/* * drivers/serial/sh-sci.c * * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO) * * Copyright (C) 2002 - 2008 Paul Mundt * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007). * * based off of the old drivers/char/sh-sci.c by: * * Copyright (C) 1999, 2000 Niibe Yutaka * Copyright (C) 2000 Sugioka Toshinobu * Modified to support multiple serial ports. Stuart Menefy (May 2000). * Modified to support SecureEdge. David McCullough (2002) * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003). * Removed SH7300 support (Jul 2007). * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SUPERH #include #endif #ifdef CONFIG_H8300 #include #endif #include "sh-sci.h" struct sci_port { struct uart_port port; /* Port type */ unsigned int type; /* Port IRQs: ERI, RXI, TXI, BRI (optional) */ unsigned int irqs[SCIx_NR_IRQS]; /* Port enable callback */ void (*enable)(struct uart_port *port); /* Port disable callback */ void (*disable)(struct uart_port *port); /* Break timer */ struct timer_list break_timer; int break_flag; /* Interface clock */ struct clk *iclk; /* Data clock */ struct clk *dclk; struct list_head node; struct dma_chan *chan_tx; struct dma_chan *chan_rx; #ifdef CONFIG_SERIAL_SH_SCI_DMA struct device *dma_dev; enum sh_dmae_slave_chan_id slave_tx; enum sh_dmae_slave_chan_id slave_rx; struct dma_async_tx_descriptor *desc_tx; struct dma_async_tx_descriptor *desc_rx[2]; dma_cookie_t cookie_tx; dma_cookie_t cookie_rx[2]; dma_cookie_t active_rx; struct scatterlist sg_tx; unsigned int sg_len_tx; struct scatterlist sg_rx[2]; size_t buf_len_rx; struct sh_dmae_slave param_tx; struct sh_dmae_slave param_rx; struct work_struct work_tx; struct work_struct work_rx; struct timer_list rx_timer; #endif }; struct sh_sci_priv { spinlock_t lock; struct list_head ports; struct notifier_block clk_nb; }; /* Function prototypes */ static void sci_stop_tx(struct uart_port *port); #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS static struct sci_port sci_ports[SCI_NPORTS]; static struct uart_driver sci_uart_driver; static inline struct sci_port * to_sci_port(struct uart_port *uart) { return container_of(uart, struct sci_port, port); } #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) #ifdef CONFIG_CONSOLE_POLL static inline void handle_error(struct uart_port *port) { /* Clear error flags */ sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); } static int sci_poll_get_char(struct uart_port *port) { unsigned short status; int c; do { status = sci_in(port, SCxSR); if (status & SCxSR_ERRORS(port)) { handle_error(port); continue; } } while (!(status & SCxSR_RDxF(port))); c = sci_in(port, SCxRDR); /* Dummy read */ sci_in(port, SCxSR); sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); return c; } #endif static void sci_poll_put_char(struct uart_port *port, unsigned char c) { unsigned short status; do { status = sci_in(port, SCxSR); } while (!(status & SCxSR_TDxE(port))); sci_out(port, SCxTDR, c); sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port)); } #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */ #if defined(__H8300H__) || defined(__H8300S__) static void sci_init_pins(struct uart_port *port, unsigned int cflag) { int ch = (port->mapbase - SMR0) >> 3; /* set DDR regs */ H8300_GPIO_DDR(h8300_sci_pins[ch].port, h8300_sci_pins[ch].rx, H8300_GPIO_INPUT); H8300_GPIO_DDR(h8300_sci_pins[ch].port, h8300_sci_pins[ch].tx, H8300_GPIO_OUTPUT); /* tx mark output*/ H8300_SCI_DR(ch) |= h8300_sci_pins[ch].tx; } #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712) static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { if (port->mapbase == 0xA4400000) { __raw_writew(__raw_readw(PACR) & 0xffc0, PACR); __raw_writew(__raw_readw(PBCR) & 0x0fff, PBCR); } else if (port->mapbase == 0xA4410000) __raw_writew(__raw_readw(PBCR) & 0xf003, PBCR); } #elif defined(CONFIG_CPU_SUBTYPE_SH7720) || defined(CONFIG_CPU_SUBTYPE_SH7721) static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { unsigned short data; if (cflag & CRTSCTS) { /* enable RTS/CTS */ if (port->mapbase == 0xa4430000) { /* SCIF0 */ /* Clear PTCR bit 9-2; enable all scif pins but sck */ data = __raw_readw(PORT_PTCR); __raw_writew((data & 0xfc03), PORT_PTCR); } else if (port->mapbase == 0xa4438000) { /* SCIF1 */ /* Clear PVCR bit 9-2 */ data = __raw_readw(PORT_PVCR); __raw_writew((data & 0xfc03), PORT_PVCR); } } else { if (port->mapbase == 0xa4430000) { /* SCIF0 */ /* Clear PTCR bit 5-2; enable only tx and rx */ data = __raw_readw(PORT_PTCR); __raw_writew((data & 0xffc3), PORT_PTCR); } else if (port->mapbase == 0xa4438000) { /* SCIF1 */ /* Clear PVCR bit 5-2 */ data = __raw_readw(PORT_PVCR); __raw_writew((data & 0xffc3), PORT_PVCR); } } } #elif defined(CONFIG_CPU_SH3) /* For SH7705, SH7706, SH7707, SH7709, SH7709A, SH7729 */ static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { unsigned short data; /* We need to set SCPCR to enable RTS/CTS */ data = __raw_readw(SCPCR); /* Clear out SCP7MD1,0, SCP6MD1,0, SCP4MD1,0*/ __raw_writew(data & 0x0fcf, SCPCR); if (!(cflag & CRTSCTS)) { /* We need to set SCPCR to enable RTS/CTS */ data = __raw_readw(SCPCR); /* Clear out SCP7MD1,0, SCP4MD1,0, Set SCP6MD1,0 = {01} (output) */ __raw_writew((data & 0x0fcf) | 0x1000, SCPCR); data = __raw_readb(SCPDR); /* Set /RTS2 (bit6) = 0 */ __raw_writeb(data & 0xbf, SCPDR); } } #elif defined(CONFIG_CPU_SUBTYPE_SH7722) static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { unsigned short data; if (port->mapbase == 0xffe00000) { data = __raw_readw(PSCR); data &= ~0x03cf; if (!(cflag & CRTSCTS)) data |= 0x0340; __raw_writew(data, PSCR); } } #elif defined(CONFIG_CPU_SUBTYPE_SH7757) || \ defined(CONFIG_CPU_SUBTYPE_SH7763) || \ defined(CONFIG_CPU_SUBTYPE_SH7780) || \ defined(CONFIG_CPU_SUBTYPE_SH7785) || \ defined(CONFIG_CPU_SUBTYPE_SH7786) || \ defined(CONFIG_CPU_SUBTYPE_SHX3) static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { if (!(cflag & CRTSCTS)) __raw_writew(0x0080, SCSPTR0); /* Set RTS = 1 */ } #elif defined(CONFIG_CPU_SH4) && !defined(CONFIG_CPU_SH4A) static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { if (!(cflag & CRTSCTS)) __raw_writew(0x0080, SCSPTR2); /* Set RTS = 1 */ } #else static inline void sci_init_pins(struct uart_port *port, unsigned int cflag) { /* Nothing to do */ } #endif #if defined(CONFIG_CPU_SUBTYPE_SH7760) || \ defined(CONFIG_CPU_SUBTYPE_SH7780) || \ defined(CONFIG_CPU_SUBTYPE_SH7785) || \ defined(CONFIG_CPU_SUBTYPE_SH7786) static int scif_txfill(struct uart_port *port) { return sci_in(port, SCTFDR) & 0xff; } static int scif_txroom(struct uart_port *port) { return SCIF_TXROOM_MAX - scif_txfill(port); } static int scif_rxfill(struct uart_port *port) { return sci_in(port, SCRFDR) & 0xff; } #elif defined(CONFIG_CPU_SUBTYPE_SH7763) static int scif_txfill(struct uart_port *port) { if (port->mapbase == 0xffe00000 || port->mapbase == 0xffe08000) /* SCIF0/1*/ return sci_in(port, SCTFDR) & 0xff; else /* SCIF2 */ return sci_in(port, SCFDR) >> 8; } static int scif_txroom(struct uart_port *port) { if (port->mapbase == 0xffe00000 || port->mapbase == 0xffe08000) /* SCIF0/1*/ return SCIF_TXROOM_MAX - scif_txfill(port); else /* SCIF2 */ return SCIF2_TXROOM_MAX - scif_txfill(port); } static int scif_rxfill(struct uart_port *port) { if ((port->mapbase == 0xffe00000) || (port->mapbase == 0xffe08000)) { /* SCIF0/1*/ return sci_in(port, SCRFDR) & 0xff; } else { /* SCIF2 */ return sci_in(port, SCFDR) & SCIF2_RFDC_MASK; } } #else static int scif_txfill(struct uart_port *port) { return sci_in(port, SCFDR) >> 8; } static int scif_txroom(struct uart_port *port) { return SCIF_TXROOM_MAX - scif_txfill(port); } static int scif_rxfill(struct uart_port *port) { return sci_in(port, SCFDR) & SCIF_RFDC_MASK; } #endif static int sci_txfill(struct uart_port *port) { return !(sci_in(port, SCxSR) & SCI_TDRE); } static int sci_txroom(struct uart_port *port) { return !sci_txfill(port); } static int sci_rxfill(struct uart_port *port) { return (sci_in(port, SCxSR) & SCxSR_RDxF(port)) != 0; } /* ********************************************************************** * * the interrupt related routines * * ********************************************************************** */ static void sci_transmit_chars(struct uart_port *port) { struct circ_buf *xmit = &port->state->xmit; unsigned int stopped = uart_tx_stopped(port); unsigned short status; unsigned short ctrl; int count; status = sci_in(port, SCxSR); if (!(status & SCxSR_TDxE(port))) { ctrl = sci_in(port, SCSCR); if (uart_circ_empty(xmit)) ctrl &= ~SCI_CTRL_FLAGS_TIE; else ctrl |= SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); return; } if (port->type == PORT_SCI) count = sci_txroom(port); else count = scif_txroom(port); do { unsigned char c; if (port->x_char) { c = port->x_char; port->x_char = 0; } else if (!uart_circ_empty(xmit) && !stopped) { c = xmit->buf[xmit->tail]; xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); } else { break; } sci_out(port, SCxTDR, c); port->icount.tx++; } while (--count > 0); sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (uart_circ_empty(xmit)) { sci_stop_tx(port); } else { ctrl = sci_in(port, SCSCR); if (port->type != PORT_SCI) { sci_in(port, SCxSR); /* Dummy read */ sci_out(port, SCxSR, SCxSR_TDxE_CLEAR(port)); } ctrl |= SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); } } /* On SH3, SCIF may read end-of-break as a space->mark char */ #define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); }) static inline void sci_receive_chars(struct uart_port *port) { struct sci_port *sci_port = to_sci_port(port); struct tty_struct *tty = port->state->port.tty; int i, count, copied = 0; unsigned short status; unsigned char flag; status = sci_in(port, SCxSR); if (!(status & SCxSR_RDxF(port))) return; while (1) { if (port->type == PORT_SCI) count = sci_rxfill(port); else count = scif_rxfill(port); /* Don't copy more bytes than there is room for in the buffer */ count = tty_buffer_request_room(tty, count); /* If for any reason we can't copy more data, we're done! */ if (count == 0) break; if (port->type == PORT_SCI) { char c = sci_in(port, SCxRDR); if (uart_handle_sysrq_char(port, c) || sci_port->break_flag) count = 0; else tty_insert_flip_char(tty, c, TTY_NORMAL); } else { for (i = 0; i < count; i++) { char c = sci_in(port, SCxRDR); status = sci_in(port, SCxSR); #if defined(CONFIG_CPU_SH3) /* Skip "chars" during break */ if (sci_port->break_flag) { if ((c == 0) && (status & SCxSR_FER(port))) { count--; i--; continue; } /* Nonzero => end-of-break */ dev_dbg(port->dev, "debounce<%02x>\n", c); sci_port->break_flag = 0; if (STEPFN(c)) { count--; i--; continue; } } #endif /* CONFIG_CPU_SH3 */ if (uart_handle_sysrq_char(port, c)) { count--; i--; continue; } /* Store data and status */ if (status & SCxSR_FER(port)) { flag = TTY_FRAME; dev_notice(port->dev, "frame error\n"); } else if (status & SCxSR_PER(port)) { flag = TTY_PARITY; dev_notice(port->dev, "parity error\n"); } else flag = TTY_NORMAL; tty_insert_flip_char(tty, c, flag); } } sci_in(port, SCxSR); /* dummy read */ sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); copied += count; port->icount.rx += count; } if (copied) { /* Tell the rest of the system the news. New characters! */ tty_flip_buffer_push(tty); } else { sci_in(port, SCxSR); /* dummy read */ sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); } } #define SCI_BREAK_JIFFIES (HZ/20) /* The sci generates interrupts during the break, * 1 per millisecond or so during the break period, for 9600 baud. * So dont bother disabling interrupts. * But dont want more than 1 break event. * Use a kernel timer to periodically poll the rx line until * the break is finished. */ static void sci_schedule_break_timer(struct sci_port *port) { port->break_timer.expires = jiffies + SCI_BREAK_JIFFIES; add_timer(&port->break_timer); } /* Ensure that two consecutive samples find the break over. */ static void sci_break_timer(unsigned long data) { struct sci_port *port = (struct sci_port *)data; if (sci_rxd_in(&port->port) == 0) { port->break_flag = 1; sci_schedule_break_timer(port); } else if (port->break_flag == 1) { /* break is over. */ port->break_flag = 2; sci_schedule_break_timer(port); } else port->break_flag = 0; } static inline int sci_handle_errors(struct uart_port *port) { int copied = 0; unsigned short status = sci_in(port, SCxSR); struct tty_struct *tty = port->state->port.tty; if (status & SCxSR_ORER(port)) { /* overrun error */ if (tty_insert_flip_char(tty, 0, TTY_OVERRUN)) copied++; dev_notice(port->dev, "overrun error"); } if (status & SCxSR_FER(port)) { if (sci_rxd_in(port) == 0) { /* Notify of BREAK */ struct sci_port *sci_port = to_sci_port(port); if (!sci_port->break_flag) { sci_port->break_flag = 1; sci_schedule_break_timer(sci_port); /* Do sysrq handling. */ if (uart_handle_break(port)) return 0; dev_dbg(port->dev, "BREAK detected\n"); if (tty_insert_flip_char(tty, 0, TTY_BREAK)) copied++; } } else { /* frame error */ if (tty_insert_flip_char(tty, 0, TTY_FRAME)) copied++; dev_notice(port->dev, "frame error\n"); } } if (status & SCxSR_PER(port)) { /* parity error */ if (tty_insert_flip_char(tty, 0, TTY_PARITY)) copied++; dev_notice(port->dev, "parity error"); } if (copied) tty_flip_buffer_push(tty); return copied; } static inline int sci_handle_fifo_overrun(struct uart_port *port) { struct tty_struct *tty = port->state->port.tty; int copied = 0; if (port->type != PORT_SCIF) return 0; if ((sci_in(port, SCLSR) & SCIF_ORER) != 0) { sci_out(port, SCLSR, 0); tty_insert_flip_char(tty, 0, TTY_OVERRUN); tty_flip_buffer_push(tty); dev_notice(port->dev, "overrun error\n"); copied++; } return copied; } static inline int sci_handle_breaks(struct uart_port *port) { int copied = 0; unsigned short status = sci_in(port, SCxSR); struct tty_struct *tty = port->state->port.tty; struct sci_port *s = to_sci_port(port); if (uart_handle_break(port)) return 0; if (!s->break_flag && status & SCxSR_BRK(port)) { #if defined(CONFIG_CPU_SH3) /* Debounce break */ s->break_flag = 1; #endif /* Notify of BREAK */ if (tty_insert_flip_char(tty, 0, TTY_BREAK)) copied++; dev_dbg(port->dev, "BREAK detected\n"); } if (copied) tty_flip_buffer_push(tty); copied += sci_handle_fifo_overrun(port); return copied; } static irqreturn_t sci_rx_interrupt(int irq, void *ptr) { #ifdef CONFIG_SERIAL_SH_SCI_DMA struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); if (s->chan_rx) { unsigned long tout; u16 scr = sci_in(port, SCSCR); u16 ssr = sci_in(port, SCxSR); /* Disable future Rx interrupts */ sci_out(port, SCSCR, scr & ~SCI_CTRL_FLAGS_RIE); /* Clear current interrupt */ sci_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port))); /* Calculate delay for 1.5 DMA buffers */ tout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 / port->fifosize / 2; dev_dbg(port->dev, "Rx IRQ: setup timeout in %lu ms\n", tout * 1000 / HZ); if (tout < 2) tout = 2; mod_timer(&s->rx_timer, jiffies + tout); return IRQ_HANDLED; } #endif /* I think sci_receive_chars has to be called irrespective * of whether the I_IXOFF is set, otherwise, how is the interrupt * to be disabled? */ sci_receive_chars(ptr); return IRQ_HANDLED; } static irqreturn_t sci_tx_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; unsigned long flags; spin_lock_irqsave(&port->lock, flags); sci_transmit_chars(port); spin_unlock_irqrestore(&port->lock, flags); return IRQ_HANDLED; } static irqreturn_t sci_er_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; /* Handle errors */ if (port->type == PORT_SCI) { if (sci_handle_errors(port)) { /* discard character in rx buffer */ sci_in(port, SCxSR); sci_out(port, SCxSR, SCxSR_RDxF_CLEAR(port)); } } else { sci_handle_fifo_overrun(port); sci_rx_interrupt(irq, ptr); } sci_out(port, SCxSR, SCxSR_ERROR_CLEAR(port)); /* Kick the transmission */ sci_tx_interrupt(irq, ptr); return IRQ_HANDLED; } static irqreturn_t sci_br_interrupt(int irq, void *ptr) { struct uart_port *port = ptr; /* Handle BREAKs */ sci_handle_breaks(port); sci_out(port, SCxSR, SCxSR_BREAK_CLEAR(port)); return IRQ_HANDLED; } static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr) { unsigned short ssr_status, scr_status, err_enabled; struct uart_port *port = ptr; struct sci_port *s = to_sci_port(port); irqreturn_t ret = IRQ_NONE; ssr_status = sci_in(port, SCxSR); scr_status = sci_in(port, SCSCR); err_enabled = scr_status & (SCI_CTRL_FLAGS_REIE | SCI_CTRL_FLAGS_RIE); /* Tx Interrupt */ if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCI_CTRL_FLAGS_TIE) && !s->chan_tx) ret = sci_tx_interrupt(irq, ptr); /* * Rx Interrupt: if we're using DMA, the DMA controller clears RDF / * DR flags */ if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) && (scr_status & SCI_CTRL_FLAGS_RIE)) ret = sci_rx_interrupt(irq, ptr); /* Error Interrupt */ if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled) ret = sci_er_interrupt(irq, ptr); /* Break Interrupt */ if ((ssr_status & SCxSR_BRK(port)) && err_enabled) ret = sci_br_interrupt(irq, ptr); return ret; } /* * Here we define a transistion notifier so that we can update all of our * ports' baud rate when the peripheral clock changes. */ static int sci_notifier(struct notifier_block *self, unsigned long phase, void *p) { struct sh_sci_priv *priv = container_of(self, struct sh_sci_priv, clk_nb); struct sci_port *sci_port; unsigned long flags; if ((phase == CPUFREQ_POSTCHANGE) || (phase == CPUFREQ_RESUMECHANGE)) { spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(sci_port, &priv->ports, node) sci_port->port.uartclk = clk_get_rate(sci_port->dclk); spin_unlock_irqrestore(&priv->lock, flags); } return NOTIFY_OK; } static void sci_clk_enable(struct uart_port *port) { struct sci_port *sci_port = to_sci_port(port); clk_enable(sci_port->dclk); sci_port->port.uartclk = clk_get_rate(sci_port->dclk); if (sci_port->iclk) clk_enable(sci_port->iclk); } static void sci_clk_disable(struct uart_port *port) { struct sci_port *sci_port = to_sci_port(port); if (sci_port->iclk) clk_disable(sci_port->iclk); clk_disable(sci_port->dclk); } static int sci_request_irq(struct sci_port *port) { int i; irqreturn_t (*handlers[4])(int irq, void *ptr) = { sci_er_interrupt, sci_rx_interrupt, sci_tx_interrupt, sci_br_interrupt, }; const char *desc[] = { "SCI Receive Error", "SCI Receive Data Full", "SCI Transmit Data Empty", "SCI Break" }; if (port->irqs[0] == port->irqs[1]) { if (unlikely(!port->irqs[0])) return -ENODEV; if (request_irq(port->irqs[0], sci_mpxed_interrupt, IRQF_DISABLED, "sci", port)) { dev_err(port->port.dev, "Can't allocate IRQ\n"); return -ENODEV; } } else { for (i = 0; i < ARRAY_SIZE(handlers); i++) { if (unlikely(!port->irqs[i])) continue; if (request_irq(port->irqs[i], handlers[i], IRQF_DISABLED, desc[i], port)) { dev_err(port->port.dev, "Can't allocate IRQ\n"); return -ENODEV; } } } return 0; } static void sci_free_irq(struct sci_port *port) { int i; if (port->irqs[0] == port->irqs[1]) free_irq(port->irqs[0], port); else { for (i = 0; i < ARRAY_SIZE(port->irqs); i++) { if (!port->irqs[i]) continue; free_irq(port->irqs[i], port); } } } static unsigned int sci_tx_empty(struct uart_port *port) { unsigned short status = sci_in(port, SCxSR); unsigned short in_tx_fifo = scif_txfill(port); return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0; } static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl) { /* This routine is used for seting signals of: DTR, DCD, CTS/RTS */ /* We use SCIF's hardware for CTS/RTS, so don't need any for that. */ /* If you have signals for DTR and DCD, please implement here. */ } static unsigned int sci_get_mctrl(struct uart_port *port) { /* This routine is used for getting signals of: DTR, DCD, DSR, RI, and CTS/RTS */ return TIOCM_DTR | TIOCM_RTS | TIOCM_DSR; } #ifdef CONFIG_SERIAL_SH_SCI_DMA static void sci_dma_tx_complete(void *arg) { struct sci_port *s = arg; struct uart_port *port = &s->port; struct circ_buf *xmit = &port->state->xmit; unsigned long flags; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); spin_lock_irqsave(&port->lock, flags); xmit->tail += s->sg_tx.length; xmit->tail &= UART_XMIT_SIZE - 1; port->icount.tx += s->sg_tx.length; async_tx_ack(s->desc_tx); s->cookie_tx = -EINVAL; s->desc_tx = NULL; spin_unlock_irqrestore(&port->lock, flags); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); if (uart_circ_chars_pending(xmit)) schedule_work(&s->work_tx); } /* Locking: called with port lock held */ static int sci_dma_rx_push(struct sci_port *s, struct tty_struct *tty, size_t count) { struct uart_port *port = &s->port; int i, active, room; room = tty_buffer_request_room(tty, count); if (s->active_rx == s->cookie_rx[0]) { active = 0; } else if (s->active_rx == s->cookie_rx[1]) { active = 1; } else { dev_err(port->dev, "cookie %d not found!\n", s->active_rx); return 0; } if (room < count) dev_warn(port->dev, "Rx overrun: dropping %u bytes\n", count - room); if (!room) return room; for (i = 0; i < room; i++) tty_insert_flip_char(tty, ((u8 *)sg_virt(&s->sg_rx[active]))[i], TTY_NORMAL); port->icount.rx += room; return room; } static void sci_dma_rx_complete(void *arg) { struct sci_port *s = arg; struct uart_port *port = &s->port; struct tty_struct *tty = port->state->port.tty; unsigned long flags; int count; dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); spin_lock_irqsave(&port->lock, flags); count = sci_dma_rx_push(s, tty, s->buf_len_rx); mod_timer(&s->rx_timer, jiffies + msecs_to_jiffies(5)); spin_unlock_irqrestore(&port->lock, flags); if (count) tty_flip_buffer_push(tty); schedule_work(&s->work_rx); } static void sci_start_rx(struct uart_port *port); static void sci_start_tx(struct uart_port *port); static void sci_rx_dma_release(struct sci_port *s, bool enable_pio) { struct dma_chan *chan = s->chan_rx; struct uart_port *port = &s->port; s->chan_rx = NULL; s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL; dma_release_channel(chan); dma_free_coherent(port->dev, s->buf_len_rx * 2, sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0])); if (enable_pio) sci_start_rx(port); } static void sci_tx_dma_release(struct sci_port *s, bool enable_pio) { struct dma_chan *chan = s->chan_tx; struct uart_port *port = &s->port; s->chan_tx = NULL; s->cookie_tx = -EINVAL; dma_release_channel(chan); if (enable_pio) sci_start_tx(port); } static void sci_submit_rx(struct sci_port *s) { struct dma_chan *chan = s->chan_rx; int i; for (i = 0; i < 2; i++) { struct scatterlist *sg = &s->sg_rx[i]; struct dma_async_tx_descriptor *desc; desc = chan->device->device_prep_slave_sg(chan, sg, 1, DMA_FROM_DEVICE, DMA_PREP_INTERRUPT); if (desc) { s->desc_rx[i] = desc; desc->callback = sci_dma_rx_complete; desc->callback_param = s; s->cookie_rx[i] = desc->tx_submit(desc); } if (!desc || s->cookie_rx[i] < 0) { if (i) { async_tx_ack(s->desc_rx[0]); s->cookie_rx[0] = -EINVAL; } if (desc) { async_tx_ack(desc); s->cookie_rx[i] = -EINVAL; } dev_warn(s->port.dev, "failed to re-start DMA, using PIO\n"); sci_rx_dma_release(s, true); return; } } s->active_rx = s->cookie_rx[0]; dma_async_issue_pending(chan); } static void work_fn_rx(struct work_struct *work) { struct sci_port *s = container_of(work, struct sci_port, work_rx); struct uart_port *port = &s->port; struct dma_async_tx_descriptor *desc; int new; if (s->active_rx == s->cookie_rx[0]) { new = 0; } else if (s->active_rx == s->cookie_rx[1]) { new = 1; } else { dev_err(port->dev, "cookie %d not found!\n", s->active_rx); return; } desc = s->desc_rx[new]; if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) != DMA_SUCCESS) { /* Handle incomplete DMA receive */ struct tty_struct *tty = port->state->port.tty; struct dma_chan *chan = s->chan_rx; struct sh_desc *sh_desc = container_of(desc, struct sh_desc, async_tx); unsigned long flags; int count; chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); dev_dbg(port->dev, "Read %u bytes with cookie %d\n", sh_desc->partial, sh_desc->cookie); spin_lock_irqsave(&port->lock, flags); count = sci_dma_rx_push(s, tty, sh_desc->partial); spin_unlock_irqrestore(&port->lock, flags); if (count) tty_flip_buffer_push(tty); sci_submit_rx(s); return; } s->cookie_rx[new] = desc->tx_submit(desc); if (s->cookie_rx[new] < 0) { dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n"); sci_rx_dma_release(s, true); return; } dev_dbg(port->dev, "%s: cookie %d #%d\n", __func__, s->cookie_rx[new], new); s->active_rx = s->cookie_rx[!new]; } static void work_fn_tx(struct work_struct *work) { struct sci_port *s = container_of(work, struct sci_port, work_tx); struct dma_async_tx_descriptor *desc; struct dma_chan *chan = s->chan_tx; struct uart_port *port = &s->port; struct circ_buf *xmit = &port->state->xmit; struct scatterlist *sg = &s->sg_tx; /* * DMA is idle now. * Port xmit buffer is already mapped, and it is one page... Just adjust * offsets and lengths. Since it is a circular buffer, we have to * transmit till the end, and then the rest. Take the port lock to get a * consistent xmit buffer state. */ spin_lock_irq(&port->lock); sg->offset = xmit->tail & (UART_XMIT_SIZE - 1); sg->dma_address = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) + sg->offset; sg->length = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE), CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE)); sg->dma_length = sg->length; spin_unlock_irq(&port->lock); BUG_ON(!sg->length); desc = chan->device->device_prep_slave_sg(chan, sg, s->sg_len_tx, DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { /* switch to PIO */ sci_tx_dma_release(s, true); return; } dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE); spin_lock_irq(&port->lock); s->desc_tx = desc; desc->callback = sci_dma_tx_complete; desc->callback_param = s; spin_unlock_irq(&port->lock); s->cookie_tx = desc->tx_submit(desc); if (s->cookie_tx < 0) { dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n"); /* switch to PIO */ sci_tx_dma_release(s, true); return; } dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n", __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx); dma_async_issue_pending(chan); } #endif static void sci_start_tx(struct uart_port *port) { unsigned short ctrl; #ifdef CONFIG_SERIAL_SH_SCI_DMA struct sci_port *s = to_sci_port(port); if (s->chan_tx) { if (!uart_circ_empty(&s->port.state->xmit) && s->cookie_tx < 0) schedule_work(&s->work_tx); return; } #endif /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl |= SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); } static void sci_stop_tx(struct uart_port *port) { unsigned short ctrl; /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl &= ~SCI_CTRL_FLAGS_TIE; sci_out(port, SCSCR, ctrl); } static void sci_start_rx(struct uart_port *port) { unsigned short ctrl = SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE; /* Set RIE (Receive Interrupt Enable) bit in SCSCR */ ctrl |= sci_in(port, SCSCR); sci_out(port, SCSCR, ctrl); } static void sci_stop_rx(struct uart_port *port) { unsigned short ctrl; /* Clear RIE (Receive Interrupt Enable) bit in SCSCR */ ctrl = sci_in(port, SCSCR); ctrl &= ~(SCI_CTRL_FLAGS_RIE | SCI_CTRL_FLAGS_REIE); sci_out(port, SCSCR, ctrl); } static void sci_enable_ms(struct uart_port *port) { /* Nothing here yet .. */ } static void sci_break_ctl(struct uart_port *port, int break_state) { /* Nothing here yet .. */ } #ifdef CONFIG_SERIAL_SH_SCI_DMA static bool filter(struct dma_chan *chan, void *slave) { struct sh_dmae_slave *param = slave; dev_dbg(chan->device->dev, "%s: slave ID %d\n", __func__, param->slave_id); if (param->dma_dev == chan->device->dev) { chan->private = param; return true; } else { return false; } } static void rx_timer_fn(unsigned long arg) { struct sci_port *s = (struct sci_port *)arg; struct uart_port *port = &s->port; u16 scr = sci_in(port, SCSCR); sci_out(port, SCSCR, scr | SCI_CTRL_FLAGS_RIE); dev_dbg(port->dev, "DMA Rx timed out\n"); schedule_work(&s->work_rx); } static void sci_request_dma(struct uart_port *port) { struct sci_port *s = to_sci_port(port); struct sh_dmae_slave *param; struct dma_chan *chan; dma_cap_mask_t mask; int nent; dev_dbg(port->dev, "%s: port %d DMA %p\n", __func__, port->line, s->dma_dev); if (!s->dma_dev) return; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); param = &s->param_tx; /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */ param->slave_id = s->slave_tx; param->dma_dev = s->dma_dev; s->cookie_tx = -EINVAL; chan = dma_request_channel(mask, filter, param); dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan); if (chan) { s->chan_tx = chan; sg_init_table(&s->sg_tx, 1); /* UART circular tx buffer is an aligned page. */ BUG_ON((int)port->state->xmit.buf & ~PAGE_MASK); sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf), UART_XMIT_SIZE, (int)port->state->xmit.buf & ~PAGE_MASK); nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE); if (!nent) sci_tx_dma_release(s, false); else dev_dbg(port->dev, "%s: mapped %d@%p to %x\n", __func__, sg_dma_len(&s->sg_tx), port->state->xmit.buf, sg_dma_address(&s->sg_tx)); s->sg_len_tx = nent; INIT_WORK(&s->work_tx, work_fn_tx); } param = &s->param_rx; /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */ param->slave_id = s->slave_rx; param->dma_dev = s->dma_dev; chan = dma_request_channel(mask, filter, param); dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan); if (chan) { dma_addr_t dma[2]; void *buf[2]; int i; s->chan_rx = chan; s->buf_len_rx = 2 * max(16, (int)port->fifosize); buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2, &dma[0], GFP_KERNEL); if (!buf[0]) { dev_warn(port->dev, "failed to allocate dma buffer, using PIO\n"); sci_rx_dma_release(s, true); return; } buf[1] = buf[0] + s->buf_len_rx; dma[1] = dma[0] + s->buf_len_rx; for (i = 0; i < 2; i++) { struct scatterlist *sg = &s->sg_rx[i]; sg_init_table(sg, 1); sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx, (int)buf[i] & ~PAGE_MASK); sg->dma_address = dma[i]; sg->dma_length = sg->length; } INIT_WORK(&s->work_rx, work_fn_rx); setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s); sci_submit_rx(s); } } static void sci_free_dma(struct uart_port *port) { struct sci_port *s = to_sci_port(port); if (!s->dma_dev) return; if (s->chan_tx) sci_tx_dma_release(s, false); if (s->chan_rx) sci_rx_dma_release(s, false); } #endif static int sci_startup(struct uart_port *port) { struct sci_port *s = to_sci_port(port); dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); if (s->enable) s->enable(port); sci_request_irq(s); #ifdef CONFIG_SERIAL_SH_SCI_DMA sci_request_dma(port); #endif sci_start_tx(port); sci_start_rx(port); return 0; } static void sci_shutdown(struct uart_port *port) { struct sci_port *s = to_sci_port(port); dev_dbg(port->dev, "%s(%d)\n", __func__, port->line); sci_stop_rx(port); sci_stop_tx(port); #ifdef CONFIG_SERIAL_SH_SCI_DMA sci_free_dma(port); #endif sci_free_irq(s); if (s->disable) s->disable(port); } static void sci_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { unsigned int status, baud, smr_val, max_baud; int t = -1; /* * earlyprintk comes here early on with port->uartclk set to zero. * the clock framework is not up and running at this point so here * we assume that 115200 is the maximum baud rate. please note that * the baud rate is not programmed during earlyprintk - it is assumed * that the previous boot loader has enabled required clocks and * setup the baud rate generator hardware for us already. */ max_baud = port->uartclk ? port->uartclk / 16 : 115200; baud = uart_get_baud_rate(port, termios, old, 0, max_baud); if (likely(baud && port->uartclk)) t = SCBRR_VALUE(baud, port->uartclk); do { status = sci_in(port, SCxSR); } while (!(status & SCxSR_TEND(port))); sci_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */ if (port->type != PORT_SCI) sci_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST); smr_val = sci_in(port, SCSMR) & 3; if ((termios->c_cflag & CSIZE) == CS7) smr_val |= 0x40; if (termios->c_cflag & PARENB) smr_val |= 0x20; if (termios->c_cflag & PARODD) smr_val |= 0x30; if (termios->c_cflag & CSTOPB) smr_val |= 0x08; uart_update_timeout(port, termios->c_cflag, baud); sci_out(port, SCSMR, smr_val); dev_dbg(port->dev, "%s: SMR %x, t %x, SCSCR %x\n", __func__, smr_val, t, SCSCR_INIT(port)); if (t > 0) { if (t >= 256) { sci_out(port, SCSMR, (sci_in(port, SCSMR) & ~3) | 1); t >>= 2; } else sci_out(port, SCSMR, sci_in(port, SCSMR) & ~3); sci_out(port, SCBRR, t); udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */ } sci_init_pins(port, termios->c_cflag); sci_out(port, SCFCR, (termios->c_cflag & CRTSCTS) ? SCFCR_MCE : 0); sci_out(port, SCSCR, SCSCR_INIT(port)); if ((termios->c_cflag & CREAD) != 0) sci_start_rx(port); } static const char *sci_type(struct uart_port *port) { switch (port->type) { case PORT_IRDA: return "irda"; case PORT_SCI: return "sci"; case PORT_SCIF: return "scif"; case PORT_SCIFA: return "scifa"; } return NULL; } static void sci_release_port(struct uart_port *port) { /* Nothing here yet .. */ } static int sci_request_port(struct uart_port *port) { /* Nothing here yet .. */ return 0; } static void sci_config_port(struct uart_port *port, int flags) { struct sci_port *s = to_sci_port(port); port->type = s->type; if (port->membase) return; if (port->flags & UPF_IOREMAP) { port->membase = ioremap_nocache(port->mapbase, 0x40); if (IS_ERR(port->membase)) dev_err(port->dev, "can't remap port#%d\n", port->line); } else { /* * For the simple (and majority of) cases where we don't * need to do any remapping, just cast the cookie * directly. */ port->membase = (void __iomem *)port->mapbase; } } static int sci_verify_port(struct uart_port *port, struct serial_struct *ser) { struct sci_port *s = to_sci_port(port); if (ser->irq != s->irqs[SCIx_TXI_IRQ] || ser->irq > nr_irqs) return -EINVAL; if (ser->baud_base < 2400) /* No paper tape reader for Mitch.. */ return -EINVAL; return 0; } static struct uart_ops sci_uart_ops = { .tx_empty = sci_tx_empty, .set_mctrl = sci_set_mctrl, .get_mctrl = sci_get_mctrl, .start_tx = sci_start_tx, .stop_tx = sci_stop_tx, .stop_rx = sci_stop_rx, .enable_ms = sci_enable_ms, .break_ctl = sci_break_ctl, .startup = sci_startup, .shutdown = sci_shutdown, .set_termios = sci_set_termios, .type = sci_type, .release_port = sci_release_port, .request_port = sci_request_port, .config_port = sci_config_port, .verify_port = sci_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = sci_poll_get_char, .poll_put_char = sci_poll_put_char, #endif }; static void __devinit sci_init_single(struct platform_device *dev, struct sci_port *sci_port, unsigned int index, struct plat_sci_port *p) { struct uart_port *port = &sci_port->port; port->ops = &sci_uart_ops; port->iotype = UPIO_MEM; port->line = index; switch (p->type) { case PORT_SCIFA: port->fifosize = 64; break; case PORT_SCIF: port->fifosize = 16; break; default: port->fifosize = 1; break; } if (dev) { sci_port->iclk = p->clk ? clk_get(&dev->dev, p->clk) : NULL; sci_port->dclk = clk_get(&dev->dev, "peripheral_clk"); sci_port->enable = sci_clk_enable; sci_port->disable = sci_clk_disable; port->dev = &dev->dev; } sci_port->break_timer.data = (unsigned long)sci_port; sci_port->break_timer.function = sci_break_timer; init_timer(&sci_port->break_timer); port->mapbase = p->mapbase; port->membase = p->membase; port->irq = p->irqs[SCIx_TXI_IRQ]; port->flags = p->flags; sci_port->type = port->type = p->type; #ifdef CONFIG_SERIAL_SH_SCI_DMA sci_port->dma_dev = p->dma_dev; sci_port->slave_tx = p->dma_slave_tx; sci_port->slave_rx = p->dma_slave_rx; dev_dbg(port->dev, "%s: DMA device %p, tx %d, rx %d\n", __func__, p->dma_dev, p->dma_slave_tx, p->dma_slave_rx); #endif memcpy(&sci_port->irqs, &p->irqs, sizeof(p->irqs)); } #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE static struct tty_driver *serial_console_device(struct console *co, int *index) { struct uart_driver *p = &sci_uart_driver; *index = co->index; return p->tty_driver; } static void serial_console_putchar(struct uart_port *port, int ch) { sci_poll_put_char(port, ch); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct uart_port *port = co->data; struct sci_port *sci_port = to_sci_port(port); unsigned short bits; if (sci_port->enable) sci_port->enable(port); uart_console_write(port, s, count, serial_console_putchar); /* wait until fifo is empty and last bit has been transmitted */ bits = SCxSR_TDxE(port) | SCxSR_TEND(port); while ((sci_in(port, SCxSR) & bits) != bits) cpu_relax(); if (sci_port->disable) sci_port->disable(port); } static int __devinit serial_console_setup(struct console *co, char *options) { struct sci_port *sci_port; struct uart_port *port; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; int ret; /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index >= SCI_NPORTS) co->index = 0; if (co->data) { port = co->data; sci_port = to_sci_port(port); } else { sci_port = &sci_ports[co->index]; port = &sci_port->port; co->data = port; } /* * Also need to check port->type, we don't actually have any * UPIO_PORT ports, but uart_report_port() handily misreports * it anyways if we don't have a port available by the time this is * called. */ if (!port->type) return -ENODEV; sci_config_port(port, 0); if (sci_port->enable) sci_port->enable(port); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); ret = uart_set_options(port, co, baud, parity, bits, flow); #if defined(__H8300H__) || defined(__H8300S__) /* disable rx interrupt */ if (ret == 0) sci_stop_rx(port); #endif /* TODO: disable clock */ return ret; } static struct console serial_console = { .name = "ttySC", .device = serial_console_device, .write = serial_console_write, .setup = serial_console_setup, .flags = CON_PRINTBUFFER, .index = -1, }; static int __init sci_console_init(void) { register_console(&serial_console); return 0; } console_initcall(sci_console_init); static struct sci_port early_serial_port; static struct console early_serial_console = { .name = "early_ttySC", .write = serial_console_write, .flags = CON_PRINTBUFFER, }; static char early_serial_buf[32]; #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */ #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) #define SCI_CONSOLE (&serial_console) #else #define SCI_CONSOLE 0 #endif static char banner[] __initdata = KERN_INFO "SuperH SCI(F) driver initialized\n"; static struct uart_driver sci_uart_driver = { .owner = THIS_MODULE, .driver_name = "sci", .dev_name = "ttySC", .major = SCI_MAJOR, .minor = SCI_MINOR_START, .nr = SCI_NPORTS, .cons = SCI_CONSOLE, }; static int sci_remove(struct platform_device *dev) { struct sh_sci_priv *priv = platform_get_drvdata(dev); struct sci_port *p; unsigned long flags; cpufreq_unregister_notifier(&priv->clk_nb, CPUFREQ_TRANSITION_NOTIFIER); spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(p, &priv->ports, node) uart_remove_one_port(&sci_uart_driver, &p->port); spin_unlock_irqrestore(&priv->lock, flags); kfree(priv); return 0; } static int __devinit sci_probe_single(struct platform_device *dev, unsigned int index, struct plat_sci_port *p, struct sci_port *sciport) { struct sh_sci_priv *priv = platform_get_drvdata(dev); unsigned long flags; int ret; /* Sanity check */ if (unlikely(index >= SCI_NPORTS)) { dev_notice(&dev->dev, "Attempting to register port " "%d when only %d are available.\n", index+1, SCI_NPORTS); dev_notice(&dev->dev, "Consider bumping " "CONFIG_SERIAL_SH_SCI_NR_UARTS!\n"); return 0; } sci_init_single(dev, sciport, index, p); ret = uart_add_one_port(&sci_uart_driver, &sciport->port); if (ret) return ret; INIT_LIST_HEAD(&sciport->node); spin_lock_irqsave(&priv->lock, flags); list_add(&sciport->node, &priv->ports); spin_unlock_irqrestore(&priv->lock, flags); return 0; } /* * Register a set of serial devices attached to a platform device. The * list is terminated with a zero flags entry, which means we expect * all entries to have at least UPF_BOOT_AUTOCONF set. Platforms that need * remapping (such as sh64) should also set UPF_IOREMAP. */ static int __devinit sci_probe(struct platform_device *dev) { struct plat_sci_port *p = dev->dev.platform_data; struct sh_sci_priv *priv; int i, ret = -EINVAL; #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE if (is_early_platform_device(dev)) { if (dev->id == -1) return -ENOTSUPP; early_serial_console.index = dev->id; early_serial_console.data = &early_serial_port.port; sci_init_single(NULL, &early_serial_port, dev->id, p); serial_console_setup(&early_serial_console, early_serial_buf); if (!strstr(early_serial_buf, "keep")) early_serial_console.flags |= CON_BOOT; register_console(&early_serial_console); return 0; } #endif priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; INIT_LIST_HEAD(&priv->ports); spin_lock_init(&priv->lock); platform_set_drvdata(dev, priv); priv->clk_nb.notifier_call = sci_notifier; cpufreq_register_notifier(&priv->clk_nb, CPUFREQ_TRANSITION_NOTIFIER); if (dev->id != -1) { ret = sci_probe_single(dev, dev->id, p, &sci_ports[dev->id]); if (ret) goto err_unreg; } else { for (i = 0; p && p->flags != 0; p++, i++) { ret = sci_probe_single(dev, i, p, &sci_ports[i]); if (ret) goto err_unreg; } } #ifdef CONFIG_SH_STANDARD_BIOS sh_bios_gdb_detach(); #endif return 0; err_unreg: sci_remove(dev); return ret; } static int sci_suspend(struct device *dev) { struct sh_sci_priv *priv = dev_get_drvdata(dev); struct sci_port *p; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(p, &priv->ports, node) uart_suspend_port(&sci_uart_driver, &p->port); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static int sci_resume(struct device *dev) { struct sh_sci_priv *priv = dev_get_drvdata(dev); struct sci_port *p; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); list_for_each_entry(p, &priv->ports, node) uart_resume_port(&sci_uart_driver, &p->port); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static const struct dev_pm_ops sci_dev_pm_ops = { .suspend = sci_suspend, .resume = sci_resume, }; static struct platform_driver sci_driver = { .probe = sci_probe, .remove = sci_remove, .driver = { .name = "sh-sci", .owner = THIS_MODULE, .pm = &sci_dev_pm_ops, }, }; static int __init sci_init(void) { int ret; printk(banner); ret = uart_register_driver(&sci_uart_driver); if (likely(ret == 0)) { ret = platform_driver_register(&sci_driver); if (unlikely(ret)) uart_unregister_driver(&sci_uart_driver); } return ret; } static void __exit sci_exit(void) { platform_driver_unregister(&sci_driver); uart_unregister_driver(&sci_uart_driver); } #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE early_platform_init_buffer("earlyprintk", &sci_driver, early_serial_buf, ARRAY_SIZE(early_serial_buf)); #endif module_init(sci_init); module_exit(sci_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:sh-sci");