/* A Davicom DM9102/DM9102A/DM9102A+DM9801/DM9102A+DM9802 NIC fast ethernet driver for Linux. Copyright (C) 1997 Sten Wang This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. DAVICOM Web-Site: www.davicom.com.tw Author: Sten Wang, 886-3-5798797-8517, E-mail: sten_wang@davicom.com.tw Maintainer: Tobias Ringstrom <tori@unhappy.mine.nu> (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. Marcelo Tosatti <marcelo@conectiva.com.br> : Made it compile in 2.3 (device to net_device) Alan Cox <alan@redhat.com> : Cleaned up for kernel merge. Removed the back compatibility support Reformatted, fixing spelling etc as I went Removed IRQ 0-15 assumption Jeff Garzik <jgarzik@pobox.com> : Updated to use new PCI driver API. Resource usage cleanups. Report driver version to user. Tobias Ringstrom <tori@unhappy.mine.nu> : Cleaned up and added SMP safety. Thanks go to Jeff Garzik, Andrew Morton and Frank Davis for the SMP safety fixes. Vojtech Pavlik <vojtech@suse.cz> : Cleaned up pointer arithmetics. Fixed a lot of 64bit issues. Cleaned up printk()s a bit. Fixed some obvious big endian problems. Tobias Ringstrom <tori@unhappy.mine.nu> : Use time_after for jiffies calculation. Added ethtool support. Updated PCI resource allocation. Do not forget to unmap PCI mapped skbs. Alan Cox <alan@redhat.com> Added new PCI identifiers provided by Clear Zhang at ALi for their 1563 ethernet device. TODO Implement pci_driver::suspend() and pci_driver::resume() power management methods. Check on 64 bit boxes. Check and fix on big endian boxes. Test and make sure PCI latency is now correct for all cases. */ #define DRV_NAME "dmfe" #define DRV_VERSION "1.36.4" #define DRV_RELDATE "2002-01-17" #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/crc32.h> #include <linux/bitops.h> #include <asm/processor.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/uaccess.h> #include <asm/irq.h> /* Board/System/Debug information/definition ---------------- */ #define PCI_DM9132_ID 0x91321282 /* Davicom DM9132 ID */ #define PCI_DM9102_ID 0x91021282 /* Davicom DM9102 ID */ #define PCI_DM9100_ID 0x91001282 /* Davicom DM9100 ID */ #define PCI_DM9009_ID 0x90091282 /* Davicom DM9009 ID */ #define DM9102_IO_SIZE 0x80 #define DM9102A_IO_SIZE 0x100 #define TX_MAX_SEND_CNT 0x1 /* Maximum tx packet per time */ #define TX_DESC_CNT 0x10 /* Allocated Tx descriptors */ #define RX_DESC_CNT 0x20 /* Allocated Rx descriptors */ #define TX_FREE_DESC_CNT (TX_DESC_CNT - 2) /* Max TX packet count */ #define TX_WAKE_DESC_CNT (TX_DESC_CNT - 3) /* TX wakeup count */ #define DESC_ALL_CNT (TX_DESC_CNT + RX_DESC_CNT) #define TX_BUF_ALLOC 0x600 #define RX_ALLOC_SIZE 0x620 #define DM910X_RESET 1 #define CR0_DEFAULT 0x00E00000 /* TX & RX burst mode */ #define CR6_DEFAULT 0x00080000 /* HD */ #define CR7_DEFAULT 0x180c1 #define CR15_DEFAULT 0x06 /* TxJabber RxWatchdog */ #define TDES0_ERR_MASK 0x4302 /* TXJT, LC, EC, FUE */ #define MAX_PACKET_SIZE 1514 #define DMFE_MAX_MULTICAST 14 #define RX_COPY_SIZE 100 #define MAX_CHECK_PACKET 0x8000 #define DM9801_NOISE_FLOOR 8 #define DM9802_NOISE_FLOOR 5 #define DMFE_10MHF 0 #define DMFE_100MHF 1 #define DMFE_10MFD 4 #define DMFE_100MFD 5 #define DMFE_AUTO 8 #define DMFE_1M_HPNA 0x10 #define DMFE_TXTH_72 0x400000 /* TX TH 72 byte */ #define DMFE_TXTH_96 0x404000 /* TX TH 96 byte */ #define DMFE_TXTH_128 0x0000 /* TX TH 128 byte */ #define DMFE_TXTH_256 0x4000 /* TX TH 256 byte */ #define DMFE_TXTH_512 0x8000 /* TX TH 512 byte */ #define DMFE_TXTH_1K 0xC000 /* TX TH 1K byte */ #define DMFE_TIMER_WUT (jiffies + HZ * 1)/* timer wakeup time : 1 second */ #define DMFE_TX_TIMEOUT ((3*HZ)/2) /* tx packet time-out time 1.5 s" */ #define DMFE_TX_KICK (HZ/2) /* tx packet Kick-out time 0.5 s" */ #define DMFE_DBUG(dbug_now, msg, value) \ do { \ if (dmfe_debug || (dbug_now)) \ printk(KERN_ERR DRV_NAME ": %s %lx\n",\ (msg), (long) (value)); \ } while (0) #define SHOW_MEDIA_TYPE(mode) \ printk (KERN_INFO DRV_NAME ": Change Speed to %sMhz %s duplex\n" , \ (mode & 1) ? "100":"10", (mode & 4) ? "full":"half"); /* CR9 definition: SROM/MII */ #define CR9_SROM_READ 0x4800 #define CR9_SRCS 0x1 #define CR9_SRCLK 0x2 #define CR9_CRDOUT 0x8 #define SROM_DATA_0 0x0 #define SROM_DATA_1 0x4 #define PHY_DATA_1 0x20000 #define PHY_DATA_0 0x00000 #define MDCLKH 0x10000 #define PHY_POWER_DOWN 0x800 #define SROM_V41_CODE 0x14 #define SROM_CLK_WRITE(data, ioaddr) \ outl(data|CR9_SROM_READ|CR9_SRCS,ioaddr); \ udelay(5); \ outl(data|CR9_SROM_READ|CR9_SRCS|CR9_SRCLK,ioaddr); \ udelay(5); \ outl(data|CR9_SROM_READ|CR9_SRCS,ioaddr); \ udelay(5); #define __CHK_IO_SIZE(pci_id, dev_rev) \ (( ((pci_id)==PCI_DM9132_ID) || ((dev_rev) >= 0x02000030) ) ? \ DM9102A_IO_SIZE: DM9102_IO_SIZE) #define CHK_IO_SIZE(pci_dev, dev_rev) \ (__CHK_IO_SIZE(((pci_dev)->device << 16) | (pci_dev)->vendor, dev_rev)) /* Sten Check */ #define DEVICE net_device /* Structure/enum declaration ------------------------------- */ struct tx_desc { __le32 tdes0, tdes1, tdes2, tdes3; /* Data for the card */ char *tx_buf_ptr; /* Data for us */ struct tx_desc *next_tx_desc; } __attribute__(( aligned(32) )); struct rx_desc { __le32 rdes0, rdes1, rdes2, rdes3; /* Data for the card */ struct sk_buff *rx_skb_ptr; /* Data for us */ struct rx_desc *next_rx_desc; } __attribute__(( aligned(32) )); struct dmfe_board_info { u32 chip_id; /* Chip vendor/Device ID */ u32 chip_revision; /* Chip revision */ struct DEVICE *next_dev; /* next device */ struct pci_dev *pdev; /* PCI device */ spinlock_t lock; long ioaddr; /* I/O base address */ u32 cr0_data; u32 cr5_data; u32 cr6_data; u32 cr7_data; u32 cr15_data; /* pointer for memory physical address */ dma_addr_t buf_pool_dma_ptr; /* Tx buffer pool memory */ dma_addr_t buf_pool_dma_start; /* Tx buffer pool align dword */ dma_addr_t desc_pool_dma_ptr; /* descriptor pool memory */ dma_addr_t first_tx_desc_dma; dma_addr_t first_rx_desc_dma; /* descriptor pointer */ unsigned char *buf_pool_ptr; /* Tx buffer pool memory */ unsigned char *buf_pool_start; /* Tx buffer pool align dword */ unsigned char *desc_pool_ptr; /* descriptor pool memory */ struct tx_desc *first_tx_desc; struct tx_desc *tx_insert_ptr; struct tx_desc *tx_remove_ptr; struct rx_desc *first_rx_desc; struct rx_desc *rx_insert_ptr; struct rx_desc *rx_ready_ptr; /* packet come pointer */ unsigned long tx_packet_cnt; /* transmitted packet count */ unsigned long tx_queue_cnt; /* wait to send packet count */ unsigned long rx_avail_cnt; /* available rx descriptor count */ unsigned long interval_rx_cnt; /* rx packet count a callback time */ u16 HPNA_command; /* For HPNA register 16 */ u16 HPNA_timer; /* For HPNA remote device check */ u16 dbug_cnt; u16 NIC_capability; /* NIC media capability */ u16 PHY_reg4; /* Saved Phyxcer register 4 value */ u8 HPNA_present; /* 0:none, 1:DM9801, 2:DM9802 */ u8 chip_type; /* Keep DM9102A chip type */ u8 media_mode; /* user specify media mode */ u8 op_mode; /* real work media mode */ u8 phy_addr; u8 wait_reset; /* Hardware failed, need to reset */ u8 dm910x_chk_mode; /* Operating mode check */ u8 first_in_callback; /* Flag to record state */ struct timer_list timer; /* System defined statistic counter */ struct net_device_stats stats; /* Driver defined statistic counter */ unsigned long tx_fifo_underrun; unsigned long tx_loss_carrier; unsigned long tx_no_carrier; unsigned long tx_late_collision; unsigned long tx_excessive_collision; unsigned long tx_jabber_timeout; unsigned long reset_count; unsigned long reset_cr8; unsigned long reset_fatal; unsigned long reset_TXtimeout; /* NIC SROM data */ unsigned char srom[128]; }; enum dmfe_offsets { DCR0 = 0x00, DCR1 = 0x08, DCR2 = 0x10, DCR3 = 0x18, DCR4 = 0x20, DCR5 = 0x28, DCR6 = 0x30, DCR7 = 0x38, DCR8 = 0x40, DCR9 = 0x48, DCR10 = 0x50, DCR11 = 0x58, DCR12 = 0x60, DCR13 = 0x68, DCR14 = 0x70, DCR15 = 0x78 }; enum dmfe_CR6_bits { CR6_RXSC = 0x2, CR6_PBF = 0x8, CR6_PM = 0x40, CR6_PAM = 0x80, CR6_FDM = 0x200, CR6_TXSC = 0x2000, CR6_STI = 0x100000, CR6_SFT = 0x200000, CR6_RXA = 0x40000000, CR6_NO_PURGE = 0x20000000 }; /* Global variable declaration ----------------------------- */ static int __devinitdata printed_version; static char version[] __devinitdata = KERN_INFO DRV_NAME ": Davicom DM9xxx net driver, version " DRV_VERSION " (" DRV_RELDATE ")\n"; static int dmfe_debug; static unsigned char dmfe_media_mode = DMFE_AUTO; static u32 dmfe_cr6_user_set; /* For module input parameter */ static int debug; static u32 cr6set; static unsigned char mode = 8; static u8 chkmode = 1; static u8 HPNA_mode; /* Default: Low Power/High Speed */ static u8 HPNA_rx_cmd; /* Default: Disable Rx remote command */ static u8 HPNA_tx_cmd; /* Default: Don't issue remote command */ static u8 HPNA_NoiseFloor; /* Default: HPNA NoiseFloor */ static u8 SF_mode; /* Special Function: 1:VLAN, 2:RX Flow Control 4: TX pause packet */ /* function declaration ------------------------------------- */ static int dmfe_open(struct DEVICE *); static int dmfe_start_xmit(struct sk_buff *, struct DEVICE *); static int dmfe_stop(struct DEVICE *); static struct net_device_stats * dmfe_get_stats(struct DEVICE *); static void dmfe_set_filter_mode(struct DEVICE *); static const struct ethtool_ops netdev_ethtool_ops; static u16 read_srom_word(long ,int); static irqreturn_t dmfe_interrupt(int , void *); #ifdef CONFIG_NET_POLL_CONTROLLER static void poll_dmfe (struct net_device *dev); #endif static void dmfe_descriptor_init(struct dmfe_board_info *, unsigned long); static void allocate_rx_buffer(struct dmfe_board_info *); static void update_cr6(u32, unsigned long); static void send_filter_frame(struct DEVICE * ,int); static void dm9132_id_table(struct DEVICE * ,int); static u16 phy_read(unsigned long, u8, u8, u32); static void phy_write(unsigned long, u8, u8, u16, u32); static void phy_write_1bit(unsigned long, u32); static u16 phy_read_1bit(unsigned long); static u8 dmfe_sense_speed(struct dmfe_board_info *); static void dmfe_process_mode(struct dmfe_board_info *); static void dmfe_timer(unsigned long); static inline u32 cal_CRC(unsigned char *, unsigned int, u8); static void dmfe_rx_packet(struct DEVICE *, struct dmfe_board_info *); static void dmfe_free_tx_pkt(struct DEVICE *, struct dmfe_board_info *); static void dmfe_reuse_skb(struct dmfe_board_info *, struct sk_buff *); static void dmfe_dynamic_reset(struct DEVICE *); static void dmfe_free_rxbuffer(struct dmfe_board_info *); static void dmfe_init_dm910x(struct DEVICE *); static void dmfe_parse_srom(struct dmfe_board_info *); static void dmfe_program_DM9801(struct dmfe_board_info *, int); static void dmfe_program_DM9802(struct dmfe_board_info *); static void dmfe_HPNA_remote_cmd_chk(struct dmfe_board_info * ); static void dmfe_set_phyxcer(struct dmfe_board_info *); /* DM910X network board routine ---------------------------- */ /* * Search DM910X board ,allocate space and register it */ static int __devinit dmfe_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { struct dmfe_board_info *db; /* board information structure */ struct net_device *dev; u32 dev_rev, pci_pmr; int i, err; DMFE_DBUG(0, "dmfe_init_one()", 0); if (!printed_version++) printk(version); /* Init network device */ dev = alloc_etherdev(sizeof(*db)); if (dev == NULL) return -ENOMEM; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { printk(KERN_WARNING DRV_NAME ": 32-bit PCI DMA not available.\n"); err = -ENODEV; goto err_out_free; } /* Enable Master/IO access, Disable memory access */ err = pci_enable_device(pdev); if (err) goto err_out_free; if (!pci_resource_start(pdev, 0)) { printk(KERN_ERR DRV_NAME ": I/O base is zero\n"); err = -ENODEV; goto err_out_disable; } /* Read Chip revision */ pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev); if (pci_resource_len(pdev, 0) < (CHK_IO_SIZE(pdev, dev_rev)) ) { printk(KERN_ERR DRV_NAME ": Allocated I/O size too small\n"); err = -ENODEV; goto err_out_disable; } #if 0 /* pci_{enable_device,set_master} sets minimum latency for us now */ /* Set Latency Timer 80h */ /* FIXME: setting values > 32 breaks some SiS 559x stuff. Need a PCI quirk.. */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x80); #endif if (pci_request_regions(pdev, DRV_NAME)) { printk(KERN_ERR DRV_NAME ": Failed to request PCI regions\n"); err = -ENODEV; goto err_out_disable; } /* Init system & device */ db = netdev_priv(dev); /* Allocate Tx/Rx descriptor memory */ db->desc_pool_ptr = pci_alloc_consistent(pdev, sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20, &db->desc_pool_dma_ptr); db->buf_pool_ptr = pci_alloc_consistent(pdev, TX_BUF_ALLOC * TX_DESC_CNT + 4, &db->buf_pool_dma_ptr); db->first_tx_desc = (struct tx_desc *) db->desc_pool_ptr; db->first_tx_desc_dma = db->desc_pool_dma_ptr; db->buf_pool_start = db->buf_pool_ptr; db->buf_pool_dma_start = db->buf_pool_dma_ptr; db->chip_id = ent->driver_data; db->ioaddr = pci_resource_start(pdev, 0); db->chip_revision = dev_rev; db->pdev = pdev; dev->base_addr = db->ioaddr; dev->irq = pdev->irq; pci_set_drvdata(pdev, dev); dev->open = &dmfe_open; dev->hard_start_xmit = &dmfe_start_xmit; dev->stop = &dmfe_stop; dev->get_stats = &dmfe_get_stats; dev->set_multicast_list = &dmfe_set_filter_mode; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = &poll_dmfe; #endif dev->ethtool_ops = &netdev_ethtool_ops; netif_carrier_off(dev); spin_lock_init(&db->lock); pci_read_config_dword(pdev, 0x50, &pci_pmr); pci_pmr &= 0x70000; if ( (pci_pmr == 0x10000) && (dev_rev == 0x02000031) ) db->chip_type = 1; /* DM9102A E3 */ else db->chip_type = 0; /* read 64 word srom data */ for (i = 0; i < 64; i++) ((__le16 *) db->srom)[i] = cpu_to_le16(read_srom_word(db->ioaddr, i)); /* Set Node address */ for (i = 0; i < 6; i++) dev->dev_addr[i] = db->srom[20 + i]; err = register_netdev (dev); if (err) goto err_out_res; printk(KERN_INFO "%s: Davicom DM%04lx at pci%s,", dev->name, ent->driver_data >> 16, pci_name(pdev)); for (i = 0; i < 6; i++) printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]); printk(", irq %d.\n", dev->irq); pci_set_master(pdev); return 0; err_out_res: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); err_out_free: pci_set_drvdata(pdev, NULL); free_netdev(dev); return err; } static void __devexit dmfe_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct dmfe_board_info *db = netdev_priv(dev); DMFE_DBUG(0, "dmfe_remove_one()", 0); if (dev) { unregister_netdev(dev); pci_free_consistent(db->pdev, sizeof(struct tx_desc) * DESC_ALL_CNT + 0x20, db->desc_pool_ptr, db->desc_pool_dma_ptr); pci_free_consistent(db->pdev, TX_BUF_ALLOC * TX_DESC_CNT + 4, db->buf_pool_ptr, db->buf_pool_dma_ptr); pci_release_regions(pdev); free_netdev(dev); /* free board information */ pci_set_drvdata(pdev, NULL); } DMFE_DBUG(0, "dmfe_remove_one() exit", 0); } /* * Open the interface. * The interface is opened whenever "ifconfig" actives it. */ static int dmfe_open(struct DEVICE *dev) { int ret; struct dmfe_board_info *db = netdev_priv(dev); DMFE_DBUG(0, "dmfe_open", 0); ret = request_irq(dev->irq, &dmfe_interrupt, IRQF_SHARED, dev->name, dev); if (ret) return ret; /* system variable init */ db->cr6_data = CR6_DEFAULT | dmfe_cr6_user_set; db->tx_packet_cnt = 0; db->tx_queue_cnt = 0; db->rx_avail_cnt = 0; db->wait_reset = 0; db->first_in_callback = 0; db->NIC_capability = 0xf; /* All capability*/ db->PHY_reg4 = 0x1e0; /* CR6 operation mode decision */ if ( !chkmode || (db->chip_id == PCI_DM9132_ID) || (db->chip_revision >= 0x02000030) ) { db->cr6_data |= DMFE_TXTH_256; db->cr0_data = CR0_DEFAULT; db->dm910x_chk_mode=4; /* Enter the normal mode */ } else { db->cr6_data |= CR6_SFT; /* Store & Forward mode */ db->cr0_data = 0; db->dm910x_chk_mode = 1; /* Enter the check mode */ } /* Initilize DM910X board */ dmfe_init_dm910x(dev); /* Active System Interface */ netif_wake_queue(dev); /* set and active a timer process */ init_timer(&db->timer); db->timer.expires = DMFE_TIMER_WUT + HZ * 2; db->timer.data = (unsigned long)dev; db->timer.function = &dmfe_timer; add_timer(&db->timer); return 0; } /* Initilize DM910X board * Reset DM910X board * Initilize TX/Rx descriptor chain structure * Send the set-up frame * Enable Tx/Rx machine */ static void dmfe_init_dm910x(struct DEVICE *dev) { struct dmfe_board_info *db = netdev_priv(dev); unsigned long ioaddr = db->ioaddr; DMFE_DBUG(0, "dmfe_init_dm910x()", 0); /* Reset DM910x MAC controller */ outl(DM910X_RESET, ioaddr + DCR0); /* RESET MAC */ udelay(100); outl(db->cr0_data, ioaddr + DCR0); udelay(5); /* Phy addr : DM910(A)2/DM9132/9801, phy address = 1 */ db->phy_addr = 1; /* Parser SROM and media mode */ dmfe_parse_srom(db); db->media_mode = dmfe_media_mode; /* RESET Phyxcer Chip by GPR port bit 7 */ outl(0x180, ioaddr + DCR12); /* Let bit 7 output port */ if (db->chip_id == PCI_DM9009_ID) { outl(0x80, ioaddr + DCR12); /* Issue RESET signal */ mdelay(300); /* Delay 300 ms */ } outl(0x0, ioaddr + DCR12); /* Clear RESET signal */ /* Process Phyxcer Media Mode */ if ( !(db->media_mode & 0x10) ) /* Force 1M mode */ dmfe_set_phyxcer(db); /* Media Mode Process */ if ( !(db->media_mode & DMFE_AUTO) ) db->op_mode = db->media_mode; /* Force Mode */ /* Initiliaze Transmit/Receive decriptor and CR3/4 */ dmfe_descriptor_init(db, ioaddr); /* Init CR6 to program DM910x operation */ update_cr6(db->cr6_data, ioaddr); /* Send setup frame */ if (db->chip_id == PCI_DM9132_ID) dm9132_id_table(dev, dev->mc_count); /* DM9132 */ else send_filter_frame(dev, dev->mc_count); /* DM9102/DM9102A */ /* Init CR7, interrupt active bit */ db->cr7_data = CR7_DEFAULT; outl(db->cr7_data, ioaddr + DCR7); /* Init CR15, Tx jabber and Rx watchdog timer */ outl(db->cr15_data, ioaddr + DCR15); /* Enable DM910X Tx/Rx function */ db->cr6_data |= CR6_RXSC | CR6_TXSC | 0x40000; update_cr6(db->cr6_data, ioaddr); } /* * Hardware start transmission. * Send a packet to media from the upper layer. */ static int dmfe_start_xmit(struct sk_buff *skb, struct DEVICE *dev) { struct dmfe_board_info *db = netdev_priv(dev); struct tx_desc *txptr; unsigned long flags; DMFE_DBUG(0, "dmfe_start_xmit", 0); /* Resource flag check */ netif_stop_queue(dev); /* Too large packet check */ if (skb->len > MAX_PACKET_SIZE) { printk(KERN_ERR DRV_NAME ": big packet = %d\n", (u16)skb->len); dev_kfree_skb(skb); return 0; } spin_lock_irqsave(&db->lock, flags); /* No Tx resource check, it never happen nromally */ if (db->tx_queue_cnt >= TX_FREE_DESC_CNT) { spin_unlock_irqrestore(&db->lock, flags); printk(KERN_ERR DRV_NAME ": No Tx resource %ld\n", db->tx_queue_cnt); return 1; } /* Disable NIC interrupt */ outl(0, dev->base_addr + DCR7); /* transmit this packet */ txptr = db->tx_insert_ptr; memcpy(txptr->tx_buf_ptr, skb->data, skb->len); txptr->tdes1 = cpu_to_le32(0xe1000000 | skb->len); /* Point to next transmit free descriptor */ db->tx_insert_ptr = txptr->next_tx_desc; /* Transmit Packet Process */ if ( (!db->tx_queue_cnt) && (db->tx_packet_cnt < TX_MAX_SEND_CNT) ) { txptr->tdes0 = cpu_to_le32(0x80000000); /* Set owner bit */ db->tx_packet_cnt++; /* Ready to send */ outl(0x1, dev->base_addr + DCR1); /* Issue Tx polling */ dev->trans_start = jiffies; /* saved time stamp */ } else { db->tx_queue_cnt++; /* queue TX packet */ outl(0x1, dev->base_addr + DCR1); /* Issue Tx polling */ } /* Tx resource check */ if ( db->tx_queue_cnt < TX_FREE_DESC_CNT ) netif_wake_queue(dev); /* Restore CR7 to enable interrupt */ spin_unlock_irqrestore(&db->lock, flags); outl(db->cr7_data, dev->base_addr + DCR7); /* free this SKB */ dev_kfree_skb(skb); return 0; } /* * Stop the interface. * The interface is stopped when it is brought. */ static int dmfe_stop(struct DEVICE *dev) { struct dmfe_board_info *db = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; DMFE_DBUG(0, "dmfe_stop", 0); /* disable system */ netif_stop_queue(dev); /* deleted timer */ del_timer_sync(&db->timer); /* Reset & stop DM910X board */ outl(DM910X_RESET, ioaddr + DCR0); udelay(5); phy_write(db->ioaddr, db->phy_addr, 0, 0x8000, db->chip_id); /* free interrupt */ free_irq(dev->irq, dev); /* free allocated rx buffer */ dmfe_free_rxbuffer(db); #if 0 /* show statistic counter */ printk(DRV_NAME ": FU:%lx EC:%lx LC:%lx NC:%lx" " LOC:%lx TXJT:%lx RESET:%lx RCR8:%lx FAL:%lx TT:%lx\n", db->tx_fifo_underrun, db->tx_excessive_collision, db->tx_late_collision, db->tx_no_carrier, db->tx_loss_carrier, db->tx_jabber_timeout, db->reset_count, db->reset_cr8, db->reset_fatal, db->reset_TXtimeout); #endif return 0; } /* * DM9102 insterrupt handler * receive the packet to upper layer, free the transmitted packet */ static irqreturn_t dmfe_interrupt(int irq, void *dev_id) { struct DEVICE *dev = dev_id; struct dmfe_board_info *db = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; unsigned long flags; DMFE_DBUG(0, "dmfe_interrupt()", 0); spin_lock_irqsave(&db->lock, flags); /* Got DM910X status */ db->cr5_data = inl(ioaddr + DCR5); outl(db->cr5_data, ioaddr + DCR5); if ( !(db->cr5_data & 0xc1) ) { spin_unlock_irqrestore(&db->lock, flags); return IRQ_HANDLED; } /* Disable all interrupt in CR7 to solve the interrupt edge problem */ outl(0, ioaddr + DCR7); /* Check system status */ if (db->cr5_data & 0x2000) { /* system bus error happen */ DMFE_DBUG(1, "System bus error happen. CR5=", db->cr5_data); db->reset_fatal++; db->wait_reset = 1; /* Need to RESET */ spin_unlock_irqrestore(&db->lock, flags); return IRQ_HANDLED; } /* Received the coming packet */ if ( (db->cr5_data & 0x40) && db->rx_avail_cnt ) dmfe_rx_packet(dev, db); /* reallocate rx descriptor buffer */ if (db->rx_avail_cnt<RX_DESC_CNT) allocate_rx_buffer(db); /* Free the transmitted descriptor */ if ( db->cr5_data & 0x01) dmfe_free_tx_pkt(dev, db); /* Mode Check */ if (db->dm910x_chk_mode & 0x2) { db->dm910x_chk_mode = 0x4; db->cr6_data |= 0x100; update_cr6(db->cr6_data, db->ioaddr); } /* Restore CR7 to enable interrupt mask */ outl(db->cr7_data, ioaddr + DCR7); spin_unlock_irqrestore(&db->lock, flags); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void poll_dmfe (struct net_device *dev) { /* disable_irq here is not very nice, but with the lockless interrupt handler we have no other choice. */ disable_irq(dev->irq); dmfe_interrupt (dev->irq, dev); enable_irq(dev->irq); } #endif /* * Free TX resource after TX complete */ static void dmfe_free_tx_pkt(struct DEVICE *dev, struct dmfe_board_info * db) { struct tx_desc *txptr; unsigned long ioaddr = dev->base_addr; u32 tdes0; txptr = db->tx_remove_ptr; while(db->tx_packet_cnt) { tdes0 = le32_to_cpu(txptr->tdes0); /* printk(DRV_NAME ": tdes0=%x\n", tdes0); */ if (tdes0 & 0x80000000) break; /* A packet sent completed */ db->tx_packet_cnt--; db->stats.tx_packets++; /* Transmit statistic counter */ if ( tdes0 != 0x7fffffff ) { /* printk(DRV_NAME ": tdes0=%x\n", tdes0); */ db->stats.collisions += (tdes0 >> 3) & 0xf; db->stats.tx_bytes += le32_to_cpu(txptr->tdes1) & 0x7ff; if (tdes0 & TDES0_ERR_MASK) { db->stats.tx_errors++; if (tdes0 & 0x0002) { /* UnderRun */ db->tx_fifo_underrun++; if ( !(db->cr6_data & CR6_SFT) ) { db->cr6_data = db->cr6_data | CR6_SFT; update_cr6(db->cr6_data, db->ioaddr); } } if (tdes0 & 0x0100) db->tx_excessive_collision++; if (tdes0 & 0x0200) db->tx_late_collision++; if (tdes0 & 0x0400) db->tx_no_carrier++; if (tdes0 & 0x0800) db->tx_loss_carrier++; if (tdes0 & 0x4000) db->tx_jabber_timeout++; } } txptr = txptr->next_tx_desc; }/* End of while */ /* Update TX remove pointer to next */ db->tx_remove_ptr = txptr; /* Send the Tx packet in queue */ if ( (db->tx_packet_cnt < TX_MAX_SEND_CNT) && db->tx_queue_cnt ) { txptr->tdes0 = cpu_to_le32(0x80000000); /* Set owner bit */ db->tx_packet_cnt++; /* Ready to send */ db->tx_queue_cnt--; outl(0x1, ioaddr + DCR1); /* Issue Tx polling */ dev->trans_start = jiffies; /* saved time stamp */ } /* Resource available check */ if ( db->tx_queue_cnt < TX_WAKE_DESC_CNT ) netif_wake_queue(dev); /* Active upper layer, send again */ } /* * Calculate the CRC valude of the Rx packet * flag = 1 : return the reverse CRC (for the received packet CRC) * 0 : return the normal CRC (for Hash Table index) */ static inline u32 cal_CRC(unsigned char * Data, unsigned int Len, u8 flag) { u32 crc = crc32(~0, Data, Len); if (flag) crc = ~crc; return crc; } /* * Receive the come packet and pass to upper layer */ static void dmfe_rx_packet(struct DEVICE *dev, struct dmfe_board_info * db) { struct rx_desc *rxptr; struct sk_buff *skb, *newskb; int rxlen; u32 rdes0; rxptr = db->rx_ready_ptr; while(db->rx_avail_cnt) { rdes0 = le32_to_cpu(rxptr->rdes0); if (rdes0 & 0x80000000) /* packet owner check */ break; db->rx_avail_cnt--; db->interval_rx_cnt++; pci_unmap_single(db->pdev, le32_to_cpu(rxptr->rdes2), RX_ALLOC_SIZE, PCI_DMA_FROMDEVICE); if ( (rdes0 & 0x300) != 0x300) { /* A packet without First/Last flag */ /* reuse this SKB */ DMFE_DBUG(0, "Reuse SK buffer, rdes0", rdes0); dmfe_reuse_skb(db, rxptr->rx_skb_ptr); } else { /* A packet with First/Last flag */ rxlen = ( (rdes0 >> 16) & 0x3fff) - 4; /* error summary bit check */ if (rdes0 & 0x8000) { /* This is a error packet */ //printk(DRV_NAME ": rdes0: %lx\n", rdes0); db->stats.rx_errors++; if (rdes0 & 1) db->stats.rx_fifo_errors++; if (rdes0 & 2) db->stats.rx_crc_errors++; if (rdes0 & 0x80) db->stats.rx_length_errors++; } if ( !(rdes0 & 0x8000) || ((db->cr6_data & CR6_PM) && (rxlen>6)) ) { skb = rxptr->rx_skb_ptr; /* Received Packet CRC check need or not */ if ( (db->dm910x_chk_mode & 1) && (cal_CRC(skb->data, rxlen, 1) != (*(u32 *) (skb->data+rxlen) ))) { /* FIXME (?) */ /* Found a error received packet */ dmfe_reuse_skb(db, rxptr->rx_skb_ptr); db->dm910x_chk_mode = 3; } else { /* Good packet, send to upper layer */ /* Shorst packet used new SKB */ if ((rxlen < RX_COPY_SIZE) && ((newskb = dev_alloc_skb(rxlen + 2)) != NULL)) { skb = newskb; /* size less than COPY_SIZE, allocate a rxlen SKB */ skb->dev = dev; skb_reserve(skb, 2); /* 16byte align */ memcpy(skb_put(skb, rxlen), rxptr->rx_skb_ptr->data, rxlen); dmfe_reuse_skb(db, rxptr->rx_skb_ptr); } else { skb->dev = dev; skb_put(skb, rxlen); } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; db->stats.rx_packets++; db->stats.rx_bytes += rxlen; } } else { /* Reuse SKB buffer when the packet is error */ DMFE_DBUG(0, "Reuse SK buffer, rdes0", rdes0); dmfe_reuse_skb(db, rxptr->rx_skb_ptr); } } rxptr = rxptr->next_rx_desc; } db->rx_ready_ptr = rxptr; } /* * Get statistics from driver. */ static struct net_device_stats * dmfe_get_stats(struct DEVICE *dev) { struct dmfe_board_info *db = netdev_priv(dev); DMFE_DBUG(0, "dmfe_get_stats", 0); return &db->stats; } /* * Set DM910X multicast address */ static void dmfe_set_filter_mode(struct DEVICE * dev) { struct dmfe_board_info *db = netdev_priv(dev); unsigned long flags; DMFE_DBUG(0, "dmfe_set_filter_mode()", 0); spin_lock_irqsave(&db->lock, flags); if (dev->flags & IFF_PROMISC) { DMFE_DBUG(0, "Enable PROM Mode", 0); db->cr6_data |= CR6_PM | CR6_PBF; update_cr6(db->cr6_data, db->ioaddr); spin_unlock_irqrestore(&db->lock, flags); return; } if (dev->flags & IFF_ALLMULTI || dev->mc_count > DMFE_MAX_MULTICAST) { DMFE_DBUG(0, "Pass all multicast address", dev->mc_count); db->cr6_data &= ~(CR6_PM | CR6_PBF); db->cr6_data |= CR6_PAM; spin_unlock_irqrestore(&db->lock, flags); return; } DMFE_DBUG(0, "Set multicast address", dev->mc_count); if (db->chip_id == PCI_DM9132_ID) dm9132_id_table(dev, dev->mc_count); /* DM9132 */ else send_filter_frame(dev, dev->mc_count); /* DM9102/DM9102A */ spin_unlock_irqrestore(&db->lock, flags); } static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct dmfe_board_info *np = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); if (np->pdev) strcpy(info->bus_info, pci_name(np->pdev)); else sprintf(info->bus_info, "EISA 0x%lx %d", dev->base_addr, dev->irq); } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_link = ethtool_op_get_link, }; /* * A periodic timer routine * Dynamic media sense, allocate Rx buffer... */ static void dmfe_timer(unsigned long data) { u32 tmp_cr8; unsigned char tmp_cr12; struct DEVICE *dev = (struct DEVICE *) data; struct dmfe_board_info *db = netdev_priv(dev); unsigned long flags; int link_ok, link_ok_phy; DMFE_DBUG(0, "dmfe_timer()", 0); spin_lock_irqsave(&db->lock, flags); /* Media mode process when Link OK before enter this route */ if (db->first_in_callback == 0) { db->first_in_callback = 1; if (db->chip_type && (db->chip_id==PCI_DM9102_ID)) { db->cr6_data &= ~0x40000; update_cr6(db->cr6_data, db->ioaddr); phy_write(db->ioaddr, db->phy_addr, 0, 0x1000, db->chip_id); db->cr6_data |= 0x40000; update_cr6(db->cr6_data, db->ioaddr); db->timer.expires = DMFE_TIMER_WUT + HZ * 2; add_timer(&db->timer); spin_unlock_irqrestore(&db->lock, flags); return; } } /* Operating Mode Check */ if ( (db->dm910x_chk_mode & 0x1) && (db->stats.rx_packets > MAX_CHECK_PACKET) ) db->dm910x_chk_mode = 0x4; /* Dynamic reset DM910X : system error or transmit time-out */ tmp_cr8 = inl(db->ioaddr + DCR8); if ( (db->interval_rx_cnt==0) && (tmp_cr8) ) { db->reset_cr8++; db->wait_reset = 1; } db->interval_rx_cnt = 0; /* TX polling kick monitor */ if ( db->tx_packet_cnt && time_after(jiffies, dev->trans_start + DMFE_TX_KICK) ) { outl(0x1, dev->base_addr + DCR1); /* Tx polling again */ /* TX Timeout */ if ( time_after(jiffies, dev->trans_start + DMFE_TX_TIMEOUT) ) { db->reset_TXtimeout++; db->wait_reset = 1; printk(KERN_WARNING "%s: Tx timeout - resetting\n", dev->name); } } if (db->wait_reset) { DMFE_DBUG(0, "Dynamic Reset device", db->tx_packet_cnt); db->reset_count++; dmfe_dynamic_reset(dev); db->first_in_callback = 0; db->timer.expires = DMFE_TIMER_WUT; add_timer(&db->timer); spin_unlock_irqrestore(&db->lock, flags); return; } /* Link status check, Dynamic media type change */ if (db->chip_id == PCI_DM9132_ID) tmp_cr12 = inb(db->ioaddr + DCR9 + 3); /* DM9132 */ else tmp_cr12 = inb(db->ioaddr + DCR12); /* DM9102/DM9102A */ if ( ((db->chip_id == PCI_DM9102_ID) && (db->chip_revision == 0x02000030)) || ((db->chip_id == PCI_DM9132_ID) && (db->chip_revision == 0x02000010)) ) { /* DM9102A Chip */ if (tmp_cr12 & 2) link_ok = 0; else link_ok = 1; } else /*0x43 is used instead of 0x3 because bit 6 should represent link status of external PHY */ link_ok = (tmp_cr12 & 0x43) ? 1 : 0; /* If chip reports that link is failed it could be because external PHY link status pin is not conected correctly to chip To be sure ask PHY too. */ /* need a dummy read because of PHY's register latch*/ phy_read (db->ioaddr, db->phy_addr, 1, db->chip_id); link_ok_phy = (phy_read (db->ioaddr, db->phy_addr, 1, db->chip_id) & 0x4) ? 1 : 0; if (link_ok_phy != link_ok) { DMFE_DBUG (0, "PHY and chip report different link status", 0); link_ok = link_ok | link_ok_phy; } if ( !link_ok && netif_carrier_ok(dev)) { /* Link Failed */ DMFE_DBUG(0, "Link Failed", tmp_cr12); netif_carrier_off(dev); /* For Force 10/100M Half/Full mode: Enable Auto-Nego mode */ /* AUTO or force 1M Homerun/Longrun don't need */ if ( !(db->media_mode & 0x38) ) phy_write(db->ioaddr, db->phy_addr, 0, 0x1000, db->chip_id); /* AUTO mode, if INT phyxcer link failed, select EXT device */ if (db->media_mode & DMFE_AUTO) { /* 10/100M link failed, used 1M Home-Net */ db->cr6_data|=0x00040000; /* bit18=1, MII */ db->cr6_data&=~0x00000200; /* bit9=0, HD mode */ update_cr6(db->cr6_data, db->ioaddr); } } else if (!netif_carrier_ok(dev)) { DMFE_DBUG(0, "Link link OK", tmp_cr12); /* Auto Sense Speed */ if ( !(db->media_mode & DMFE_AUTO) || !dmfe_sense_speed(db)) { netif_carrier_on(dev); SHOW_MEDIA_TYPE(db->op_mode); } dmfe_process_mode(db); } /* HPNA remote command check */ if (db->HPNA_command & 0xf00) { db->HPNA_timer--; if (!db->HPNA_timer) dmfe_HPNA_remote_cmd_chk(db); } /* Timer active again */ db->timer.expires = DMFE_TIMER_WUT; add_timer(&db->timer); spin_unlock_irqrestore(&db->lock, flags); } /* * Dynamic reset the DM910X board * Stop DM910X board * Free Tx/Rx allocated memory * Reset DM910X board * Re-initilize DM910X board */ static void dmfe_dynamic_reset(struct DEVICE *dev) { struct dmfe_board_info *db = netdev_priv(dev); DMFE_DBUG(0, "dmfe_dynamic_reset()", 0); /* Sopt MAC controller */ db->cr6_data &= ~(CR6_RXSC | CR6_TXSC); /* Disable Tx/Rx */ update_cr6(db->cr6_data, dev->base_addr); outl(0, dev->base_addr + DCR7); /* Disable Interrupt */ outl(inl(dev->base_addr + DCR5), dev->base_addr + DCR5); /* Disable upper layer interface */ netif_stop_queue(dev); /* Free Rx Allocate buffer */ dmfe_free_rxbuffer(db); /* system variable init */ db->tx_packet_cnt = 0; db->tx_queue_cnt = 0; db->rx_avail_cnt = 0; netif_carrier_off(dev); db->wait_reset = 0; /* Re-initilize DM910X board */ dmfe_init_dm910x(dev); /* Restart upper layer interface */ netif_wake_queue(dev); } /* * free all allocated rx buffer */ static void dmfe_free_rxbuffer(struct dmfe_board_info * db) { DMFE_DBUG(0, "dmfe_free_rxbuffer()", 0); /* free allocated rx buffer */ while (db->rx_avail_cnt) { dev_kfree_skb(db->rx_ready_ptr->rx_skb_ptr); db->rx_ready_ptr = db->rx_ready_ptr->next_rx_desc; db->rx_avail_cnt--; } } /* * Reuse the SK buffer */ static void dmfe_reuse_skb(struct dmfe_board_info *db, struct sk_buff * skb) { struct rx_desc *rxptr = db->rx_insert_ptr; if (!(rxptr->rdes0 & cpu_to_le32(0x80000000))) { rxptr->rx_skb_ptr = skb; rxptr->rdes2 = cpu_to_le32( pci_map_single(db->pdev, skb->data, RX_ALLOC_SIZE, PCI_DMA_FROMDEVICE) ); wmb(); rxptr->rdes0 = cpu_to_le32(0x80000000); db->rx_avail_cnt++; db->rx_insert_ptr = rxptr->next_rx_desc; } else DMFE_DBUG(0, "SK Buffer reuse method error", db->rx_avail_cnt); } /* * Initialize transmit/Receive descriptor * Using Chain structure, and allocate Tx/Rx buffer */ static void dmfe_descriptor_init(struct dmfe_board_info *db, unsigned long ioaddr) { struct tx_desc *tmp_tx; struct rx_desc *tmp_rx; unsigned char *tmp_buf; dma_addr_t tmp_tx_dma, tmp_rx_dma; dma_addr_t tmp_buf_dma; int i; DMFE_DBUG(0, "dmfe_descriptor_init()", 0); /* tx descriptor start pointer */ db->tx_insert_ptr = db->first_tx_desc; db->tx_remove_ptr = db->first_tx_desc; outl(db->first_tx_desc_dma, ioaddr + DCR4); /* TX DESC address */ /* rx descriptor start pointer */ db->first_rx_desc = (void *)db->first_tx_desc + sizeof(struct tx_desc) * TX_DESC_CNT; db->first_rx_desc_dma = db->first_tx_desc_dma + sizeof(struct tx_desc) * TX_DESC_CNT; db->rx_insert_ptr = db->first_rx_desc; db->rx_ready_ptr = db->first_rx_desc; outl(db->first_rx_desc_dma, ioaddr + DCR3); /* RX DESC address */ /* Init Transmit chain */ tmp_buf = db->buf_pool_start; tmp_buf_dma = db->buf_pool_dma_start; tmp_tx_dma = db->first_tx_desc_dma; for (tmp_tx = db->first_tx_desc, i = 0; i < TX_DESC_CNT; i++, tmp_tx++) { tmp_tx->tx_buf_ptr = tmp_buf; tmp_tx->tdes0 = cpu_to_le32(0); tmp_tx->tdes1 = cpu_to_le32(0x81000000); /* IC, chain */ tmp_tx->tdes2 = cpu_to_le32(tmp_buf_dma); tmp_tx_dma += sizeof(struct tx_desc); tmp_tx->tdes3 = cpu_to_le32(tmp_tx_dma); tmp_tx->next_tx_desc = tmp_tx + 1; tmp_buf = tmp_buf + TX_BUF_ALLOC; tmp_buf_dma = tmp_buf_dma + TX_BUF_ALLOC; } (--tmp_tx)->tdes3 = cpu_to_le32(db->first_tx_desc_dma); tmp_tx->next_tx_desc = db->first_tx_desc; /* Init Receive descriptor chain */ tmp_rx_dma=db->first_rx_desc_dma; for (tmp_rx = db->first_rx_desc, i = 0; i < RX_DESC_CNT; i++, tmp_rx++) { tmp_rx->rdes0 = cpu_to_le32(0); tmp_rx->rdes1 = cpu_to_le32(0x01000600); tmp_rx_dma += sizeof(struct rx_desc); tmp_rx->rdes3 = cpu_to_le32(tmp_rx_dma); tmp_rx->next_rx_desc = tmp_rx + 1; } (--tmp_rx)->rdes3 = cpu_to_le32(db->first_rx_desc_dma); tmp_rx->next_rx_desc = db->first_rx_desc; /* pre-allocate Rx buffer */ allocate_rx_buffer(db); } /* * Update CR6 value * Firstly stop DM910X , then written value and start */ static void update_cr6(u32 cr6_data, unsigned long ioaddr) { u32 cr6_tmp; cr6_tmp = cr6_data & ~0x2002; /* stop Tx/Rx */ outl(cr6_tmp, ioaddr + DCR6); udelay(5); outl(cr6_data, ioaddr + DCR6); udelay(5); } /* * Send a setup frame for DM9132 * This setup frame initilize DM910X address filter mode */ static void dm9132_id_table(struct DEVICE *dev, int mc_cnt) { struct dev_mc_list *mcptr; u16 * addrptr; unsigned long ioaddr = dev->base_addr+0xc0; /* ID Table */ u32 hash_val; u16 i, hash_table[4]; DMFE_DBUG(0, "dm9132_id_table()", 0); /* Node address */ addrptr = (u16 *) dev->dev_addr; outw(addrptr[0], ioaddr); ioaddr += 4; outw(addrptr[1], ioaddr); ioaddr += 4; outw(addrptr[2], ioaddr); ioaddr += 4; /* Clear Hash Table */ for (i = 0; i < 4; i++) hash_table[i] = 0x0; /* broadcast address */ hash_table[3] = 0x8000; /* the multicast address in Hash Table : 64 bits */ for (mcptr = dev->mc_list, i = 0; i < mc_cnt; i++, mcptr = mcptr->next) { hash_val = cal_CRC( (char *) mcptr->dmi_addr, 6, 0) & 0x3f; hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); } /* Write the hash table to MAC MD table */ for (i = 0; i < 4; i++, ioaddr += 4) outw(hash_table[i], ioaddr); } /* * Send a setup frame for DM9102/DM9102A * This setup frame initilize DM910X address filter mode */ static void send_filter_frame(struct DEVICE *dev, int mc_cnt) { struct dmfe_board_info *db = netdev_priv(dev); struct dev_mc_list *mcptr; struct tx_desc *txptr; u16 * addrptr; u32 * suptr; int i; DMFE_DBUG(0, "send_filter_frame()", 0); txptr = db->tx_insert_ptr; suptr = (u32 *) txptr->tx_buf_ptr; /* Node address */ addrptr = (u16 *) dev->dev_addr; *suptr++ = addrptr[0]; *suptr++ = addrptr[1]; *suptr++ = addrptr[2]; /* broadcast address */ *suptr++ = 0xffff; *suptr++ = 0xffff; *suptr++ = 0xffff; /* fit the multicast address */ for (mcptr = dev->mc_list, i = 0; i < mc_cnt; i++, mcptr = mcptr->next) { addrptr = (u16 *) mcptr->dmi_addr; *suptr++ = addrptr[0]; *suptr++ = addrptr[1]; *suptr++ = addrptr[2]; } for (; i<14; i++) { *suptr++ = 0xffff; *suptr++ = 0xffff; *suptr++ = 0xffff; } /* prepare the setup frame */ db->tx_insert_ptr = txptr->next_tx_desc; txptr->tdes1 = cpu_to_le32(0x890000c0); /* Resource Check and Send the setup packet */ if (!db->tx_packet_cnt) { /* Resource Empty */ db->tx_packet_cnt++; txptr->tdes0 = cpu_to_le32(0x80000000); update_cr6(db->cr6_data | 0x2000, dev->base_addr); outl(0x1, dev->base_addr + DCR1); /* Issue Tx polling */ update_cr6(db->cr6_data, dev->base_addr); dev->trans_start = jiffies; } else db->tx_queue_cnt++; /* Put in TX queue */ } /* * Allocate rx buffer, * As possible as allocate maxiumn Rx buffer */ static void allocate_rx_buffer(struct dmfe_board_info *db) { struct rx_desc *rxptr; struct sk_buff *skb; rxptr = db->rx_insert_ptr; while(db->rx_avail_cnt < RX_DESC_CNT) { if ( ( skb = dev_alloc_skb(RX_ALLOC_SIZE) ) == NULL ) break; rxptr->rx_skb_ptr = skb; /* FIXME (?) */ rxptr->rdes2 = cpu_to_le32( pci_map_single(db->pdev, skb->data, RX_ALLOC_SIZE, PCI_DMA_FROMDEVICE) ); wmb(); rxptr->rdes0 = cpu_to_le32(0x80000000); rxptr = rxptr->next_rx_desc; db->rx_avail_cnt++; } db->rx_insert_ptr = rxptr; } /* * Read one word data from the serial ROM */ static u16 read_srom_word(long ioaddr, int offset) { int i; u16 srom_data = 0; long cr9_ioaddr = ioaddr + DCR9; outl(CR9_SROM_READ, cr9_ioaddr); outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr); /* Send the Read Command 110b */ SROM_CLK_WRITE(SROM_DATA_1, cr9_ioaddr); SROM_CLK_WRITE(SROM_DATA_1, cr9_ioaddr); SROM_CLK_WRITE(SROM_DATA_0, cr9_ioaddr); /* Send the offset */ for (i = 5; i >= 0; i--) { srom_data = (offset & (1 << i)) ? SROM_DATA_1 : SROM_DATA_0; SROM_CLK_WRITE(srom_data, cr9_ioaddr); } outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr); for (i = 16; i > 0; i--) { outl(CR9_SROM_READ | CR9_SRCS | CR9_SRCLK, cr9_ioaddr); udelay(5); srom_data = (srom_data << 1) | ((inl(cr9_ioaddr) & CR9_CRDOUT) ? 1 : 0); outl(CR9_SROM_READ | CR9_SRCS, cr9_ioaddr); udelay(5); } outl(CR9_SROM_READ, cr9_ioaddr); return srom_data; } /* * Auto sense the media mode */ static u8 dmfe_sense_speed(struct dmfe_board_info * db) { u8 ErrFlag = 0; u16 phy_mode; /* CR6 bit18=0, select 10/100M */ update_cr6( (db->cr6_data & ~0x40000), db->ioaddr); phy_mode = phy_read(db->ioaddr, db->phy_addr, 1, db->chip_id); phy_mode = phy_read(db->ioaddr, db->phy_addr, 1, db->chip_id); if ( (phy_mode & 0x24) == 0x24 ) { if (db->chip_id == PCI_DM9132_ID) /* DM9132 */ phy_mode = phy_read(db->ioaddr, db->phy_addr, 7, db->chip_id) & 0xf000; else /* DM9102/DM9102A */ phy_mode = phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id) & 0xf000; /* printk(DRV_NAME ": Phy_mode %x ",phy_mode); */ switch (phy_mode) { case 0x1000: db->op_mode = DMFE_10MHF; break; case 0x2000: db->op_mode = DMFE_10MFD; break; case 0x4000: db->op_mode = DMFE_100MHF; break; case 0x8000: db->op_mode = DMFE_100MFD; break; default: db->op_mode = DMFE_10MHF; ErrFlag = 1; break; } } else { db->op_mode = DMFE_10MHF; DMFE_DBUG(0, "Link Failed :", phy_mode); ErrFlag = 1; } return ErrFlag; } /* * Set 10/100 phyxcer capability * AUTO mode : phyxcer register4 is NIC capability * Force mode: phyxcer register4 is the force media */ static void dmfe_set_phyxcer(struct dmfe_board_info *db) { u16 phy_reg; /* Select 10/100M phyxcer */ db->cr6_data &= ~0x40000; update_cr6(db->cr6_data, db->ioaddr); /* DM9009 Chip: Phyxcer reg18 bit12=0 */ if (db->chip_id == PCI_DM9009_ID) { phy_reg = phy_read(db->ioaddr, db->phy_addr, 18, db->chip_id) & ~0x1000; phy_write(db->ioaddr, db->phy_addr, 18, phy_reg, db->chip_id); } /* Phyxcer capability setting */ phy_reg = phy_read(db->ioaddr, db->phy_addr, 4, db->chip_id) & ~0x01e0; if (db->media_mode & DMFE_AUTO) { /* AUTO Mode */ phy_reg |= db->PHY_reg4; } else { /* Force Mode */ switch(db->media_mode) { case DMFE_10MHF: phy_reg |= 0x20; break; case DMFE_10MFD: phy_reg |= 0x40; break; case DMFE_100MHF: phy_reg |= 0x80; break; case DMFE_100MFD: phy_reg |= 0x100; break; } if (db->chip_id == PCI_DM9009_ID) phy_reg &= 0x61; } /* Write new capability to Phyxcer Reg4 */ if ( !(phy_reg & 0x01e0)) { phy_reg|=db->PHY_reg4; db->media_mode|=DMFE_AUTO; } phy_write(db->ioaddr, db->phy_addr, 4, phy_reg, db->chip_id); /* Restart Auto-Negotiation */ if ( db->chip_type && (db->chip_id == PCI_DM9102_ID) ) phy_write(db->ioaddr, db->phy_addr, 0, 0x1800, db->chip_id); if ( !db->chip_type ) phy_write(db->ioaddr, db->phy_addr, 0, 0x1200, db->chip_id); } /* * Process op-mode * AUTO mode : PHY controller in Auto-negotiation Mode * Force mode: PHY controller in force mode with HUB * N-way force capability with SWITCH */ static void dmfe_process_mode(struct dmfe_board_info *db) { u16 phy_reg; /* Full Duplex Mode Check */ if (db->op_mode & 0x4) db->cr6_data |= CR6_FDM; /* Set Full Duplex Bit */ else db->cr6_data &= ~CR6_FDM; /* Clear Full Duplex Bit */ /* Transciver Selection */ if (db->op_mode & 0x10) /* 1M HomePNA */ db->cr6_data |= 0x40000;/* External MII select */ else db->cr6_data &= ~0x40000;/* Internal 10/100 transciver */ update_cr6(db->cr6_data, db->ioaddr); /* 10/100M phyxcer force mode need */ if ( !(db->media_mode & 0x18)) { /* Forece Mode */ phy_reg = phy_read(db->ioaddr, db->phy_addr, 6, db->chip_id); if ( !(phy_reg & 0x1) ) { /* parter without N-Way capability */ phy_reg = 0x0; switch(db->op_mode) { case DMFE_10MHF: phy_reg = 0x0; break; case DMFE_10MFD: phy_reg = 0x100; break; case DMFE_100MHF: phy_reg = 0x2000; break; case DMFE_100MFD: phy_reg = 0x2100; break; } phy_write(db->ioaddr, db->phy_addr, 0, phy_reg, db->chip_id); if ( db->chip_type && (db->chip_id == PCI_DM9102_ID) ) mdelay(20); phy_write(db->ioaddr, db->phy_addr, 0, phy_reg, db->chip_id); } } } /* * Write a word to Phy register */ static void phy_write(unsigned long iobase, u8 phy_addr, u8 offset, u16 phy_data, u32 chip_id) { u16 i; unsigned long ioaddr; if (chip_id == PCI_DM9132_ID) { ioaddr = iobase + 0x80 + offset * 4; outw(phy_data, ioaddr); } else { /* DM9102/DM9102A Chip */ ioaddr = iobase + DCR9; /* Send 33 synchronization clock to Phy controller */ for (i = 0; i < 35; i++) phy_write_1bit(ioaddr, PHY_DATA_1); /* Send start command(01) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_0); phy_write_1bit(ioaddr, PHY_DATA_1); /* Send write command(01) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_0); phy_write_1bit(ioaddr, PHY_DATA_1); /* Send Phy address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, phy_addr & i ? PHY_DATA_1 : PHY_DATA_0); /* Send register address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, offset & i ? PHY_DATA_1 : PHY_DATA_0); /* written trasnition */ phy_write_1bit(ioaddr, PHY_DATA_1); phy_write_1bit(ioaddr, PHY_DATA_0); /* Write a word data to PHY controller */ for ( i = 0x8000; i > 0; i >>= 1) phy_write_1bit(ioaddr, phy_data & i ? PHY_DATA_1 : PHY_DATA_0); } } /* * Read a word data from phy register */ static u16 phy_read(unsigned long iobase, u8 phy_addr, u8 offset, u32 chip_id) { int i; u16 phy_data; unsigned long ioaddr; if (chip_id == PCI_DM9132_ID) { /* DM9132 Chip */ ioaddr = iobase + 0x80 + offset * 4; phy_data = inw(ioaddr); } else { /* DM9102/DM9102A Chip */ ioaddr = iobase + DCR9; /* Send 33 synchronization clock to Phy controller */ for (i = 0; i < 35; i++) phy_write_1bit(ioaddr, PHY_DATA_1); /* Send start command(01) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_0); phy_write_1bit(ioaddr, PHY_DATA_1); /* Send read command(10) to Phy */ phy_write_1bit(ioaddr, PHY_DATA_1); phy_write_1bit(ioaddr, PHY_DATA_0); /* Send Phy address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, phy_addr & i ? PHY_DATA_1 : PHY_DATA_0); /* Send register address */ for (i = 0x10; i > 0; i = i >> 1) phy_write_1bit(ioaddr, offset & i ? PHY_DATA_1 : PHY_DATA_0); /* Skip transition state */ phy_read_1bit(ioaddr); /* read 16bit data */ for (phy_data = 0, i = 0; i < 16; i++) { phy_data <<= 1; phy_data |= phy_read_1bit(ioaddr); } } return phy_data; } /* * Write one bit data to Phy Controller */ static void phy_write_1bit(unsigned long ioaddr, u32 phy_data) { outl(phy_data, ioaddr); /* MII Clock Low */ udelay(1); outl(phy_data | MDCLKH, ioaddr); /* MII Clock High */ udelay(1); outl(phy_data, ioaddr); /* MII Clock Low */ udelay(1); } /* * Read one bit phy data from PHY controller */ static u16 phy_read_1bit(unsigned long ioaddr) { u16 phy_data; outl(0x50000, ioaddr); udelay(1); phy_data = ( inl(ioaddr) >> 19 ) & 0x1; outl(0x40000, ioaddr); udelay(1); return phy_data; } /* * Parser SROM and media mode */ static void dmfe_parse_srom(struct dmfe_board_info * db) { char * srom = db->srom; int dmfe_mode, tmp_reg; DMFE_DBUG(0, "dmfe_parse_srom() ", 0); /* Init CR15 */ db->cr15_data = CR15_DEFAULT; /* Check SROM Version */ if ( ( (int) srom[18] & 0xff) == SROM_V41_CODE) { /* SROM V4.01 */ /* Get NIC support media mode */ db->NIC_capability = le16_to_cpup((__le16 *)srom + 34/2); db->PHY_reg4 = 0; for (tmp_reg = 1; tmp_reg < 0x10; tmp_reg <<= 1) { switch( db->NIC_capability & tmp_reg ) { case 0x1: db->PHY_reg4 |= 0x0020; break; case 0x2: db->PHY_reg4 |= 0x0040; break; case 0x4: db->PHY_reg4 |= 0x0080; break; case 0x8: db->PHY_reg4 |= 0x0100; break; } } /* Media Mode Force or not check */ dmfe_mode = le32_to_cpup((__le32 *)srom + 34/4) & le32_to_cpup((__le32 *)srom + 36/4); switch(dmfe_mode) { case 0x4: dmfe_media_mode = DMFE_100MHF; break; /* 100MHF */ case 0x2: dmfe_media_mode = DMFE_10MFD; break; /* 10MFD */ case 0x8: dmfe_media_mode = DMFE_100MFD; break; /* 100MFD */ case 0x100: case 0x200: dmfe_media_mode = DMFE_1M_HPNA; break;/* HomePNA */ } /* Special Function setting */ /* VLAN function */ if ( (SF_mode & 0x1) || (srom[43] & 0x80) ) db->cr15_data |= 0x40; /* Flow Control */ if ( (SF_mode & 0x2) || (srom[40] & 0x1) ) db->cr15_data |= 0x400; /* TX pause packet */ if ( (SF_mode & 0x4) || (srom[40] & 0xe) ) db->cr15_data |= 0x9800; } /* Parse HPNA parameter */ db->HPNA_command = 1; /* Accept remote command or not */ if (HPNA_rx_cmd == 0) db->HPNA_command |= 0x8000; /* Issue remote command & operation mode */ if (HPNA_tx_cmd == 1) switch(HPNA_mode) { /* Issue Remote Command */ case 0: db->HPNA_command |= 0x0904; break; case 1: db->HPNA_command |= 0x0a00; break; case 2: db->HPNA_command |= 0x0506; break; case 3: db->HPNA_command |= 0x0602; break; } else switch(HPNA_mode) { /* Don't Issue */ case 0: db->HPNA_command |= 0x0004; break; case 1: db->HPNA_command |= 0x0000; break; case 2: db->HPNA_command |= 0x0006; break; case 3: db->HPNA_command |= 0x0002; break; } /* Check DM9801 or DM9802 present or not */ db->HPNA_present = 0; update_cr6(db->cr6_data|0x40000, db->ioaddr); tmp_reg = phy_read(db->ioaddr, db->phy_addr, 3, db->chip_id); if ( ( tmp_reg & 0xfff0 ) == 0xb900 ) { /* DM9801 or DM9802 present */ db->HPNA_timer = 8; if ( phy_read(db->ioaddr, db->phy_addr, 31, db->chip_id) == 0x4404) { /* DM9801 HomeRun */ db->HPNA_present = 1; dmfe_program_DM9801(db, tmp_reg); } else { /* DM9802 LongRun */ db->HPNA_present = 2; dmfe_program_DM9802(db); } } } /* * Init HomeRun DM9801 */ static void dmfe_program_DM9801(struct dmfe_board_info * db, int HPNA_rev) { uint reg17, reg25; if ( !HPNA_NoiseFloor ) HPNA_NoiseFloor = DM9801_NOISE_FLOOR; switch(HPNA_rev) { case 0xb900: /* DM9801 E3 */ db->HPNA_command |= 0x1000; reg25 = phy_read(db->ioaddr, db->phy_addr, 24, db->chip_id); reg25 = ( (reg25 + HPNA_NoiseFloor) & 0xff) | 0xf000; reg17 = phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id); break; case 0xb901: /* DM9801 E4 */ reg25 = phy_read(db->ioaddr, db->phy_addr, 25, db->chip_id); reg25 = (reg25 & 0xff00) + HPNA_NoiseFloor; reg17 = phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id); reg17 = (reg17 & 0xfff0) + HPNA_NoiseFloor + 3; break; case 0xb902: /* DM9801 E5 */ case 0xb903: /* DM9801 E6 */ default: db->HPNA_command |= 0x1000; reg25 = phy_read(db->ioaddr, db->phy_addr, 25, db->chip_id); reg25 = (reg25 & 0xff00) + HPNA_NoiseFloor - 5; reg17 = phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id); reg17 = (reg17 & 0xfff0) + HPNA_NoiseFloor; break; } phy_write(db->ioaddr, db->phy_addr, 16, db->HPNA_command, db->chip_id); phy_write(db->ioaddr, db->phy_addr, 17, reg17, db->chip_id); phy_write(db->ioaddr, db->phy_addr, 25, reg25, db->chip_id); } /* * Init HomeRun DM9802 */ static void dmfe_program_DM9802(struct dmfe_board_info * db) { uint phy_reg; if ( !HPNA_NoiseFloor ) HPNA_NoiseFloor = DM9802_NOISE_FLOOR; phy_write(db->ioaddr, db->phy_addr, 16, db->HPNA_command, db->chip_id); phy_reg = phy_read(db->ioaddr, db->phy_addr, 25, db->chip_id); phy_reg = ( phy_reg & 0xff00) + HPNA_NoiseFloor; phy_write(db->ioaddr, db->phy_addr, 25, phy_reg, db->chip_id); } /* * Check remote HPNA power and speed status. If not correct, * issue command again. */ static void dmfe_HPNA_remote_cmd_chk(struct dmfe_board_info * db) { uint phy_reg; /* Got remote device status */ phy_reg = phy_read(db->ioaddr, db->phy_addr, 17, db->chip_id) & 0x60; switch(phy_reg) { case 0x00: phy_reg = 0x0a00;break; /* LP/LS */ case 0x20: phy_reg = 0x0900;break; /* LP/HS */ case 0x40: phy_reg = 0x0600;break; /* HP/LS */ case 0x60: phy_reg = 0x0500;break; /* HP/HS */ } /* Check remote device status match our setting ot not */ if ( phy_reg != (db->HPNA_command & 0x0f00) ) { phy_write(db->ioaddr, db->phy_addr, 16, db->HPNA_command, db->chip_id); db->HPNA_timer=8; } else db->HPNA_timer=600; /* Match, every 10 minutes, check */ } static struct pci_device_id dmfe_pci_tbl[] = { { 0x1282, 0x9132, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9132_ID }, { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9102_ID }, { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9100_ID }, { 0x1282, 0x9009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PCI_DM9009_ID }, { 0, } }; MODULE_DEVICE_TABLE(pci, dmfe_pci_tbl); static struct pci_driver dmfe_driver = { .name = "dmfe", .id_table = dmfe_pci_tbl, .probe = dmfe_init_one, .remove = __devexit_p(dmfe_remove_one), }; MODULE_AUTHOR("Sten Wang, sten_wang@davicom.com.tw"); MODULE_DESCRIPTION("Davicom DM910X fast ethernet driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); module_param(debug, int, 0); module_param(mode, byte, 0); module_param(cr6set, int, 0); module_param(chkmode, byte, 0); module_param(HPNA_mode, byte, 0); module_param(HPNA_rx_cmd, byte, 0); module_param(HPNA_tx_cmd, byte, 0); module_param(HPNA_NoiseFloor, byte, 0); module_param(SF_mode, byte, 0); MODULE_PARM_DESC(debug, "Davicom DM9xxx enable debugging (0-1)"); MODULE_PARM_DESC(mode, "Davicom DM9xxx: " "Bit 0: 10/100Mbps, bit 2: duplex, bit 8: HomePNA"); MODULE_PARM_DESC(SF_mode, "Davicom DM9xxx special function " "(bit 0: VLAN, bit 1 Flow Control, bit 2: TX pause packet)"); /* Description: * when user used insmod to add module, system invoked init_module() * to initilize and register. */ static int __init dmfe_init_module(void) { int rc; printk(version); printed_version = 1; DMFE_DBUG(0, "init_module() ", debug); if (debug) dmfe_debug = debug; /* set debug flag */ if (cr6set) dmfe_cr6_user_set = cr6set; switch(mode) { case DMFE_10MHF: case DMFE_100MHF: case DMFE_10MFD: case DMFE_100MFD: case DMFE_1M_HPNA: dmfe_media_mode = mode; break; default:dmfe_media_mode = DMFE_AUTO; break; } if (HPNA_mode > 4) HPNA_mode = 0; /* Default: LP/HS */ if (HPNA_rx_cmd > 1) HPNA_rx_cmd = 0; /* Default: Ignored remote cmd */ if (HPNA_tx_cmd > 1) HPNA_tx_cmd = 0; /* Default: Don't issue remote cmd */ if (HPNA_NoiseFloor > 15) HPNA_NoiseFloor = 0; rc = pci_register_driver(&dmfe_driver); if (rc < 0) return rc; return 0; } /* * Description: * when user used rmmod to delete module, system invoked clean_module() * to un-register all registered services. */ static void __exit dmfe_cleanup_module(void) { DMFE_DBUG(0, "dmfe_clean_module() ", debug); pci_unregister_driver(&dmfe_driver); } module_init(dmfe_init_module); module_exit(dmfe_cleanup_module);