is already in progress, but the device is suspended,
* remote wakeup signaling is started.
*/
/* Check if valid session */
gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
if (gotgctl.b.bsesvld) {
/* Check if suspend state */
dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
if (dsts.b.suspsts) {
dwc_otg_pcd_remote_wakeup(pcd, 1);
}
} else {
dwc_otg_pcd_initiate_srp(pcd);
}
SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
return 0;
}
static const struct usb_gadget_ops dwc_otg_pcd_ops =
{
.get_frame = dwc_otg_pcd_get_frame,
.wakeup = dwc_otg_pcd_wakeup,
// current versions must always be self-powered
};
/**
* This function updates the otg values in the gadget structure.
*/
void dwc_otg_pcd_update_otg(dwc_otg_pcd_t * _pcd, const unsigned _reset)
{
if (!_pcd->gadget.is_otg)
return;
if (_reset) {
_pcd->b_hnp_enable = 0;
_pcd->a_hnp_support = 0;
_pcd->a_alt_hnp_support = 0;
}
_pcd->gadget.b_hnp_enable = _pcd->b_hnp_enable;
_pcd->gadget.a_hnp_support = _pcd->a_hnp_support;
_pcd->gadget.a_alt_hnp_support = _pcd->a_alt_hnp_support;
}
/**
* This function is the top level PCD interrupt handler.
*/
static irqreturn_t dwc_otg_pcd_irq(int _irq, void *_dev)
{
dwc_otg_pcd_t * pcd = _dev;
int32_t retval = IRQ_NONE;
retval = dwc_otg_pcd_handle_intr(pcd);
return IRQ_RETVAL(retval);
}
/**
* PCD Callback function for initializing the PCD when switching to
* device mode.
*
* @param _p void pointer to the dwc_otg_pcd_t
*/
static int32_t dwc_otg_pcd_start_cb(void *_p)
{
dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p;
/*
* Initialized the Core for Device mode.
*/
if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
dwc_otg_core_dev_init(GET_CORE_IF(pcd));
}
return 1;
}
/**
* PCD Callback function for stopping the PCD when switching to Host
* mode.
*
* @param _p void pointer to the dwc_otg_pcd_t
*/
static int32_t dwc_otg_pcd_stop_cb(void *_p)
{
dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p;
extern void dwc_otg_pcd_stop(dwc_otg_pcd_t * _pcd);
dwc_otg_pcd_stop(pcd);
return 1;
}
/**
* PCD Callback function for notifying the PCD when resuming from
* suspend.
*
* @param _p void pointer to the dwc_otg_pcd_t
*/
static int32_t dwc_otg_pcd_suspend_cb(void *_p)
{
dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p;
if (pcd->driver && pcd->driver->resume) {
SPIN_UNLOCK(&pcd->lock);
pcd->driver->suspend(&pcd->gadget);
SPIN_LOCK(&pcd->lock);
}
return 1;
}
/**
* PCD Callback function for notifying the PCD when resuming from
* suspend.
*
* @param _p void pointer to the dwc_otg_pcd_t
*/
static int32_t dwc_otg_pcd_resume_cb(void *_p)
{
dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) _p;
if (pcd->driver && pcd->driver->resume) {
SPIN_UNLOCK(&pcd->lock);
pcd->driver->resume(&pcd->gadget);
SPIN_LOCK(&pcd->lock);
}
/* Stop the SRP timeout timer. */
if ((GET_CORE_IF(pcd)->core_params->phy_type !=
DWC_PHY_TYPE_PARAM_FS) || (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
if (GET_CORE_IF(pcd)->srp_timer_started) {
GET_CORE_IF(pcd)->srp_timer_started = 0;
del_timer(&pcd->srp_timer);
}
}
return 1;
}
/**
* PCD Callback structure for handling mode switching.
*/
static dwc_otg_cil_callbacks_t pcd_callbacks =
{
.start = dwc_otg_pcd_start_cb,
.stop = dwc_otg_pcd_stop_cb,
.suspend = dwc_otg_pcd_suspend_cb,
.resume_wakeup = dwc_otg_pcd_resume_cb,
.p = 0, /* Set at registration */
};
/**
* This function is called when the SRP timer expires. The SRP should
* complete within 6 seconds.
*/
static void srp_timeout(unsigned long _ptr)
{
gotgctl_data_t gotgctl;
dwc_otg_core_if_t * core_if = (dwc_otg_core_if_t *) _ptr;
volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
gotgctl.d32 = dwc_read_reg32(addr);
core_if->srp_timer_started = 0;
if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
(core_if->core_params->i2c_enable)) {
DWC_PRINT("SRP Timeout\n");
if ((core_if->srp_success) && (gotgctl.b.bsesvld)) {
if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
core_if->pcd_cb->resume_wakeup(core_if->
pcd_cb->p);
}
/* Clear Session Request */
gotgctl.d32 = 0;
gotgctl.b.sesreq = 1;
dwc_modify_reg32(&core_if->core_global_regs->gotgctl,gotgctl.d32, 0);
core_if->srp_success = 0;
} else {
DWC_ERROR("Device not connected/responding\n");
gotgctl.b.sesreq = 0;
dwc_write_reg32(addr, gotgctl.d32);
}
} else if (gotgctl.b.sesreq) {
DWC_PRINT("SRP Timeout\n");
DWC_ERROR("Device not connected/responding\n");
gotgctl.b.sesreq = 0;
dwc_write_reg32(addr, gotgctl.d32);
} else {
DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
}
}
/**
* Start the SRP timer to detect when the SRP does not complete within
* 6 seconds.
*
* @param _pcd the pcd structure.
*/
void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t * _pcd)
{
struct timer_list *srp_timer = &_pcd->srp_timer;
GET_CORE_IF(_pcd)->srp_timer_started = 1;
init_timer(srp_timer);
srp_timer->function = srp_timeout;
srp_timer->data = (unsigned long)GET_CORE_IF(_pcd);
srp_timer->expires = jiffies + (HZ * 6);
add_timer(srp_timer);
}
/**
* Tasklet
*
*/
extern void start_next_request(dwc_otg_pcd_ep_t * _ep);
static void start_xfer_tasklet_func(unsigned long data)
{
dwc_otg_pcd_t * pcd = (dwc_otg_pcd_t *) data;
dwc_otg_core_if_t * core_if = pcd->otg_dev->core_if;
int i;
depctl_data_t diepctl;
DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
diepctl.d32 =
dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
if (pcd->ep0.queue_sof) {
pcd->ep0.queue_sof = 0;
start_next_request(&pcd->ep0);
// break;
}
for (i = 0; i < core_if->dev_if->num_in_eps; i++) {
depctl_data_t diepctl;
diepctl.d32 =
dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
if (pcd->in_ep[i].queue_sof) {
pcd->in_ep[i].queue_sof = 0;
start_next_request(&pcd->in_ep[i]);
// break;
}
}
return;
}
static struct tasklet_struct start_xfer_tasklet =
{
.next = NULL,
.state = 0,
.count = ATOMIC_INIT(0),
.func = start_xfer_tasklet_func,
.data = 0,
};
/**
* This function initialized the pcd Dp structures to there default
* state.
*
* @param _pcd the pcd structure.
*/
void dwc_otg_pcd_reinit(dwc_otg_pcd_t * _pcd)
{
static const char *names[] =
{
"ep0", "ep1in", "ep2in", "ep3in", "ep4in", "ep5in",
"ep6in", "ep7in", "ep8in", "ep9in", "ep10in", "ep11in", "ep12in", "ep13in",
"ep14in", "ep15in", "ep1out", "ep2out", "ep3out", "ep4out", "ep5out",
"ep6out", "ep7out", "ep8out", "ep9out", "ep10out", "ep11out", "ep12out",
"ep13out", "ep14out", "ep15out"
};
int i;
int in_ep_cntr, out_ep_cntr;
uint32_t hwcfg1;
uint32_t num_in_eps = (GET_CORE_IF(_pcd))->dev_if->num_in_eps;
uint32_t num_out_eps = (GET_CORE_IF(_pcd))->dev_if->num_out_eps;
dwc_otg_pcd_ep_t * ep;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
INIT_LIST_HEAD(&_pcd->gadget.ep_list);
_pcd->gadget.ep0 = &_pcd->ep0.ep;
_pcd->gadget.speed = USB_SPEED_UNKNOWN;
INIT_LIST_HEAD(&_pcd->gadget.ep0->ep_list);
/**
* Initialize the EP0 structure.
*/
ep = &_pcd->ep0;
/* Init EP structure */
ep->desc = 0;
ep->pcd = _pcd;
ep->stopped = 1;
/* Init DWC ep structure */
ep->dwc_ep.num = 0;
ep->dwc_ep.active = 0;
ep->dwc_ep.tx_fifo_num = 0;
/* Control until ep is actvated */
ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
ep->dwc_ep.dma_addr = 0;
ep->dwc_ep.start_xfer_buff = 0;
ep->dwc_ep.xfer_buff = 0;
ep->dwc_ep.xfer_len = 0;
ep->dwc_ep.xfer_count = 0;
ep->dwc_ep.sent_zlp = 0;
ep->dwc_ep.total_len = 0;
ep->queue_sof = 0;
/* Init the usb_ep structure. */
ep->ep.name = names[0];
ep->ep.ops = &dwc_otg_pcd_ep_ops;
/**
* @todo NGS: What should the max packet size be set to
* here? Before EP type is set?
*/
ep->ep.maxpacket = MAX_PACKET_SIZE;
list_add_tail(&ep->ep.ep_list, &_pcd->gadget.ep_list);
INIT_LIST_HEAD(&ep->queue);
/**
* Initialize the EP structures.
*/
in_ep_cntr = 0;
hwcfg1 = (GET_CORE_IF(_pcd))->hwcfg1.d32 >> 3;
for (i = 1; in_ep_cntr < num_in_eps; i++) {
if ((hwcfg1 & 0x1) == 0) {
dwc_otg_pcd_ep_t * ep = &_pcd->in_ep[in_ep_cntr];
in_ep_cntr++;
/* Init EP structure */
ep->desc = 0;
ep->pcd = _pcd;
ep->stopped = 1;
/* Init DWC ep structure */
ep->dwc_ep.is_in = 1;
ep->dwc_ep.num = i;
ep->dwc_ep.active = 0;
ep->dwc_ep.tx_fifo_num = 0;
/* Control until ep is actvated */
ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
ep->dwc_ep.dma_addr = 0;
ep->dwc_ep.start_xfer_buff = 0;
ep->dwc_ep.xfer_buff = 0;
ep->dwc_ep.xfer_len = 0;
ep->dwc_ep.xfer_count = 0;
ep->dwc_ep.sent_zlp = 0;
ep->dwc_ep.total_len = 0;
ep->queue_sof = 0;
/* Init the usb_ep structure. */
/**
* @todo NGS: Add direction to EP, based on contents
* of HWCFG1. Need a copy of HWCFG1 in pcd structure?
* sprintf( ";r
*/
ep->ep.name = names[i];
ep->ep.ops = &dwc_otg_pcd_ep_ops;
/**
* @todo NGS: What should the max packet size be set to
* here? Before EP type is set?
*/
ep->ep.maxpacket = MAX_PACKET_SIZE;
list_add_tail(&ep->ep.ep_list, &_pcd->gadget.ep_list);
INIT_LIST_HEAD(&ep->queue);
}
hwcfg1 >>= 2;
}
out_ep_cntr = 0;
hwcfg1 = (GET_CORE_IF(_pcd))->hwcfg1.d32 >> 2;
for (i = 1; out_ep_cntr < num_out_eps; i++) {
if ((hwcfg1 & 0x1) == 0) {
dwc_otg_pcd_ep_t * ep = &_pcd->out_ep[out_ep_cntr];
out_ep_cntr++;
/* Init EP structure */
ep->desc = 0;
ep->pcd = _pcd;
ep->stopped = 1;
/* Init DWC ep structure */
ep->dwc_ep.is_in = 0;
ep->dwc_ep.num = i;
ep->dwc_ep.active = 0;
ep->dwc_ep.tx_fifo_num = 0;
/* Control until ep is actvated */
ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
ep->dwc_ep.dma_addr = 0;
ep->dwc_ep.start_xfer_buff = 0;
ep->dwc_ep.xfer_buff = 0;
ep->dwc_ep.xfer_len = 0;
ep->dwc_ep.xfer_count = 0;
ep->dwc_ep.sent_zlp = 0;
ep->dwc_ep.total_len = 0;
ep->queue_sof = 0;
/* Init the usb_ep structure. */
/**
* @todo NGS: Add direction to EP, based on contents
* of HWCFG1. Need a copy of HWCFG1 in pcd structure?
* sprintf( ";r
*/
ep->ep.name = names[15 + i];
ep->ep.ops = &dwc_otg_pcd_ep_ops;
/**
* @todo NGS: What should the max packet size be set to
* here? Before EP type is set?
*/
ep->ep.maxpacket = MAX_PACKET_SIZE;
list_add_tail(&ep->ep.ep_list, &_pcd->gadget.ep_list);
INIT_LIST_HEAD(&ep->queue);
}
hwcfg1 >>= 2;
}
/* remove ep0 from the list. There is a ep0 pointer. */
list_del_init(&_pcd->ep0.ep.ep_list);
_pcd->ep0state = EP0_DISCONNECT;
_pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
_pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
_pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
}
/**
* This function releases the Gadget device.
* required by device_unregister().
*
* @todo Should this do something? Should it free the PCD?
*/
static void dwc_otg_pcd_gadget_release(struct device *_dev)
{
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _dev);
}
/**
* This function initialized the PCD portion of the driver.
*
*/
int __init dwc_otg_pcd_init(struct device *_dev)
{
static char pcd_name[] = "dwc_otg_pcd";
dwc_otg_pcd_t * pcd;
dwc_otg_device_t * otg_dev = dev_get_drvdata(_dev);
int retval = 0;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _dev);
/*
* Allocate PCD structure
*/
pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
if (pcd == 0) {
return -ENOMEM;
}
memset(pcd, 0, sizeof(dwc_otg_pcd_t));
spin_lock_init(&pcd->lock);
otg_dev->pcd = pcd;
s_pcd = pcd;
pcd->gadget.name = pcd_name;
dev_set_name(&pcd->gadget.dev, "gadget");
pcd->otg_dev = dev_get_drvdata(_dev);
pcd->gadget.dev.parent = _dev;
pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
pcd->gadget.ops = &dwc_otg_pcd_ops;
if (GET_CORE_IF(pcd)->hwcfg4.b.ded_fifo_en) {
DWC_PRINT("Dedicated Tx FIFOs mode\n");
} else {
DWC_PRINT("Shared Tx FIFO mode\n");
}
/* If the module is set to FS or if the PHY_TYPE is FS then the gadget
* should not report as dual-speed capable. replace the following line
* with the block of code below it once the software is debugged for
* this. If is_dualspeed = 0 then the gadget driver should not report
* a device qualifier descriptor when queried. */
if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL)
|| ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2)
&& (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1)
&& (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
pcd->gadget.is_dualspeed = 0;
} else {
pcd->gadget.is_dualspeed = 1;
}
if ((otg_dev->core_if->hwcfg2.b.op_mode ==
DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE)
|| (otg_dev->core_if->hwcfg2.b.op_mode ==
DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST)
|| (otg_dev->core_if->hwcfg2.b.op_mode ==
DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
|| (otg_dev->core_if->hwcfg2.b.op_mode ==
DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
pcd->gadget.is_otg = 0;
} else {
pcd->gadget.is_otg = 1;
}
pcd->driver = 0;
/* Register the gadget device */
retval = device_register(&pcd->gadget.dev);
/*
* Initialized the Core for Device mode.
*/
if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
dwc_otg_core_dev_init(GET_CORE_IF(pcd));
}
/*
* Initialize EP structures
*/
dwc_otg_pcd_reinit(pcd);
/*
* Register the PCD Callbacks.
*/
dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,pcd);
/*
* Setup interupt handler
*/
DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n",otg_dev->irq);
retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq, IRQF_SHARED,
pcd->gadget.name, pcd);
if (retval != 0) {
DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
kfree(pcd);
return -EBUSY;
}
/*
* Initialize the DMA buffer for SETUP packets
*/
if (GET_CORE_IF(pcd)->dma_enable) {
pcd->setup_pkt = dma_alloc_coherent(_dev, sizeof(*pcd->setup_pkt) * 5,
&pcd->setup_pkt_dma_handle, 0);
pcd->status_buf = dma_alloc_coherent(_dev, sizeof(uint16_t),
&pcd->status_buf_dma_handle, 0);
} else {
pcd->setup_pkt = kmalloc(sizeof(*pcd->setup_pkt) * 5, GFP_KERNEL);
pcd->status_buf = kmalloc(sizeof(uint16_t), GFP_KERNEL);
}
if (pcd->setup_pkt == 0) {
kfree(pcd);
return -ENOMEM;
}
/* Initialize tasklet */
start_xfer_tasklet.data = (unsigned long)pcd;
pcd->start_xfer_tasklet = &start_xfer_tasklet;
return 0;
}
/**
* Cleanup the PCD.
*/
void dwc_otg_pcd_remove(struct device *_dev)
{
dwc_otg_device_t * otg_dev = dev_get_drvdata(_dev);
dwc_otg_pcd_t * pcd = otg_dev->pcd;
DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _dev);
/*
* Free the IRQ
*/
free_irq(otg_dev->irq, pcd);
/* start with the driver above us */
if (pcd->driver) {
/* should have been done already by driver model core */
DWC_WARN("driver '%s' is still registered\n",pcd->driver->driver.name);
usb_gadget_unregister_driver(pcd->driver);
}
device_unregister(&pcd->gadget.dev);
if (GET_CORE_IF(pcd)->dma_enable) {
dma_free_coherent(NULL, sizeof(*pcd->setup_pkt) * 5,
pcd->setup_pkt, pcd->setup_pkt_dma_handle);
dma_free_coherent(NULL, sizeof(uint16_t), pcd->status_buf,
pcd->status_buf_dma_handle);
} else {
kfree(pcd->setup_pkt);
kfree(pcd->status_buf);
}
kfree(pcd);
otg_dev->pcd = 0;
}
/**
* This function registers a gadget driver with the PCD.
*
* When a driver is successfully registered, it will receive control
* requests including set_configuration(), which enables non-control
* requests. then usb traffic follows until a disconnect is reported.
* then a host may connect again, or the driver might get unbound.
*
* @param _driver The driver being registered
*/
int usb_gadget_register_driver(struct usb_gadget_driver *_driver)
{
int retval;
DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n",
_driver->driver.name);
if (!_driver || _driver->speed == USB_SPEED_UNKNOWN || !_driver->bind
|| !_driver->disconnect || !_driver->setup) {
DWC_DEBUGPL(DBG_PCDV, "EINVAL\n");
#if 1
printk("_driver=0x%p speed=0x%x bind=0x%p unbind=0x%p disconnect=0x%p setup=0x%p\n", _driver, _driver->speed, _driver->bind, _driver->unbind, _driver->disconnect, _driver->setup);
#endif
return -EINVAL;
}
if (s_pcd == 0) {
DWC_DEBUGPL(DBG_PCDV, "ENODEV\n");
return -ENODEV;
}
if (s_pcd->driver != 0) {
DWC_DEBUGPL(DBG_PCDV, "EBUSY (%p)\n", s_pcd->driver);
return -EBUSY;
}
/* hook up the driver */
s_pcd->driver = _driver;
s_pcd->gadget.dev.driver = &_driver->driver;
{
dwc_otg_core_if_t *_core_if = s_pcd->otg_dev->core_if;
if(_core_if) {
dwc_otg_disable_global_interrupts(_core_if);
dwc_otg_core_init(_core_if);
dwc_otg_pcd_reinit(s_pcd);
dwc_otg_enable_global_interrupts(_core_if);
if (_core_if->pcd_cb)
dwc_otg_pcd_start_cb(_core_if->pcd_cb->p);
}
}
DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", _driver->driver.name);
retval = _driver->bind(&s_pcd->gadget);
if (retval) {
DWC_ERROR("bind to driver %s --> error %d\n",
_driver->driver.name, retval);
s_pcd->driver = 0;
s_pcd->gadget.dev.driver = 0;
return retval;
}
DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
_driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
/**
* This function unregisters a gadget driver
*
* @param _driver The driver being unregistered
*/
int usb_gadget_unregister_driver(struct usb_gadget_driver *_driver)
{
//DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
if (s_pcd == 0) {
DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,-ENODEV);
return -ENODEV;
}
if (_driver == 0 || _driver != s_pcd->driver) {
DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,-EINVAL);
return -EINVAL;
}
_driver->unbind(&s_pcd->gadget);
s_pcd->driver = 0;
DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
_driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
#endif /* DWC_HOST_ONLY */