/*------------------------------------------------------------------------ . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device. . . Copyright (C) 1996 by Erik Stahlman . Copyright (C) 2001 Standard Microsystems Corporation . Developed by Simple Network Magic Corporation . Copyright (C) 2003 Monta Vista Software, Inc. . Unified SMC91x driver by Nicolas Pitre . . This program is free software; you can redistribute it and/or modify . it under the terms of the GNU General Public License as published by . the Free Software Foundation; either version 2 of the License, or . (at your option) any later version. . . This program is distributed in the hope that it will be useful, . but WITHOUT ANY WARRANTY; without even the implied warranty of . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the . GNU General Public License for more details. . . You should have received a copy of the GNU General Public License . along with this program; if not, write to the Free Software . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA . . Information contained in this file was obtained from the LAN91C111 . manual from SMC. To get a copy, if you really want one, you can find . information under www.smsc.com. . . Authors . Erik Stahlman <erik@vt.edu> . Daris A Nevil <dnevil@snmc.com> . Nicolas Pitre <nico@cam.org> . ---------------------------------------------------------------------------*/ #ifndef _SMC91X_H_ #define _SMC91X_H_ #include <linux/smc91x.h> /* * Define your architecture specific bus configuration parameters here. */ #if defined(CONFIG_ARCH_LUBBOCK) ||\ defined(CONFIG_MACH_MAINSTONE) ||\ defined(CONFIG_MACH_ZYLONITE) ||\ defined(CONFIG_MACH_LITTLETON) ||\ defined(CONFIG_MACH_ZYLONITE2) ||\ defined(CONFIG_ARCH_VIPER) ||\ defined(CONFIG_MACH_STARGATE2) #include <asm/mach-types.h> /* Now the bus width is specified in the platform data * pretend here to support all I/O access types */ #define SMC_CAN_USE_8BIT 1 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 1 #define SMC_NOWAIT 1 #define SMC_IO_SHIFT (lp->io_shift) #define SMC_inb(a, r) readb((a) + (r)) #define SMC_inw(a, r) readw((a) + (r)) #define SMC_inl(a, r) readl((a) + (r)) #define SMC_outb(v, a, r) writeb(v, (a) + (r)) #define SMC_outl(v, a, r) writel(v, (a) + (r)) #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) #define SMC_IRQ_FLAGS (-1) /* from resource */ /* We actually can't write halfwords properly if not word aligned */ static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg) { if ((machine_is_mainstone() || machine_is_stargate2()) && reg & 2) { unsigned int v = val << 16; v |= readl(ioaddr + (reg & ~2)) & 0xffff; writel(v, ioaddr + (reg & ~2)); } else { writew(val, ioaddr + reg); } } #elif defined(CONFIG_BLACKFIN) #define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH #define RPC_LSA_DEFAULT RPC_LED_100_10 #define RPC_LSB_DEFAULT RPC_LED_TX_RX #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 # if defined(CONFIG_BF561) #define SMC_CAN_USE_32BIT 1 # else #define SMC_CAN_USE_32BIT 0 # endif #define SMC_IO_SHIFT 0 #define SMC_NOWAIT 1 #define SMC_USE_BFIN_DMA 0 #define SMC_inw(a, r) readw((a) + (r)) #define SMC_outw(v, a, r) writew(v, (a) + (r)) #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) # if SMC_CAN_USE_32BIT #define SMC_inl(a, r) readl((a) + (r)) #define SMC_outl(v, a, r) writel(v, (a) + (r)) #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) # endif #elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6) /* We can only do 16-bit reads and writes in the static memory space. */ #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_NOWAIT 1 #define SMC_IO_SHIFT 0 #define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r))) #define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v) #define SMC_insw(a, r, p, l) \ do { \ unsigned long __port = (a) + (r); \ u16 *__p = (u16 *)(p); \ int __l = (l); \ insw(__port, __p, __l); \ while (__l > 0) { \ *__p = swab16(*__p); \ __p++; \ __l--; \ } \ } while (0) #define SMC_outsw(a, r, p, l) \ do { \ unsigned long __port = (a) + (r); \ u16 *__p = (u16 *)(p); \ int __l = (l); \ while (__l > 0) { \ /* Believe it or not, the swab isn't needed. */ \ outw( /* swab16 */ (*__p++), __port); \ __l--; \ } \ } while (0) #define SMC_IRQ_FLAGS (0) #elif defined(CONFIG_SA1100_PLEB) /* We can only do 16-bit reads and writes in the static memory space. */ #define SMC_CAN_USE_8BIT 1 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_IO_SHIFT 0 #define SMC_NOWAIT 1 #define SMC_inb(a, r) readb((a) + (r)) #define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) #define SMC_inw(a, r) readw((a) + (r)) #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) #define SMC_outb(v, a, r) writeb(v, (a) + (r)) #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) #define SMC_outw(v, a, r) writew(v, (a) + (r)) #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) #define SMC_IRQ_FLAGS (-1) #elif defined(CONFIG_SA1100_ASSABET) #include <mach/neponset.h> /* We can only do 8-bit reads and writes in the static memory space. */ #define SMC_CAN_USE_8BIT 1 #define SMC_CAN_USE_16BIT 0 #define SMC_CAN_USE_32BIT 0 #define SMC_NOWAIT 1 /* The first two address lines aren't connected... */ #define SMC_IO_SHIFT 2 #define SMC_inb(a, r) readb((a) + (r)) #define SMC_outb(v, a, r) writeb(v, (a) + (r)) #define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l)) #define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l)) #define SMC_IRQ_FLAGS (-1) /* from resource */ #elif defined(CONFIG_MACH_LOGICPD_PXA270) #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_IO_SHIFT 0 #define SMC_NOWAIT 1 #define SMC_inw(a, r) readw((a) + (r)) #define SMC_outw(v, a, r) writew(v, (a) + (r)) #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) #elif defined(CONFIG_ARCH_INNOKOM) || \ defined(CONFIG_ARCH_PXA_IDP) || \ defined(CONFIG_ARCH_RAMSES) || \ defined(CONFIG_ARCH_PCM027) #define SMC_CAN_USE_8BIT 1 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 1 #define SMC_IO_SHIFT 0 #define SMC_NOWAIT 1 #define SMC_USE_PXA_DMA 1 #define SMC_inb(a, r) readb((a) + (r)) #define SMC_inw(a, r) readw((a) + (r)) #define SMC_inl(a, r) readl((a) + (r)) #define SMC_outb(v, a, r) writeb(v, (a) + (r)) #define SMC_outl(v, a, r) writel(v, (a) + (r)) #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) #define SMC_IRQ_FLAGS (-1) /* from resource */ /* We actually can't write halfwords properly if not word aligned */ static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg) { if (reg & 2) { unsigned int v = val << 16; v |= readl(ioaddr + (reg & ~2)) & 0xffff; writel(v, ioaddr + (reg & ~2)); } else { writew(val, ioaddr + reg); } } #elif defined(CONFIG_ARCH_OMAP) /* We can only do 16-bit reads and writes in the static memory space. */ #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_IO_SHIFT 0 #define SMC_NOWAIT 1 #define SMC_inw(a, r) readw((a) + (r)) #define SMC_outw(v, a, r) writew(v, (a) + (r)) #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) #define SMC_IRQ_FLAGS (-1) /* from resource */ #elif defined(CONFIG_SH_SH4202_MICRODEV) #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000) #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000) #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000) #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000) #define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000) #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000) #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l) #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l) #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l) #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l) #define SMC_IRQ_FLAGS (0) #elif defined(CONFIG_M32R) #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_inb(a, r) inb(((u32)a) + (r)) #define SMC_inw(a, r) inw(((u32)a) + (r)) #define SMC_outb(v, a, r) outb(v, ((u32)a) + (r)) #define SMC_outw(v, a, r) outw(v, ((u32)a) + (r)) #define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l) #define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l) #define SMC_IRQ_FLAGS (0) #define RPC_LSA_DEFAULT RPC_LED_TX_RX #define RPC_LSB_DEFAULT RPC_LED_100_10 #elif defined(CONFIG_MACH_LPD79520) \ || defined(CONFIG_MACH_LPD7A400) \ || defined(CONFIG_MACH_LPD7A404) /* The LPD7X_IOBARRIER is necessary to overcome a mismatch between the * way that the CPU handles chip selects and the way that the SMC chip * expects the chip select to operate. Refer to * Documentation/arm/Sharp-LH/IOBarrier for details. The read from * IOBARRIER is a byte, in order that we read the least-common * denominator. It would be wasteful to read 32 bits from an 8-bit * accessible region. * * There is no explicit protection against interrupts intervening * between the writew and the IOBARRIER. In SMC ISR there is a * preamble that performs an IOBARRIER in the extremely unlikely event * that the driver interrupts itself between a writew to the chip an * the IOBARRIER that follows *and* the cache is large enough that the * first off-chip access while handing the interrupt is to the SMC * chip. Other devices in the same address space as the SMC chip must * be aware of the potential for trouble and perform a similar * IOBARRIER on entry to their ISR. */ #include <mach/constants.h> /* IOBARRIER_VIRT */ #define SMC_CAN_USE_8BIT 0 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 0 #define SMC_NOWAIT 0 #define LPD7X_IOBARRIER readb (IOBARRIER_VIRT) #define SMC_inw(a,r)\ ({ unsigned short v = readw ((void*) ((a) + (r))); LPD7X_IOBARRIER; v; }) #define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7X_IOBARRIER; }) #define SMC_insw LPD7_SMC_insw static inline void LPD7_SMC_insw (unsigned char* a, int r, unsigned char* p, int l) { unsigned short* ps = (unsigned short*) p; while (l-- > 0) { *ps++ = readw (a + r); LPD7X_IOBARRIER; } } #define SMC_outsw LPD7_SMC_outsw static inline void LPD7_SMC_outsw (unsigned char* a, int r, unsigned char* p, int l) { unsigned short* ps = (unsigned short*) p; while (l-- > 0) { writew (*ps++, a + r); LPD7X_IOBARRIER; } } #define SMC_INTERRUPT_PREAMBLE LPD7X_IOBARRIER #define RPC_LSA_DEFAULT RPC_LED_TX_RX #define RPC_LSB_DEFAULT RPC_LED_100_10 #elif defined(CONFIG_ARCH_VERSATILE) #define SMC_CAN_USE_8BIT 1 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 1 #define SMC_NOWAIT 1 #define SMC_inb(a, r) readb((a) + (r)) #define SMC_inw(a, r) readw((a) + (r)) #define SMC_inl(a, r) readl((a) + (r)) #define SMC_outb(v, a, r) writeb(v, (a) + (r)) #define SMC_outw(v, a, r) writew(v, (a) + (r)) #define SMC_outl(v, a, r) writel(v, (a) + (r)) #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) #define SMC_IRQ_FLAGS (-1) /* from resource */ #elif defined(CONFIG_MN10300) /* * MN10300/AM33 configuration */ #include <unit/smc91111.h> #else /* * Default configuration */ #define SMC_CAN_USE_8BIT 1 #define SMC_CAN_USE_16BIT 1 #define SMC_CAN_USE_32BIT 1 #define SMC_NOWAIT 1 #define SMC_IO_SHIFT (lp->io_shift) #define SMC_inb(a, r) readb((a) + (r)) #define SMC_inw(a, r) readw((a) + (r)) #define SMC_inl(a, r) readl((a) + (r)) #define SMC_outb(v, a, r) writeb(v, (a) + (r)) #define SMC_outw(v, a, r) writew(v, (a) + (r)) #define SMC_outl(v, a, r) writel(v, (a) + (r)) #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l) #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l) #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l) #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l) #define RPC_LSA_DEFAULT RPC_LED_100_10 #define RPC_LSB_DEFAULT RPC_LED_TX_RX #endif /* store this information for the driver.. */ struct smc_local { /* * If I have to wait until memory is available to send a * packet, I will store the skbuff here, until I get the * desired memory. Then, I'll send it out and free it. */ struct sk_buff *pending_tx_skb; struct tasklet_struct tx_task; /* version/revision of the SMC91x chip */ int version; /* Contains the current active transmission mode */ int tcr_cur_mode; /* Contains the current active receive mode */ int rcr_cur_mode; /* Contains the current active receive/phy mode */ int rpc_cur_mode; int ctl_rfduplx; int ctl_rspeed; u32 msg_enable; u32 phy_type; struct mii_if_info mii; /* work queue */ struct work_struct phy_configure; struct net_device *dev; int work_pending; spinlock_t lock; #ifdef CONFIG_ARCH_PXA /* DMA needs the physical address of the chip */ u_long physaddr; struct device *device; #endif void __iomem *base; void __iomem *datacs; /* the low address lines on some platforms aren't connected... */ int io_shift; struct smc91x_platdata cfg; }; #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT) #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT) #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT) #ifdef CONFIG_ARCH_PXA /* * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is * always happening in irq context so no need to worry about races. TX is * different and probably not worth it for that reason, and not as critical * as RX which can overrun memory and lose packets. */ #include <linux/dma-mapping.h> #include <mach/dma.h> #ifdef SMC_insl #undef SMC_insl #define SMC_insl(a, r, p, l) \ smc_pxa_dma_insl(a, lp, r, dev->dma, p, l) static inline void smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma, u_char *buf, int len) { u_long physaddr = lp->physaddr; dma_addr_t dmabuf; /* fallback if no DMA available */ if (dma == (unsigned char)-1) { readsl(ioaddr + reg, buf, len); return; } /* 64 bit alignment is required for memory to memory DMA */ if ((long)buf & 4) { *((u32 *)buf) = SMC_inl(ioaddr, reg); buf += 4; len--; } len *= 4; dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE); DCSR(dma) = DCSR_NODESC; DTADR(dma) = dmabuf; DSADR(dma) = physaddr + reg; DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 | DCMD_WIDTH4 | (DCMD_LENGTH & len)); DCSR(dma) = DCSR_NODESC | DCSR_RUN; while (!(DCSR(dma) & DCSR_STOPSTATE)) cpu_relax(); DCSR(dma) = 0; dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE); } #endif #ifdef SMC_insw #undef SMC_insw #define SMC_insw(a, r, p, l) \ smc_pxa_dma_insw(a, lp, r, dev->dma, p, l) static inline void smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma, u_char *buf, int len) { u_long physaddr = lp->physaddr; dma_addr_t dmabuf; /* fallback if no DMA available */ if (dma == (unsigned char)-1) { readsw(ioaddr + reg, buf, len); return; } /* 64 bit alignment is required for memory to memory DMA */ while ((long)buf & 6) { *((u16 *)buf) = SMC_inw(ioaddr, reg); buf += 2; len--; } len *= 2; dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE); DCSR(dma) = DCSR_NODESC; DTADR(dma) = dmabuf; DSADR(dma) = physaddr + reg; DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 | DCMD_WIDTH2 | (DCMD_LENGTH & len)); DCSR(dma) = DCSR_NODESC | DCSR_RUN; while (!(DCSR(dma) & DCSR_STOPSTATE)) cpu_relax(); DCSR(dma) = 0; dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE); } #endif static void smc_pxa_dma_irq(int dma, void *dummy) { DCSR(dma) = 0; } #endif /* CONFIG_ARCH_PXA */ /* * Everything a particular hardware setup needs should have been defined * at this point. Add stubs for the undefined cases, mainly to avoid * compilation warnings since they'll be optimized away, or to prevent buggy * use of them. */ #if ! SMC_CAN_USE_32BIT #define SMC_inl(ioaddr, reg) ({ BUG(); 0; }) #define SMC_outl(x, ioaddr, reg) BUG() #define SMC_insl(a, r, p, l) BUG() #define SMC_outsl(a, r, p, l) BUG() #endif #if !defined(SMC_insl) || !defined(SMC_outsl) #define SMC_insl(a, r, p, l) BUG() #define SMC_outsl(a, r, p, l) BUG() #endif #if ! SMC_CAN_USE_16BIT /* * Any 16-bit access is performed with two 8-bit accesses if the hardware * can't do it directly. Most registers are 16-bit so those are mandatory. */ #define SMC_outw(x, ioaddr, reg) \ do { \ unsigned int __val16 = (x); \ SMC_outb( __val16, ioaddr, reg ); \ SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\ } while (0) #define SMC_inw(ioaddr, reg) \ ({ \ unsigned int __val16; \ __val16 = SMC_inb( ioaddr, reg ); \ __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \ __val16; \ }) #define SMC_insw(a, r, p, l) BUG() #define SMC_outsw(a, r, p, l) BUG() #endif #if !defined(SMC_insw) || !defined(SMC_outsw) #define SMC_insw(a, r, p, l) BUG() #define SMC_outsw(a, r, p, l) BUG() #endif #if ! SMC_CAN_USE_8BIT #define SMC_inb(ioaddr, reg) ({ BUG(); 0; }) #define SMC_outb(x, ioaddr, reg) BUG() #define SMC_insb(a, r, p, l) BUG() #define SMC_outsb(a, r, p, l) BUG() #endif #if !defined(SMC_insb) || !defined(SMC_outsb) #define SMC_insb(a, r, p, l) BUG() #define SMC_outsb(a, r, p, l) BUG() #endif #ifndef SMC_CAN_USE_DATACS #define SMC_CAN_USE_DATACS 0 #endif #ifndef SMC_IO_SHIFT #define SMC_IO_SHIFT 0 #endif #ifndef SMC_IRQ_FLAGS #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING #endif #ifndef SMC_INTERRUPT_PREAMBLE #define SMC_INTERRUPT_PREAMBLE #endif /* Because of bank switching, the LAN91x uses only 16 I/O ports */ #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT) #define SMC_DATA_EXTENT (4) /* . Bank Select Register: . . yyyy yyyy 0000 00xx . xx = bank number . yyyy yyyy = 0x33, for identification purposes. */ #define BANK_SELECT (14 << SMC_IO_SHIFT) // Transmit Control Register /* BANK 0 */ #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0) #define TCR_ENABLE 0x0001 // When 1 we can transmit #define TCR_LOOP 0x0002 // Controls output pin LBK #define TCR_FORCOL 0x0004 // When 1 will force a collision #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode #define TCR_CLEAR 0 /* do NOTHING */ /* the default settings for the TCR register : */ #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN) // EPH Status Register /* BANK 0 */ #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0) #define ES_TX_SUC 0x0001 // Last TX was successful #define ES_SNGL_COL 0x0002 // Single collision detected for last tx #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx #define ES_LTX_MULT 0x0008 // Last tx was a multicast #define ES_16COL 0x0010 // 16 Collisions Reached #define ES_SQET 0x0020 // Signal Quality Error Test #define ES_LTXBRD 0x0040 // Last tx was a broadcast #define ES_TXDEFR 0x0080 // Transmit Deferred #define ES_LATCOL 0x0200 // Late collision detected on last tx #define ES_LOSTCARR 0x0400 // Lost Carrier Sense #define ES_EXC_DEF 0x0800 // Excessive Deferral #define ES_CTR_ROL 0x1000 // Counter Roll Over indication #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin #define ES_TXUNRN 0x8000 // Tx Underrun // Receive Control Register /* BANK 0 */ #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0) #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted #define RCR_PRMS 0x0002 // Enable promiscuous mode #define RCR_ALMUL 0x0004 // When set accepts all multicast frames #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier #define RCR_SOFTRST 0x8000 // resets the chip /* the normal settings for the RCR register : */ #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN) #define RCR_CLEAR 0x0 // set it to a base state // Counter Register /* BANK 0 */ #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0) // Memory Information Register /* BANK 0 */ #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0) // Receive/Phy Control Register /* BANK 0 */ #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0) #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode. #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb #ifndef RPC_LSA_DEFAULT #define RPC_LSA_DEFAULT RPC_LED_100 #endif #ifndef RPC_LSB_DEFAULT #define RPC_LSB_DEFAULT RPC_LED_FD #endif #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX) /* Bank 0 0x0C is reserved */ // Bank Select Register /* All Banks */ #define BSR_REG 0x000E // Configuration Reg /* BANK 1 */ #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1) #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode. // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN) // Base Address Register /* BANK 1 */ #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1) // Individual Address Registers /* BANK 1 */ #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1) #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1) #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1) // General Purpose Register /* BANK 1 */ #define GP_REG(lp) SMC_REG(lp, 0x000A, 1) // Control Register /* BANK 1 */ #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1) #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers #define CTL_STORE 0x0001 // When set stores registers into EEPROM // MMU Command Register /* BANK 2 */ #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2) #define MC_BUSY 1 // When 1 the last release has not completed #define MC_NOP (0<<5) // No Op #define MC_ALLOC (1<<5) // OR with number of 256 byte packets #define MC_RESET (2<<5) // Reset MMU to initial state #define MC_REMOVE (3<<5) // Remove the current rx packet #define MC_RELEASE (4<<5) // Remove and release the current rx packet #define MC_FREEPKT (5<<5) // Release packet in PNR register #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs // Packet Number Register /* BANK 2 */ #define PN_REG(lp) SMC_REG(lp, 0x0002, 2) // Allocation Result Register /* BANK 2 */ #define AR_REG(lp) SMC_REG(lp, 0x0003, 2) #define AR_FAILED 0x80 // Alocation Failed // TX FIFO Ports Register /* BANK 2 */ #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2) #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty // RX FIFO Ports Register /* BANK 2 */ #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2) #define RXFIFO_REMPTY 0x80 // RX FIFO Empty #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2) // Pointer Register /* BANK 2 */ #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2) #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access #define PTR_READ 0x2000 // When 1 the operation is a read // Data Register /* BANK 2 */ #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2) // Interrupt Status/Acknowledge Register /* BANK 2 */ #define INT_REG(lp) SMC_REG(lp, 0x000C, 2) // Interrupt Mask Register /* BANK 2 */ #define IM_REG(lp) SMC_REG(lp, 0x000D, 2) #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt #define IM_ERCV_INT 0x40 // Early Receive Interrupt #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns #define IM_ALLOC_INT 0x08 // Set when allocation request is completed #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty #define IM_TX_INT 0x02 // Transmit Interrupt #define IM_RCV_INT 0x01 // Receive Interrupt // Multicast Table Registers /* BANK 3 */ #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3) #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3) #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3) #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3) // Management Interface Register (MII) /* BANK 3 */ #define MII_REG(lp) SMC_REG(lp, 0x0008, 3) #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup #define MII_MDOE 0x0008 // MII Output Enable #define MII_MCLK 0x0004 // MII Clock, pin MDCLK #define MII_MDI 0x0002 // MII Input, pin MDI #define MII_MDO 0x0001 // MII Output, pin MDO // Revision Register /* BANK 3 */ /* ( hi: chip id low: rev # ) */ #define REV_REG(lp) SMC_REG(lp, 0x000A, 3) // Early RCV Register /* BANK 3 */ /* this is NOT on SMC9192 */ #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3) #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask // External Register /* BANK 7 */ #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7) #define CHIP_9192 3 #define CHIP_9194 4 #define CHIP_9195 5 #define CHIP_9196 6 #define CHIP_91100 7 #define CHIP_91100FD 8 #define CHIP_91111FD 9 static const char * chip_ids[ 16 ] = { NULL, NULL, NULL, /* 3 */ "SMC91C90/91C92", /* 4 */ "SMC91C94", /* 5 */ "SMC91C95", /* 6 */ "SMC91C96", /* 7 */ "SMC91C100", /* 8 */ "SMC91C100FD", /* 9 */ "SMC91C11xFD", NULL, NULL, NULL, NULL, NULL, NULL}; /* . Receive status bits */ #define RS_ALGNERR 0x8000 #define RS_BRODCAST 0x4000 #define RS_BADCRC 0x2000 #define RS_ODDFRAME 0x1000 #define RS_TOOLONG 0x0800 #define RS_TOOSHORT 0x0400 #define RS_MULTICAST 0x0001 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT) /* * PHY IDs * LAN83C183 == LAN91C111 Internal PHY */ #define PHY_LAN83C183 0x0016f840 #define PHY_LAN83C180 0x02821c50 /* * PHY Register Addresses (LAN91C111 Internal PHY) * * Generic PHY registers can be found in <linux/mii.h> * * These phy registers are specific to our on-board phy. */ // PHY Configuration Register 1 #define PHY_CFG1_REG 0x10 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm) #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust #define PHY_CFG1_TLVL_MASK 0x003C #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time // PHY Configuration Register 2 #define PHY_CFG2_REG 0x11 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt) #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo // PHY Status Output (and Interrupt status) Register #define PHY_INT_REG 0x12 // Status Output (Interrupt Status) #define PHY_INT_INT 0x8000 // 1=bits have changed since last read #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected #define PHY_INT_JAB 0x0100 // 1=Jabber detected #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex // PHY Interrupt/Status Mask Register #define PHY_MASK_REG 0x13 // Interrupt Mask // Uses the same bit definitions as PHY_INT_REG /* * SMC91C96 ethernet config and status registers. * These are in the "attribute" space. */ #define ECOR 0x8000 #define ECOR_RESET 0x80 #define ECOR_LEVEL_IRQ 0x40 #define ECOR_WR_ATTRIB 0x04 #define ECOR_ENABLE 0x01 #define ECSR 0x8002 #define ECSR_IOIS8 0x20 #define ECSR_PWRDWN 0x04 #define ECSR_INT 0x02 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT) /* * Macros to abstract register access according to the data bus * capabilities. Please use those and not the in/out primitives. * Note: the following macros do *not* select the bank -- this must * be done separately as needed in the main code. The SMC_REG() macro * only uses the bank argument for debugging purposes (when enabled). * * Note: despite inline functions being safer, everything leading to this * should preferably be macros to let BUG() display the line number in * the core source code since we're interested in the top call site * not in any inline function location. */ #if SMC_DEBUG > 0 #define SMC_REG(lp, reg, bank) \ ({ \ int __b = SMC_CURRENT_BANK(lp); \ if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \ printk( "%s: bank reg screwed (0x%04x)\n", \ CARDNAME, __b ); \ BUG(); \ } \ reg<<SMC_IO_SHIFT; \ }) #else #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT) #endif /* * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not * aligned to a 32 bit boundary. I tell you that does exist! * Fortunately the affected register accesses can be easily worked around * since we can write zeroes to the preceeding 16 bits without adverse * effects and use a 32-bit access. * * Enforce it on any 32-bit capable setup for now. */ #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp) #define SMC_GET_PN(lp) \ (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \ : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF)) #define SMC_SET_PN(lp, x) \ do { \ if (SMC_MUST_ALIGN_WRITE(lp)) \ SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \ else if (SMC_8BIT(lp)) \ SMC_outb(x, ioaddr, PN_REG(lp)); \ else \ SMC_outw(x, ioaddr, PN_REG(lp)); \ } while (0) #define SMC_GET_AR(lp) \ (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \ : (SMC_inw(ioaddr, PN_REG(lp)) >> 8)) #define SMC_GET_TXFIFO(lp) \ (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \ : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF)) #define SMC_GET_RXFIFO(lp) \ (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \ : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8)) #define SMC_GET_INT(lp) \ (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \ : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF)) #define SMC_ACK_INT(lp, x) \ do { \ if (SMC_8BIT(lp)) \ SMC_outb(x, ioaddr, INT_REG(lp)); \ else { \ unsigned long __flags; \ int __mask; \ local_irq_save(__flags); \ __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \ SMC_outw(__mask | (x), ioaddr, INT_REG(lp)); \ local_irq_restore(__flags); \ } \ } while (0) #define SMC_GET_INT_MASK(lp) \ (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \ : (SMC_inw(ioaddr, INT_REG(lp)) >> 8)) #define SMC_SET_INT_MASK(lp, x) \ do { \ if (SMC_8BIT(lp)) \ SMC_outb(x, ioaddr, IM_REG(lp)); \ else \ SMC_outw((x) << 8, ioaddr, INT_REG(lp)); \ } while (0) #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT) #define SMC_SELECT_BANK(lp, x) \ do { \ if (SMC_MUST_ALIGN_WRITE(lp)) \ SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \ else \ SMC_outw(x, ioaddr, BANK_SELECT); \ } while (0) #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp)) #define SMC_SET_BASE(lp, x) SMC_outw(x, ioaddr, BASE_REG(lp)) #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp)) #define SMC_SET_CONFIG(lp, x) SMC_outw(x, ioaddr, CONFIG_REG(lp)) #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp)) #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp)) #define SMC_SET_CTL(lp, x) SMC_outw(x, ioaddr, CTL_REG(lp)) #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp)) #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp)) #define SMC_SET_GP(lp, x) \ do { \ if (SMC_MUST_ALIGN_WRITE(lp)) \ SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \ else \ SMC_outw(x, ioaddr, GP_REG(lp)); \ } while (0) #define SMC_SET_MII(lp, x) SMC_outw(x, ioaddr, MII_REG(lp)) #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp)) #define SMC_SET_MIR(lp, x) SMC_outw(x, ioaddr, MIR_REG(lp)) #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp)) #define SMC_SET_MMU_CMD(lp, x) SMC_outw(x, ioaddr, MMU_CMD_REG(lp)) #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp)) #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp)) #define SMC_SET_PTR(lp, x) \ do { \ if (SMC_MUST_ALIGN_WRITE(lp)) \ SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \ else \ SMC_outw(x, ioaddr, PTR_REG(lp)); \ } while (0) #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp)) #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp)) #define SMC_SET_RCR(lp, x) SMC_outw(x, ioaddr, RCR_REG(lp)) #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp)) #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp)) #define SMC_SET_RPC(lp, x) \ do { \ if (SMC_MUST_ALIGN_WRITE(lp)) \ SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \ else \ SMC_outw(x, ioaddr, RPC_REG(lp)); \ } while (0) #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp)) #define SMC_SET_TCR(lp, x) SMC_outw(x, ioaddr, TCR_REG(lp)) #ifndef SMC_GET_MAC_ADDR #define SMC_GET_MAC_ADDR(lp, addr) \ do { \ unsigned int __v; \ __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \ addr[0] = __v; addr[1] = __v >> 8; \ __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \ addr[2] = __v; addr[3] = __v >> 8; \ __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \ addr[4] = __v; addr[5] = __v >> 8; \ } while (0) #endif #define SMC_SET_MAC_ADDR(lp, addr) \ do { \ SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \ SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \ SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \ } while (0) #define SMC_SET_MCAST(lp, x) \ do { \ const unsigned char *mt = (x); \ SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \ SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \ SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \ SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \ } while (0) #define SMC_PUT_PKT_HDR(lp, status, length) \ do { \ if (SMC_32BIT(lp)) \ SMC_outl((status) | (length)<<16, ioaddr, \ DATA_REG(lp)); \ else { \ SMC_outw(status, ioaddr, DATA_REG(lp)); \ SMC_outw(length, ioaddr, DATA_REG(lp)); \ } \ } while (0) #define SMC_GET_PKT_HDR(lp, status, length) \ do { \ if (SMC_32BIT(lp)) { \ unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \ (status) = __val & 0xffff; \ (length) = __val >> 16; \ } else { \ (status) = SMC_inw(ioaddr, DATA_REG(lp)); \ (length) = SMC_inw(ioaddr, DATA_REG(lp)); \ } \ } while (0) #define SMC_PUSH_DATA(lp, p, l) \ do { \ if (SMC_32BIT(lp)) { \ void *__ptr = (p); \ int __len = (l); \ void __iomem *__ioaddr = ioaddr; \ if (__len >= 2 && (unsigned long)__ptr & 2) { \ __len -= 2; \ SMC_outw(*(u16 *)__ptr, ioaddr, \ DATA_REG(lp)); \ __ptr += 2; \ } \ if (SMC_CAN_USE_DATACS && lp->datacs) \ __ioaddr = lp->datacs; \ SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \ if (__len & 2) { \ __ptr += (__len & ~3); \ SMC_outw(*((u16 *)__ptr), ioaddr, \ DATA_REG(lp)); \ } \ } else if (SMC_16BIT(lp)) \ SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \ else if (SMC_8BIT(lp)) \ SMC_outsb(ioaddr, DATA_REG(lp), p, l); \ } while (0) #define SMC_PULL_DATA(lp, p, l) \ do { \ if (SMC_32BIT(lp)) { \ void *__ptr = (p); \ int __len = (l); \ void __iomem *__ioaddr = ioaddr; \ if ((unsigned long)__ptr & 2) { \ /* \ * We want 32bit alignment here. \ * Since some buses perform a full \ * 32bit fetch even for 16bit data \ * we can't use SMC_inw() here. \ * Back both source (on-chip) and \ * destination pointers of 2 bytes. \ * This is possible since the call to \ * SMC_GET_PKT_HDR() already advanced \ * the source pointer of 4 bytes, and \ * the skb_reserve(skb, 2) advanced \ * the destination pointer of 2 bytes. \ */ \ __ptr -= 2; \ __len += 2; \ SMC_SET_PTR(lp, \ 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \ } \ if (SMC_CAN_USE_DATACS && lp->datacs) \ __ioaddr = lp->datacs; \ __len += 2; \ SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \ } else if (SMC_16BIT(lp)) \ SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \ else if (SMC_8BIT(lp)) \ SMC_insb(ioaddr, DATA_REG(lp), p, l); \ } while (0) #endif /* _SMC91X_H_ */