/* md.c : Multiple Devices driver for Linux Copyright (C) 1998, 1999, 2000 Ingo Molnar completely rewritten, based on the MD driver code from Marc Zyngier Changes: - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> - kerneld support by Boris Tobotras <boris@xtalk.msk.su> - kmod support by: Cyrus Durgin - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> - lots of fixes and improvements to the RAID1/RAID5 and generic RAID code (such as request based resynchronization): Neil Brown <neilb@cse.unsw.edu.au>. - persistent bitmap code Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/config.h> #include <linux/kthread.h> #include <linux/linkage.h> #include <linux/raid/md.h> #include <linux/raid/bitmap.h> #include <linux/sysctl.h> #include <linux/devfs_fs_kernel.h> #include <linux/buffer_head.h> /* for invalidate_bdev */ #include <linux/suspend.h> #include <linux/poll.h> #include <linux/init.h> #include <linux/file.h> #ifdef CONFIG_KMOD #include <linux/kmod.h> #endif #include <asm/unaligned.h> #define MAJOR_NR MD_MAJOR #define MD_DRIVER /* 63 partitions with the alternate major number (mdp) */ #define MdpMinorShift 6 #define DEBUG 0 #define dprintk(x...) ((void)(DEBUG && printk(x))) #ifndef MODULE static void autostart_arrays (int part); #endif static LIST_HEAD(pers_list); static DEFINE_SPINLOCK(pers_lock); /* * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' * is 1000 KB/sec, so the extra system load does not show up that much. * Increase it if you want to have more _guaranteed_ speed. Note that * the RAID driver will use the maximum available bandwidth if the IO * subsystem is idle. There is also an 'absolute maximum' reconstruction * speed limit - in case reconstruction slows down your system despite * idle IO detection. * * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. * or /sys/block/mdX/md/sync_speed_{min,max} */ static int sysctl_speed_limit_min = 1000; static int sysctl_speed_limit_max = 200000; static inline int speed_min(mddev_t *mddev) { return mddev->sync_speed_min ? mddev->sync_speed_min : sysctl_speed_limit_min; } static inline int speed_max(mddev_t *mddev) { return mddev->sync_speed_max ? mddev->sync_speed_max : sysctl_speed_limit_max; } static struct ctl_table_header *raid_table_header; static ctl_table raid_table[] = { { .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, .procname = "speed_limit_min", .data = &sysctl_speed_limit_min, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, .procname = "speed_limit_max", .data = &sysctl_speed_limit_max, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = 0 } }; static ctl_table raid_dir_table[] = { { .ctl_name = DEV_RAID, .procname = "raid", .maxlen = 0, .mode = 0555, .child = raid_table, }, { .ctl_name = 0 } }; static ctl_table raid_root_table[] = { { .ctl_name = CTL_DEV, .procname = "dev", .maxlen = 0, .mode = 0555, .child = raid_dir_table, }, { .ctl_name = 0 } }; static struct block_device_operations md_fops; static int start_readonly; /* * We have a system wide 'event count' that is incremented * on any 'interesting' event, and readers of /proc/mdstat * can use 'poll' or 'select' to find out when the event * count increases. * * Events are: * start array, stop array, error, add device, remove device, * start build, activate spare */ static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); static atomic_t md_event_count; static void md_new_event(mddev_t *mddev) { atomic_inc(&md_event_count); wake_up(&md_event_waiters); } /* * Enables to iterate over all existing md arrays * all_mddevs_lock protects this list. */ static LIST_HEAD(all_mddevs); static DEFINE_SPINLOCK(all_mddevs_lock); /* * iterates through all used mddevs in the system. * We take care to grab the all_mddevs_lock whenever navigating * the list, and to always hold a refcount when unlocked. * Any code which breaks out of this loop while own * a reference to the current mddev and must mddev_put it. */ #define ITERATE_MDDEV(mddev,tmp) \ \ for (({ spin_lock(&all_mddevs_lock); \ tmp = all_mddevs.next; \ mddev = NULL;}); \ ({ if (tmp != &all_mddevs) \ mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ spin_unlock(&all_mddevs_lock); \ if (mddev) mddev_put(mddev); \ mddev = list_entry(tmp, mddev_t, all_mddevs); \ tmp != &all_mddevs;}); \ ({ spin_lock(&all_mddevs_lock); \ tmp = tmp->next;}) \ ) static int md_fail_request (request_queue_t *q, struct bio *bio) { bio_io_error(bio, bio->bi_size); return 0; } static inline mddev_t *mddev_get(mddev_t *mddev) { atomic_inc(&mddev->active); return mddev; } static void mddev_put(mddev_t *mddev) { if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) return; if (!mddev->raid_disks && list_empty(&mddev->disks)) { list_del(&mddev->all_mddevs); blk_put_queue(mddev->queue); kobject_unregister(&mddev->kobj); } spin_unlock(&all_mddevs_lock); } static mddev_t * mddev_find(dev_t unit) { mddev_t *mddev, *new = NULL; retry: spin_lock(&all_mddevs_lock); list_for_each_entry(mddev, &all_mddevs, all_mddevs) if (mddev->unit == unit) { mddev_get(mddev); spin_unlock(&all_mddevs_lock); kfree(new); return mddev; } if (new) { list_add(&new->all_mddevs, &all_mddevs); spin_unlock(&all_mddevs_lock); return new; } spin_unlock(&all_mddevs_lock); new = kzalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; new->unit = unit; if (MAJOR(unit) == MD_MAJOR) new->md_minor = MINOR(unit); else new->md_minor = MINOR(unit) >> MdpMinorShift; init_MUTEX(&new->reconfig_sem); INIT_LIST_HEAD(&new->disks); INIT_LIST_HEAD(&new->all_mddevs); init_timer(&new->safemode_timer); atomic_set(&new->active, 1); spin_lock_init(&new->write_lock); init_waitqueue_head(&new->sb_wait); new->queue = blk_alloc_queue(GFP_KERNEL); if (!new->queue) { kfree(new); return NULL; } blk_queue_make_request(new->queue, md_fail_request); goto retry; } static inline int mddev_lock(mddev_t * mddev) { return down_interruptible(&mddev->reconfig_sem); } static inline void mddev_lock_uninterruptible(mddev_t * mddev) { down(&mddev->reconfig_sem); } static inline int mddev_trylock(mddev_t * mddev) { return down_trylock(&mddev->reconfig_sem); } static inline void mddev_unlock(mddev_t * mddev) { up(&mddev->reconfig_sem); md_wakeup_thread(mddev->thread); } static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) { mdk_rdev_t * rdev; struct list_head *tmp; ITERATE_RDEV(mddev,rdev,tmp) { if (rdev->desc_nr == nr) return rdev; } return NULL; } static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev,rdev,tmp) { if (rdev->bdev->bd_dev == dev) return rdev; } return NULL; } static struct mdk_personality *find_pers(int level, char *clevel) { struct mdk_personality *pers; list_for_each_entry(pers, &pers_list, list) { if (level != LEVEL_NONE && pers->level == level) return pers; if (strcmp(pers->name, clevel)==0) return pers; } return NULL; } static inline sector_t calc_dev_sboffset(struct block_device *bdev) { sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; return MD_NEW_SIZE_BLOCKS(size); } static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) { sector_t size; size = rdev->sb_offset; if (chunk_size) size &= ~((sector_t)chunk_size/1024 - 1); return size; } static int alloc_disk_sb(mdk_rdev_t * rdev) { if (rdev->sb_page) MD_BUG(); rdev->sb_page = alloc_page(GFP_KERNEL); if (!rdev->sb_page) { printk(KERN_ALERT "md: out of memory.\n"); return -EINVAL; } return 0; } static void free_disk_sb(mdk_rdev_t * rdev) { if (rdev->sb_page) { put_page(rdev->sb_page); rdev->sb_loaded = 0; rdev->sb_page = NULL; rdev->sb_offset = 0; rdev->size = 0; } } static int super_written(struct bio *bio, unsigned int bytes_done, int error) { mdk_rdev_t *rdev = bio->bi_private; mddev_t *mddev = rdev->mddev; if (bio->bi_size) return 1; if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) md_error(mddev, rdev); if (atomic_dec_and_test(&mddev->pending_writes)) wake_up(&mddev->sb_wait); bio_put(bio); return 0; } static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error) { struct bio *bio2 = bio->bi_private; mdk_rdev_t *rdev = bio2->bi_private; mddev_t *mddev = rdev->mddev; if (bio->bi_size) return 1; if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && error == -EOPNOTSUPP) { unsigned long flags; /* barriers don't appear to be supported :-( */ set_bit(BarriersNotsupp, &rdev->flags); mddev->barriers_work = 0; spin_lock_irqsave(&mddev->write_lock, flags); bio2->bi_next = mddev->biolist; mddev->biolist = bio2; spin_unlock_irqrestore(&mddev->write_lock, flags); wake_up(&mddev->sb_wait); bio_put(bio); return 0; } bio_put(bio2); bio->bi_private = rdev; return super_written(bio, bytes_done, error); } void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, sector_t sector, int size, struct page *page) { /* write first size bytes of page to sector of rdev * Increment mddev->pending_writes before returning * and decrement it on completion, waking up sb_wait * if zero is reached. * If an error occurred, call md_error * * As we might need to resubmit the request if BIO_RW_BARRIER * causes ENOTSUPP, we allocate a spare bio... */ struct bio *bio = bio_alloc(GFP_NOIO, 1); int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); bio->bi_bdev = rdev->bdev; bio->bi_sector = sector; bio_add_page(bio, page, size, 0); bio->bi_private = rdev; bio->bi_end_io = super_written; bio->bi_rw = rw; atomic_inc(&mddev->pending_writes); if (!test_bit(BarriersNotsupp, &rdev->flags)) { struct bio *rbio; rw |= (1<<BIO_RW_BARRIER); rbio = bio_clone(bio, GFP_NOIO); rbio->bi_private = bio; rbio->bi_end_io = super_written_barrier; submit_bio(rw, rbio); } else submit_bio(rw, bio); } void md_super_wait(mddev_t *mddev) { /* wait for all superblock writes that were scheduled to complete. * if any had to be retried (due to BARRIER problems), retry them */ DEFINE_WAIT(wq); for(;;) { prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); if (atomic_read(&mddev->pending_writes)==0) break; while (mddev->biolist) { struct bio *bio; spin_lock_irq(&mddev->write_lock); bio = mddev->biolist; mddev->biolist = bio->bi_next ; bio->bi_next = NULL; spin_unlock_irq(&mddev->write_lock); submit_bio(bio->bi_rw, bio); } schedule(); } finish_wait(&mddev->sb_wait, &wq); } static int bi_complete(struct bio *bio, unsigned int bytes_done, int error) { if (bio->bi_size) return 1; complete((struct completion*)bio->bi_private); return 0; } int sync_page_io(struct block_device *bdev, sector_t sector, int size, struct page *page, int rw) { struct bio *bio = bio_alloc(GFP_NOIO, 1); struct completion event; int ret; rw |= (1 << BIO_RW_SYNC); bio->bi_bdev = bdev; bio->bi_sector = sector; bio_add_page(bio, page, size, 0); init_completion(&event); bio->bi_private = &event; bio->bi_end_io = bi_complete; submit_bio(rw, bio); wait_for_completion(&event); ret = test_bit(BIO_UPTODATE, &bio->bi_flags); bio_put(bio); return ret; } EXPORT_SYMBOL_GPL(sync_page_io); static int read_disk_sb(mdk_rdev_t * rdev, int size) { char b[BDEVNAME_SIZE]; if (!rdev->sb_page) { MD_BUG(); return -EINVAL; } if (rdev->sb_loaded) return 0; if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) goto fail; rdev->sb_loaded = 1; return 0; fail: printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", bdevname(rdev->bdev,b)); return -EINVAL; } static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) { if ( (sb1->set_uuid0 == sb2->set_uuid0) && (sb1->set_uuid1 == sb2->set_uuid1) && (sb1->set_uuid2 == sb2->set_uuid2) && (sb1->set_uuid3 == sb2->set_uuid3)) return 1; return 0; } static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) { int ret; mdp_super_t *tmp1, *tmp2; tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); if (!tmp1 || !tmp2) { ret = 0; printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); goto abort; } *tmp1 = *sb1; *tmp2 = *sb2; /* * nr_disks is not constant */ tmp1->nr_disks = 0; tmp2->nr_disks = 0; if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) ret = 0; else ret = 1; abort: kfree(tmp1); kfree(tmp2); return ret; } static unsigned int calc_sb_csum(mdp_super_t * sb) { unsigned int disk_csum, csum; disk_csum = sb->sb_csum; sb->sb_csum = 0; csum = csum_partial((void *)sb, MD_SB_BYTES, 0); sb->sb_csum = disk_csum; return csum; } /* * Handle superblock details. * We want to be able to handle multiple superblock formats * so we have a common interface to them all, and an array of * different handlers. * We rely on user-space to write the initial superblock, and support * reading and updating of superblocks. * Interface methods are: * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) * loads and validates a superblock on dev. * if refdev != NULL, compare superblocks on both devices * Return: * 0 - dev has a superblock that is compatible with refdev * 1 - dev has a superblock that is compatible and newer than refdev * so dev should be used as the refdev in future * -EINVAL superblock incompatible or invalid * -othererror e.g. -EIO * * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) * Verify that dev is acceptable into mddev. * The first time, mddev->raid_disks will be 0, and data from * dev should be merged in. Subsequent calls check that dev * is new enough. Return 0 or -EINVAL * * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) * Update the superblock for rdev with data in mddev * This does not write to disc. * */ struct super_type { char *name; struct module *owner; int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); }; /* * load_super for 0.90.0 */ static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) { char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; mdp_super_t *sb; int ret; sector_t sb_offset; /* * Calculate the position of the superblock, * it's at the end of the disk. * * It also happens to be a multiple of 4Kb. */ sb_offset = calc_dev_sboffset(rdev->bdev); rdev->sb_offset = sb_offset; ret = read_disk_sb(rdev, MD_SB_BYTES); if (ret) return ret; ret = -EINVAL; bdevname(rdev->bdev, b); sb = (mdp_super_t*)page_address(rdev->sb_page); if (sb->md_magic != MD_SB_MAGIC) { printk(KERN_ERR "md: invalid raid superblock magic on %s\n", b); goto abort; } if (sb->major_version != 0 || sb->minor_version != 90) { printk(KERN_WARNING "Bad version number %d.%d on %s\n", sb->major_version, sb->minor_version, b); goto abort; } if (sb->raid_disks <= 0) goto abort; if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) { printk(KERN_WARNING "md: invalid superblock checksum on %s\n", b); goto abort; } rdev->preferred_minor = sb->md_minor; rdev->data_offset = 0; rdev->sb_size = MD_SB_BYTES; if (sb->level == LEVEL_MULTIPATH) rdev->desc_nr = -1; else rdev->desc_nr = sb->this_disk.number; if (refdev == 0) ret = 1; else { __u64 ev1, ev2; mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); if (!uuid_equal(refsb, sb)) { printk(KERN_WARNING "md: %s has different UUID to %s\n", b, bdevname(refdev->bdev,b2)); goto abort; } if (!sb_equal(refsb, sb)) { printk(KERN_WARNING "md: %s has same UUID" " but different superblock to %s\n", b, bdevname(refdev->bdev, b2)); goto abort; } ev1 = md_event(sb); ev2 = md_event(refsb); if (ev1 > ev2) ret = 1; else ret = 0; } rdev->size = calc_dev_size(rdev, sb->chunk_size); if (rdev->size < sb->size && sb->level > 1) /* "this cannot possibly happen" ... */ ret = -EINVAL; abort: return ret; } /* * validate_super for 0.90.0 */ static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) { mdp_disk_t *desc; mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); rdev->raid_disk = -1; rdev->flags = 0; if (mddev->raid_disks == 0) { mddev->major_version = 0; mddev->minor_version = sb->minor_version; mddev->patch_version = sb->patch_version; mddev->persistent = ! sb->not_persistent; mddev->chunk_size = sb->chunk_size; mddev->ctime = sb->ctime; mddev->utime = sb->utime; mddev->level = sb->level; mddev->clevel[0] = 0; mddev->layout = sb->layout; mddev->raid_disks = sb->raid_disks; mddev->size = sb->size; mddev->events = md_event(sb); mddev->bitmap_offset = 0; mddev->default_bitmap_offset = MD_SB_BYTES >> 9; if (sb->state & (1<<MD_SB_CLEAN)) mddev->recovery_cp = MaxSector; else { if (sb->events_hi == sb->cp_events_hi && sb->events_lo == sb->cp_events_lo) { mddev->recovery_cp = sb->recovery_cp; } else mddev->recovery_cp = 0; } memcpy(mddev->uuid+0, &sb->set_uuid0, 4); memcpy(mddev->uuid+4, &sb->set_uuid1, 4); memcpy(mddev->uuid+8, &sb->set_uuid2, 4); memcpy(mddev->uuid+12,&sb->set_uuid3, 4); mddev->max_disks = MD_SB_DISKS; if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && mddev->bitmap_file == NULL) { if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6 && mddev->level != 10) { /* FIXME use a better test */ printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); return -EINVAL; } mddev->bitmap_offset = mddev->default_bitmap_offset; } } else if (mddev->pers == NULL) { /* Insist on good event counter while assembling */ __u64 ev1 = md_event(sb); ++ev1; if (ev1 < mddev->events) return -EINVAL; } else if (mddev->bitmap) { /* if adding to array with a bitmap, then we can accept an * older device ... but not too old. */ __u64 ev1 = md_event(sb); if (ev1 < mddev->bitmap->events_cleared) return 0; } else /* just a hot-add of a new device, leave raid_disk at -1 */ return 0; if (mddev->level != LEVEL_MULTIPATH) { desc = sb->disks + rdev->desc_nr; if (desc->state & (1<<MD_DISK_FAULTY)) set_bit(Faulty, &rdev->flags); else if (desc->state & (1<<MD_DISK_SYNC) && desc->raid_disk < mddev->raid_disks) { set_bit(In_sync, &rdev->flags); rdev->raid_disk = desc->raid_disk; } if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) set_bit(WriteMostly, &rdev->flags); } else /* MULTIPATH are always insync */ set_bit(In_sync, &rdev->flags); return 0; } /* * sync_super for 0.90.0 */ static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) { mdp_super_t *sb; struct list_head *tmp; mdk_rdev_t *rdev2; int next_spare = mddev->raid_disks; /* make rdev->sb match mddev data.. * * 1/ zero out disks * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); * 3/ any empty disks < next_spare become removed * * disks[0] gets initialised to REMOVED because * we cannot be sure from other fields if it has * been initialised or not. */ int i; int active=0, working=0,failed=0,spare=0,nr_disks=0; rdev->sb_size = MD_SB_BYTES; sb = (mdp_super_t*)page_address(rdev->sb_page); memset(sb, 0, sizeof(*sb)); sb->md_magic = MD_SB_MAGIC; sb->major_version = mddev->major_version; sb->minor_version = mddev->minor_version; sb->patch_version = mddev->patch_version; sb->gvalid_words = 0; /* ignored */ memcpy(&sb->set_uuid0, mddev->uuid+0, 4); memcpy(&sb->set_uuid1, mddev->uuid+4, 4); memcpy(&sb->set_uuid2, mddev->uuid+8, 4); memcpy(&sb->set_uuid3, mddev->uuid+12,4); sb->ctime = mddev->ctime; sb->level = mddev->level; sb->size = mddev->size; sb->raid_disks = mddev->raid_disks; sb->md_minor = mddev->md_minor; sb->not_persistent = !mddev->persistent; sb->utime = mddev->utime; sb->state = 0; sb->events_hi = (mddev->events>>32); sb->events_lo = (u32)mddev->events; if (mddev->in_sync) { sb->recovery_cp = mddev->recovery_cp; sb->cp_events_hi = (mddev->events>>32); sb->cp_events_lo = (u32)mddev->events; if (mddev->recovery_cp == MaxSector) sb->state = (1<< MD_SB_CLEAN); } else sb->recovery_cp = 0; sb->layout = mddev->layout; sb->chunk_size = mddev->chunk_size; if (mddev->bitmap && mddev->bitmap_file == NULL) sb->state |= (1<<MD_SB_BITMAP_PRESENT); sb->disks[0].state = (1<<MD_DISK_REMOVED); ITERATE_RDEV(mddev,rdev2,tmp) { mdp_disk_t *d; int desc_nr; if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) && !test_bit(Faulty, &rdev2->flags)) desc_nr = rdev2->raid_disk; else desc_nr = next_spare++; rdev2->desc_nr = desc_nr; d = &sb->disks[rdev2->desc_nr]; nr_disks++; d->number = rdev2->desc_nr; d->major = MAJOR(rdev2->bdev->bd_dev); d->minor = MINOR(rdev2->bdev->bd_dev); if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) && !test_bit(Faulty, &rdev2->flags)) d->raid_disk = rdev2->raid_disk; else d->raid_disk = rdev2->desc_nr; /* compatibility */ if (test_bit(Faulty, &rdev2->flags)) { d->state = (1<<MD_DISK_FAULTY); failed++; } else if (test_bit(In_sync, &rdev2->flags)) { d->state = (1<<MD_DISK_ACTIVE); d->state |= (1<<MD_DISK_SYNC); active++; working++; } else { d->state = 0; spare++; working++; } if (test_bit(WriteMostly, &rdev2->flags)) d->state |= (1<<MD_DISK_WRITEMOSTLY); } /* now set the "removed" and "faulty" bits on any missing devices */ for (i=0 ; i < mddev->raid_disks ; i++) { mdp_disk_t *d = &sb->disks[i]; if (d->state == 0 && d->number == 0) { d->number = i; d->raid_disk = i; d->state = (1<<MD_DISK_REMOVED); d->state |= (1<<MD_DISK_FAULTY); failed++; } } sb->nr_disks = nr_disks; sb->active_disks = active; sb->working_disks = working; sb->failed_disks = failed; sb->spare_disks = spare; sb->this_disk = sb->disks[rdev->desc_nr]; sb->sb_csum = calc_sb_csum(sb); } /* * version 1 superblock */ static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb) { unsigned int disk_csum, csum; unsigned long long newcsum; int size = 256 + le32_to_cpu(sb->max_dev)*2; unsigned int *isuper = (unsigned int*)sb; int i; disk_csum = sb->sb_csum; sb->sb_csum = 0; newcsum = 0; for (i=0; size>=4; size -= 4 ) newcsum += le32_to_cpu(*isuper++); if (size == 2) newcsum += le16_to_cpu(*(unsigned short*) isuper); csum = (newcsum & 0xffffffff) + (newcsum >> 32); sb->sb_csum = disk_csum; return cpu_to_le32(csum); } static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) { struct mdp_superblock_1 *sb; int ret; sector_t sb_offset; char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; int bmask; /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depeding on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(minor_version) { case 0: sb_offset = rdev->bdev->bd_inode->i_size >> 9; sb_offset -= 8*2; sb_offset &= ~(sector_t)(4*2-1); /* convert from sectors to K */ sb_offset /= 2; break; case 1: sb_offset = 0; break; case 2: sb_offset = 4; break; default: return -EINVAL; } rdev->sb_offset = sb_offset; /* superblock is rarely larger than 1K, but it can be larger, * and it is safe to read 4k, so we do that */ ret = read_disk_sb(rdev, 4096); if (ret) return ret; sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || sb->major_version != cpu_to_le32(1) || le32_to_cpu(sb->max_dev) > (4096-256)/2 || le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) return -EINVAL; if (calc_sb_1_csum(sb) != sb->sb_csum) { printk("md: invalid superblock checksum on %s\n", bdevname(rdev->bdev,b)); return -EINVAL; } if (le64_to_cpu(sb->data_size) < 10) { printk("md: data_size too small on %s\n", bdevname(rdev->bdev,b)); return -EINVAL; } rdev->preferred_minor = 0xffff; rdev->data_offset = le64_to_cpu(sb->data_offset); atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; if (rdev->sb_size & bmask) rdev-> sb_size = (rdev->sb_size | bmask)+1; if (refdev == 0) return 1; else { __u64 ev1, ev2; struct mdp_superblock_1 *refsb = (struct mdp_superblock_1*)page_address(refdev->sb_page); if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || sb->level != refsb->level || sb->layout != refsb->layout || sb->chunksize != refsb->chunksize) { printk(KERN_WARNING "md: %s has strangely different" " superblock to %s\n", bdevname(rdev->bdev,b), bdevname(refdev->bdev,b2)); return -EINVAL; } ev1 = le64_to_cpu(sb->events); ev2 = le64_to_cpu(refsb->events); if (ev1 > ev2) return 1; } if (minor_version) rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; else rdev->size = rdev->sb_offset; if (rdev->size < le64_to_cpu(sb->data_size)/2) return -EINVAL; rdev->size = le64_to_cpu(sb->data_size)/2; if (le32_to_cpu(sb->chunksize)) rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); if (le32_to_cpu(sb->size) > rdev->size*2) return -EINVAL; return 0; } static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) { struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); rdev->raid_disk = -1; rdev->flags = 0; if (mddev->raid_disks == 0) { mddev->major_version = 1; mddev->patch_version = 0; mddev->persistent = 1; mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); mddev->level = le32_to_cpu(sb->level); mddev->clevel[0] = 0; mddev->layout = le32_to_cpu(sb->layout); mddev->raid_disks = le32_to_cpu(sb->raid_disks); mddev->size = le64_to_cpu(sb->size)/2; mddev->events = le64_to_cpu(sb->events); mddev->bitmap_offset = 0; mddev->default_bitmap_offset = 1024; mddev->recovery_cp = le64_to_cpu(sb->resync_offset); memcpy(mddev->uuid, sb->set_uuid, 16); mddev->max_disks = (4096-256)/2; if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && mddev->bitmap_file == NULL ) { if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6 && mddev->level != 10) { printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); return -EINVAL; } mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); } } else if (mddev->pers == NULL) { /* Insist of good event counter while assembling */ __u64 ev1 = le64_to_cpu(sb->events); ++ev1; if (ev1 < mddev->events) return -EINVAL; } else if (mddev->bitmap) { /* If adding to array with a bitmap, then we can accept an * older device, but not too old. */ __u64 ev1 = le64_to_cpu(sb->events); if (ev1 < mddev->bitmap->events_cleared) return 0; } else /* just a hot-add of a new device, leave raid_disk at -1 */ return 0; if (mddev->level != LEVEL_MULTIPATH) { int role; rdev->desc_nr = le32_to_cpu(sb->dev_number); role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); switch(role) { case 0xffff: /* spare */ break; case 0xfffe: /* faulty */ set_bit(Faulty, &rdev->flags); break; default: set_bit(In_sync, &rdev->flags); rdev->raid_disk = role; break; } if (sb->devflags & WriteMostly1) set_bit(WriteMostly, &rdev->flags); } else /* MULTIPATH are always insync */ set_bit(In_sync, &rdev->flags); return 0; } static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) { struct mdp_superblock_1 *sb; struct list_head *tmp; mdk_rdev_t *rdev2; int max_dev, i; /* make rdev->sb match mddev and rdev data. */ sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); sb->feature_map = 0; sb->pad0 = 0; memset(sb->pad1, 0, sizeof(sb->pad1)); memset(sb->pad2, 0, sizeof(sb->pad2)); memset(sb->pad3, 0, sizeof(sb->pad3)); sb->utime = cpu_to_le64((__u64)mddev->utime); sb->events = cpu_to_le64(mddev->events); if (mddev->in_sync) sb->resync_offset = cpu_to_le64(mddev->recovery_cp); else sb->resync_offset = cpu_to_le64(0); sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors); if (mddev->bitmap && mddev->bitmap_file == NULL) { sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); } max_dev = 0; ITERATE_RDEV(mddev,rdev2,tmp) if (rdev2->desc_nr+1 > max_dev) max_dev = rdev2->desc_nr+1; sb->max_dev = cpu_to_le32(max_dev); for (i=0; i<max_dev;i++) sb->dev_roles[i] = cpu_to_le16(0xfffe); ITERATE_RDEV(mddev,rdev2,tmp) { i = rdev2->desc_nr; if (test_bit(Faulty, &rdev2->flags)) sb->dev_roles[i] = cpu_to_le16(0xfffe); else if (test_bit(In_sync, &rdev2->flags)) sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); else sb->dev_roles[i] = cpu_to_le16(0xffff); } sb->recovery_offset = cpu_to_le64(0); /* not supported yet */ sb->sb_csum = calc_sb_1_csum(sb); } static struct super_type super_types[] = { [0] = { .name = "0.90.0", .owner = THIS_MODULE, .load_super = super_90_load, .validate_super = super_90_validate, .sync_super = super_90_sync, }, [1] = { .name = "md-1", .owner = THIS_MODULE, .load_super = super_1_load, .validate_super = super_1_validate, .sync_super = super_1_sync, }, }; static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev,rdev,tmp) if (rdev->bdev->bd_contains == dev->bdev->bd_contains) return rdev; return NULL; } static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev1,rdev,tmp) if (match_dev_unit(mddev2, rdev)) return 1; return 0; } static LIST_HEAD(pending_raid_disks); static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) { mdk_rdev_t *same_pdev; char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; struct kobject *ko; if (rdev->mddev) { MD_BUG(); return -EINVAL; } /* make sure rdev->size exceeds mddev->size */ if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { if (mddev->pers) /* Cannot change size, so fail */ return -ENOSPC; else mddev->size = rdev->size; } same_pdev = match_dev_unit(mddev, rdev); if (same_pdev) printk(KERN_WARNING "%s: WARNING: %s appears to be on the same physical" " disk as %s. True\n protection against single-disk" " failure might be compromised.\n", mdname(mddev), bdevname(rdev->bdev,b), bdevname(same_pdev->bdev,b2)); /* Verify rdev->desc_nr is unique. * If it is -1, assign a free number, else * check number is not in use */ if (rdev->desc_nr < 0) { int choice = 0; if (mddev->pers) choice = mddev->raid_disks; while (find_rdev_nr(mddev, choice)) choice++; rdev->desc_nr = choice; } else { if (find_rdev_nr(mddev, rdev->desc_nr)) return -EBUSY; } bdevname(rdev->bdev,b); if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0) return -ENOMEM; list_add(&rdev->same_set, &mddev->disks); rdev->mddev = mddev; printk(KERN_INFO "md: bind<%s>\n", b); rdev->kobj.parent = &mddev->kobj; kobject_add(&rdev->kobj); if (rdev->bdev->bd_part) ko = &rdev->bdev->bd_part->kobj; else ko = &rdev->bdev->bd_disk->kobj; sysfs_create_link(&rdev->kobj, ko, "block"); return 0; } static void unbind_rdev_from_array(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; if (!rdev->mddev) { MD_BUG(); return; } list_del_init(&rdev->same_set); printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); rdev->mddev = NULL; sysfs_remove_link(&rdev->kobj, "block"); kobject_del(&rdev->kobj); } /* * prevent the device from being mounted, repartitioned or * otherwise reused by a RAID array (or any other kernel * subsystem), by bd_claiming the device. */ static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) { int err = 0; struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); if (IS_ERR(bdev)) { printk(KERN_ERR "md: could not open %s.\n", __bdevname(dev, b)); return PTR_ERR(bdev); } err = bd_claim(bdev, rdev); if (err) { printk(KERN_ERR "md: could not bd_claim %s.\n", bdevname(bdev, b)); blkdev_put(bdev); return err; } rdev->bdev = bdev; return err; } static void unlock_rdev(mdk_rdev_t *rdev) { struct block_device *bdev = rdev->bdev; rdev->bdev = NULL; if (!bdev) MD_BUG(); bd_release(bdev); blkdev_put(bdev); } void md_autodetect_dev(dev_t dev); static void export_rdev(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); if (rdev->mddev) MD_BUG(); free_disk_sb(rdev); list_del_init(&rdev->same_set); #ifndef MODULE md_autodetect_dev(rdev->bdev->bd_dev); #endif unlock_rdev(rdev); kobject_put(&rdev->kobj); } static void kick_rdev_from_array(mdk_rdev_t * rdev) { unbind_rdev_from_array(rdev); export_rdev(rdev); } static void export_array(mddev_t *mddev) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev,rdev,tmp) { if (!rdev->mddev) { MD_BUG(); continue; } kick_rdev_from_array(rdev); } if (!list_empty(&mddev->disks)) MD_BUG(); mddev->raid_disks = 0; mddev->major_version = 0; } static void print_desc(mdp_disk_t *desc) { printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, desc->major,desc->minor,desc->raid_disk,desc->state); } static void print_sb(mdp_super_t *sb) { int i; printk(KERN_INFO "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", sb->major_version, sb->minor_version, sb->patch_version, sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, sb->ctime); printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", sb->level, sb->size, sb->nr_disks, sb->raid_disks, sb->md_minor, sb->layout, sb->chunk_size); printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" " FD:%d SD:%d CSUM:%08x E:%08lx\n", sb->utime, sb->state, sb->active_disks, sb->working_disks, sb->failed_disks, sb->spare_disks, sb->sb_csum, (unsigned long)sb->events_lo); printk(KERN_INFO); for (i = 0; i < MD_SB_DISKS; i++) { mdp_disk_t *desc; desc = sb->disks + i; if (desc->number || desc->major || desc->minor || desc->raid_disk || (desc->state && (desc->state != 4))) { printk(" D %2d: ", i); print_desc(desc); } } printk(KERN_INFO "md: THIS: "); print_desc(&sb->this_disk); } static void print_rdev(mdk_rdev_t *rdev) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->size, test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), rdev->desc_nr); if (rdev->sb_loaded) { printk(KERN_INFO "md: rdev superblock:\n"); print_sb((mdp_super_t*)page_address(rdev->sb_page)); } else printk(KERN_INFO "md: no rdev superblock!\n"); } void md_print_devices(void) { struct list_head *tmp, *tmp2; mdk_rdev_t *rdev; mddev_t *mddev; char b[BDEVNAME_SIZE]; printk("\n"); printk("md: **********************************\n"); printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); printk("md: **********************************\n"); ITERATE_MDDEV(mddev,tmp) { if (mddev->bitmap) bitmap_print_sb(mddev->bitmap); else printk("%s: ", mdname(mddev)); ITERATE_RDEV(mddev,rdev,tmp2) printk("<%s>", bdevname(rdev->bdev,b)); printk("\n"); ITERATE_RDEV(mddev,rdev,tmp2) print_rdev(rdev); } printk("md: **********************************\n"); printk("\n"); } static void sync_sbs(mddev_t * mddev) { mdk_rdev_t *rdev; struct list_head *tmp; ITERATE_RDEV(mddev,rdev,tmp) { super_types[mddev->major_version]. sync_super(mddev, rdev); rdev->sb_loaded = 1; } } static void md_update_sb(mddev_t * mddev) { int err; struct list_head *tmp; mdk_rdev_t *rdev; int sync_req; repeat: spin_lock_irq(&mddev->write_lock); sync_req = mddev->in_sync; mddev->utime = get_seconds(); mddev->events ++; if (!mddev->events) { /* * oops, this 64-bit counter should never wrap. * Either we are in around ~1 trillion A.C., assuming * 1 reboot per second, or we have a bug: */ MD_BUG(); mddev->events --; } mddev->sb_dirty = 2; sync_sbs(mddev); /* * do not write anything to disk if using * nonpersistent superblocks */ if (!mddev->persistent) { mddev->sb_dirty = 0; spin_unlock_irq(&mddev->write_lock); wake_up(&mddev->sb_wait); return; } spin_unlock_irq(&mddev->write_lock); dprintk(KERN_INFO "md: updating %s RAID superblock on device (in sync %d)\n", mdname(mddev),mddev->in_sync); err = bitmap_update_sb(mddev->bitmap); ITERATE_RDEV(mddev,rdev,tmp) { char b[BDEVNAME_SIZE]; dprintk(KERN_INFO "md: "); if (test_bit(Faulty, &rdev->flags)) dprintk("(skipping faulty "); dprintk("%s ", bdevname(rdev->bdev,b)); if (!test_bit(Faulty, &rdev->flags)) { md_super_write(mddev,rdev, rdev->sb_offset<<1, rdev->sb_size, rdev->sb_page); dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->sb_offset); } else dprintk(")\n"); if (mddev->level == LEVEL_MULTIPATH) /* only need to write one superblock... */ break; } md_super_wait(mddev); /* if there was a failure, sb_dirty was set to 1, and we re-write super */ spin_lock_irq(&mddev->write_lock); if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) { /* have to write it out again */ spin_unlock_irq(&mddev->write_lock); goto repeat; } mddev->sb_dirty = 0; spin_unlock_irq(&mddev->write_lock); wake_up(&mddev->sb_wait); } /* words written to sysfs files may, or my not, be \n terminated. * We want to accept with case. For this we use cmd_match. */ static int cmd_match(const char *cmd, const char *str) { /* See if cmd, written into a sysfs file, matches * str. They must either be the same, or cmd can * have a trailing newline */ while (*cmd && *str && *cmd == *str) { cmd++; str++; } if (*cmd == '\n') cmd++; if (*str || *cmd) return 0; return 1; } struct rdev_sysfs_entry { struct attribute attr; ssize_t (*show)(mdk_rdev_t *, char *); ssize_t (*store)(mdk_rdev_t *, const char *, size_t); }; static ssize_t state_show(mdk_rdev_t *rdev, char *page) { char *sep = ""; int len=0; if (test_bit(Faulty, &rdev->flags)) { len+= sprintf(page+len, "%sfaulty",sep); sep = ","; } if (test_bit(In_sync, &rdev->flags)) { len += sprintf(page+len, "%sin_sync",sep); sep = ","; } if (!test_bit(Faulty, &rdev->flags) && !test_bit(In_sync, &rdev->flags)) { len += sprintf(page+len, "%sspare", sep); sep = ","; } return len+sprintf(page+len, "\n"); } static struct rdev_sysfs_entry rdev_state = __ATTR_RO(state); static ssize_t super_show(mdk_rdev_t *rdev, char *page) { if (rdev->sb_loaded && rdev->sb_size) { memcpy(page, page_address(rdev->sb_page), rdev->sb_size); return rdev->sb_size; } else return 0; } static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super); static ssize_t errors_show(mdk_rdev_t *rdev, char *page) { return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); } static ssize_t errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (*buf && (*e == 0 || *e == '\n')) { atomic_set(&rdev->corrected_errors, n); return len; } return -EINVAL; } static struct rdev_sysfs_entry rdev_errors = __ATTR(errors, 0644, errors_show, errors_store); static ssize_t slot_show(mdk_rdev_t *rdev, char *page) { if (rdev->raid_disk < 0) return sprintf(page, "none\n"); else return sprintf(page, "%d\n", rdev->raid_disk); } static ssize_t slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; int slot = simple_strtoul(buf, &e, 10); if (strncmp(buf, "none", 4)==0) slot = -1; else if (e==buf || (*e && *e!= '\n')) return -EINVAL; if (rdev->mddev->pers) /* Cannot set slot in active array (yet) */ return -EBUSY; if (slot >= rdev->mddev->raid_disks) return -ENOSPC; rdev->raid_disk = slot; /* assume it is working */ rdev->flags = 0; set_bit(In_sync, &rdev->flags); return len; } static struct rdev_sysfs_entry rdev_slot = __ATTR(slot, 0644, slot_show, slot_store); static ssize_t offset_show(mdk_rdev_t *rdev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); } static ssize_t offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; unsigned long long offset = simple_strtoull(buf, &e, 10); if (e==buf || (*e && *e != '\n')) return -EINVAL; if (rdev->mddev->pers) return -EBUSY; rdev->data_offset = offset; return len; } static struct rdev_sysfs_entry rdev_offset = __ATTR(offset, 0644, offset_show, offset_store); static ssize_t rdev_size_show(mdk_rdev_t *rdev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)rdev->size); } static ssize_t rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) { char *e; unsigned long long size = simple_strtoull(buf, &e, 10); if (e==buf || (*e && *e != '\n')) return -EINVAL; if (rdev->mddev->pers) return -EBUSY; rdev->size = size; if (size < rdev->mddev->size || rdev->mddev->size == 0) rdev->mddev->size = size; return len; } static struct rdev_sysfs_entry rdev_size = __ATTR(size, 0644, rdev_size_show, rdev_size_store); static struct attribute *rdev_default_attrs[] = { &rdev_state.attr, &rdev_super.attr, &rdev_errors.attr, &rdev_slot.attr, &rdev_offset.attr, &rdev_size.attr, NULL, }; static ssize_t rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); if (!entry->show) return -EIO; return entry->show(rdev, page); } static ssize_t rdev_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); if (!entry->store) return -EIO; return entry->store(rdev, page, length); } static void rdev_free(struct kobject *ko) { mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); kfree(rdev); } static struct sysfs_ops rdev_sysfs_ops = { .show = rdev_attr_show, .store = rdev_attr_store, }; static struct kobj_type rdev_ktype = { .release = rdev_free, .sysfs_ops = &rdev_sysfs_ops, .default_attrs = rdev_default_attrs, }; /* * Import a device. If 'super_format' >= 0, then sanity check the superblock * * mark the device faulty if: * * - the device is nonexistent (zero size) * - the device has no valid superblock * * a faulty rdev _never_ has rdev->sb set. */ static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) { char b[BDEVNAME_SIZE]; int err; mdk_rdev_t *rdev; sector_t size; rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); if (!rdev) { printk(KERN_ERR "md: could not alloc mem for new device!\n"); return ERR_PTR(-ENOMEM); } if ((err = alloc_disk_sb(rdev))) goto abort_free; err = lock_rdev(rdev, newdev); if (err) goto abort_free; rdev->kobj.parent = NULL; rdev->kobj.ktype = &rdev_ktype; kobject_init(&rdev->kobj); rdev->desc_nr = -1; rdev->flags = 0; rdev->data_offset = 0; atomic_set(&rdev->nr_pending, 0); atomic_set(&rdev->read_errors, 0); atomic_set(&rdev->corrected_errors, 0); size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; if (!size) { printk(KERN_WARNING "md: %s has zero or unknown size, marking faulty!\n", bdevname(rdev->bdev,b)); err = -EINVAL; goto abort_free; } if (super_format >= 0) { err = super_types[super_format]. load_super(rdev, NULL, super_minor); if (err == -EINVAL) { printk(KERN_WARNING "md: %s has invalid sb, not importing!\n", bdevname(rdev->bdev,b)); goto abort_free; } if (err < 0) { printk(KERN_WARNING "md: could not read %s's sb, not importing!\n", bdevname(rdev->bdev,b)); goto abort_free; } } INIT_LIST_HEAD(&rdev->same_set); return rdev; abort_free: if (rdev->sb_page) { if (rdev->bdev) unlock_rdev(rdev); free_disk_sb(rdev); } kfree(rdev); return ERR_PTR(err); } /* * Check a full RAID array for plausibility */ static void analyze_sbs(mddev_t * mddev) { int i; struct list_head *tmp; mdk_rdev_t *rdev, *freshest; char b[BDEVNAME_SIZE]; freshest = NULL; ITERATE_RDEV(mddev,rdev,tmp) switch (super_types[mddev->major_version]. load_super(rdev, freshest, mddev->minor_version)) { case 1: freshest = rdev; break; case 0: break; default: printk( KERN_ERR \ "md: fatal superblock inconsistency in %s" " -- removing from array\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); } super_types[mddev->major_version]. validate_super(mddev, freshest); i = 0; ITERATE_RDEV(mddev,rdev,tmp) { if (rdev != freshest) if (super_types[mddev->major_version]. validate_super(mddev, rdev)) { printk(KERN_WARNING "md: kicking non-fresh %s" " from array!\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); continue; } if (mddev->level == LEVEL_MULTIPATH) { rdev->desc_nr = i++; rdev->raid_disk = rdev->desc_nr; set_bit(In_sync, &rdev->flags); } } if (mddev->recovery_cp != MaxSector && mddev->level >= 1) printk(KERN_ERR "md: %s: raid array is not clean" " -- starting background reconstruction\n", mdname(mddev)); } static ssize_t level_show(mddev_t *mddev, char *page) { struct mdk_personality *p = mddev->pers; if (p) return sprintf(page, "%s\n", p->name); else if (mddev->clevel[0]) return sprintf(page, "%s\n", mddev->clevel); else if (mddev->level != LEVEL_NONE) return sprintf(page, "%d\n", mddev->level); else return 0; } static ssize_t level_store(mddev_t *mddev, const char *buf, size_t len) { int rv = len; if (mddev->pers) return -EBUSY; if (len == 0) return 0; if (len >= sizeof(mddev->clevel)) return -ENOSPC; strncpy(mddev->clevel, buf, len); if (mddev->clevel[len-1] == '\n') len--; mddev->clevel[len] = 0; mddev->level = LEVEL_NONE; return rv; } static struct md_sysfs_entry md_level = __ATTR(level, 0644, level_show, level_store); static ssize_t raid_disks_show(mddev_t *mddev, char *page) { if (mddev->raid_disks == 0) return 0; return sprintf(page, "%d\n", mddev->raid_disks); } static int update_raid_disks(mddev_t *mddev, int raid_disks); static ssize_t raid_disks_store(mddev_t *mddev, const char *buf, size_t len) { /* can only set raid_disks if array is not yet active */ char *e; int rv = 0; unsigned long n = simple_strtoul(buf, &e, 10); if (!*buf || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) rv = update_raid_disks(mddev, n); else mddev->raid_disks = n; return rv ? rv : len; } static struct md_sysfs_entry md_raid_disks = __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store); static ssize_t chunk_size_show(mddev_t *mddev, char *page) { return sprintf(page, "%d\n", mddev->chunk_size); } static ssize_t chunk_size_store(mddev_t *mddev, const char *buf, size_t len) { /* can only set chunk_size if array is not yet active */ char *e; unsigned long n = simple_strtoul(buf, &e, 10); if (mddev->pers) return -EBUSY; if (!*buf || (*e && *e != '\n')) return -EINVAL; mddev->chunk_size = n; return len; } static struct md_sysfs_entry md_chunk_size = __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store); static ssize_t null_show(mddev_t *mddev, char *page) { return -EINVAL; } static ssize_t new_dev_store(mddev_t *mddev, const char *buf, size_t len) { /* buf must be %d:%d\n? giving major and minor numbers */ /* The new device is added to the array. * If the array has a persistent superblock, we read the * superblock to initialise info and check validity. * Otherwise, only checking done is that in bind_rdev_to_array, * which mainly checks size. */ char *e; int major = simple_strtoul(buf, &e, 10); int minor; dev_t dev; mdk_rdev_t *rdev; int err; if (!*buf || *e != ':' || !e[1] || e[1] == '\n') return -EINVAL; minor = simple_strtoul(e+1, &e, 10); if (*e && *e != '\n') return -EINVAL; dev = MKDEV(major, minor); if (major != MAJOR(dev) || minor != MINOR(dev)) return -EOVERFLOW; if (mddev->persistent) { rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, mdk_rdev_t, same_set); err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) goto out; } } else rdev = md_import_device(dev, -1, -1); if (IS_ERR(rdev)) return PTR_ERR(rdev); err = bind_rdev_to_array(rdev, mddev); out: if (err) export_rdev(rdev); return err ? err : len; } static struct md_sysfs_entry md_new_device = __ATTR(new_dev, 0200, null_show, new_dev_store); static ssize_t size_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long)mddev->size); } static int update_size(mddev_t *mddev, unsigned long size); static ssize_t size_store(mddev_t *mddev, const char *buf, size_t len) { /* If array is inactive, we can reduce the component size, but * not increase it (except from 0). * If array is active, we can try an on-line resize */ char *e; int err = 0; unsigned long long size = simple_strtoull(buf, &e, 10); if (!*buf || *buf == '\n' || (*e && *e != '\n')) return -EINVAL; if (mddev->pers) { err = update_size(mddev, size); md_update_sb(mddev); } else { if (mddev->size == 0 || mddev->size > size) mddev->size = size; else err = -ENOSPC; } return err ? err : len; } static struct md_sysfs_entry md_size = __ATTR(component_size, 0644, size_show, size_store); /* Metdata version. * This is either 'none' for arrays with externally managed metadata, * or N.M for internally known formats */ static ssize_t metadata_show(mddev_t *mddev, char *page) { if (mddev->persistent) return sprintf(page, "%d.%d\n", mddev->major_version, mddev->minor_version); else return sprintf(page, "none\n"); } static ssize_t metadata_store(mddev_t *mddev, const char *buf, size_t len) { int major, minor; char *e; if (!list_empty(&mddev->disks)) return -EBUSY; if (cmd_match(buf, "none")) { mddev->persistent = 0; mddev->major_version = 0; mddev->minor_version = 90; return len; } major = simple_strtoul(buf, &e, 10); if (e==buf || *e != '.') return -EINVAL; buf = e+1; minor = simple_strtoul(buf, &e, 10); if (e==buf || *e != '\n') return -EINVAL; if (major >= sizeof(super_types)/sizeof(super_types[0]) || super_types[major].name == NULL) return -ENOENT; mddev->major_version = major; mddev->minor_version = minor; mddev->persistent = 1; return len; } static struct md_sysfs_entry md_metadata = __ATTR(metadata_version, 0644, metadata_show, metadata_store); static ssize_t action_show(mddev_t *mddev, char *page) { char *type = "idle"; if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) { if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) type = "resync"; else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) type = "check"; else type = "repair"; } else type = "recover"; } return sprintf(page, "%s\n", type); } static ssize_t action_store(mddev_t *mddev, const char *page, size_t len) { if (!mddev->pers || !mddev->pers->sync_request) return -EINVAL; if (cmd_match(page, "idle")) { if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; mddev->recovery = 0; } } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return -EBUSY; else if (cmd_match(page, "resync") || cmd_match(page, "recover")) set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); else { if (cmd_match(page, "check")) set_bit(MD_RECOVERY_CHECK, &mddev->recovery); else if (cmd_match(page, "repair")) return -EINVAL; set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); return len; } static ssize_t mismatch_cnt_show(mddev_t *mddev, char *page) { return sprintf(page, "%llu\n", (unsigned long long) mddev->resync_mismatches); } static struct md_sysfs_entry md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); static ssize_t sync_min_show(mddev_t *mddev, char *page) { return sprintf(page, "%d (%s)\n", speed_min(mddev), mddev->sync_speed_min ? "local": "system"); } static ssize_t sync_min_store(mddev_t *mddev, const char *buf, size_t len) { int min; char *e; if (strncmp(buf, "system", 6)==0) { mddev->sync_speed_min = 0; return len; } min = simple_strtoul(buf, &e, 10); if (buf == e || (*e && *e != '\n') || min <= 0) return -EINVAL; mddev->sync_speed_min = min; return len; } static struct md_sysfs_entry md_sync_min = __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); static ssize_t sync_max_show(mddev_t *mddev, char *page) { return sprintf(page, "%d (%s)\n", speed_max(mddev), mddev->sync_speed_max ? "local": "system"); } static ssize_t sync_max_store(mddev_t *mddev, const char *buf, size_t len) { int max; char *e; if (strncmp(buf, "system", 6)==0) { mddev->sync_speed_max = 0; return len; } max = simple_strtoul(buf, &e, 10); if (buf == e || (*e && *e != '\n') || max <= 0) return -EINVAL; mddev->sync_speed_max = max; return len; } static struct md_sysfs_entry md_sync_max = __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); static ssize_t sync_speed_show(mddev_t *mddev, char *page) { unsigned long resync, dt, db; resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); dt = ((jiffies - mddev->resync_mark) / HZ); if (!dt) dt++; db = resync - (mddev->resync_mark_cnt); return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ } static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); static ssize_t sync_completed_show(mddev_t *mddev, char *page) { unsigned long max_blocks, resync; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_blocks = mddev->resync_max_sectors; else max_blocks = mddev->size << 1; resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); return sprintf(page, "%lu / %lu\n", resync, max_blocks); } static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); static struct attribute *md_default_attrs[] = { &md_level.attr, &md_raid_disks.attr, &md_chunk_size.attr, &md_size.attr, &md_metadata.attr, &md_new_device.attr, NULL, }; static struct attribute *md_redundancy_attrs[] = { &md_scan_mode.attr, &md_mismatches.attr, &md_sync_min.attr, &md_sync_max.attr, &md_sync_speed.attr, &md_sync_completed.attr, NULL, }; static struct attribute_group md_redundancy_group = { .name = NULL, .attrs = md_redundancy_attrs, }; static ssize_t md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); ssize_t rv; if (!entry->show) return -EIO; mddev_lock(mddev); rv = entry->show(mddev, page); mddev_unlock(mddev); return rv; } static ssize_t md_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); ssize_t rv; if (!entry->store) return -EIO; mddev_lock(mddev); rv = entry->store(mddev, page, length); mddev_unlock(mddev); return rv; } static void md_free(struct kobject *ko) { mddev_t *mddev = container_of(ko, mddev_t, kobj); kfree(mddev); } static struct sysfs_ops md_sysfs_ops = { .show = md_attr_show, .store = md_attr_store, }; static struct kobj_type md_ktype = { .release = md_free, .sysfs_ops = &md_sysfs_ops, .default_attrs = md_default_attrs, }; int mdp_major = 0; static struct kobject *md_probe(dev_t dev, int *part, void *data) { static DECLARE_MUTEX(disks_sem); mddev_t *mddev = mddev_find(dev); struct gendisk *disk; int partitioned = (MAJOR(dev) != MD_MAJOR); int shift = partitioned ? MdpMinorShift : 0; int unit = MINOR(dev) >> shift; if (!mddev) return NULL; down(&disks_sem); if (mddev->gendisk) { up(&disks_sem); mddev_put(mddev); return NULL; } disk = alloc_disk(1 << shift); if (!disk) { up(&disks_sem); mddev_put(mddev); return NULL; } disk->major = MAJOR(dev); disk->first_minor = unit << shift; if (partitioned) { sprintf(disk->disk_name, "md_d%d", unit); sprintf(disk->devfs_name, "md/d%d", unit); } else { sprintf(disk->disk_name, "md%d", unit); sprintf(disk->devfs_name, "md/%d", unit); } disk->fops = &md_fops; disk->private_data = mddev; disk->queue = mddev->queue; add_disk(disk); mddev->gendisk = disk; up(&disks_sem); mddev->kobj.parent = &disk->kobj; mddev->kobj.k_name = NULL; snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md"); mddev->kobj.ktype = &md_ktype; kobject_register(&mddev->kobj); return NULL; } void md_wakeup_thread(mdk_thread_t *thread); static void md_safemode_timeout(unsigned long data) { mddev_t *mddev = (mddev_t *) data; mddev->safemode = 1; md_wakeup_thread(mddev->thread); } static int start_dirty_degraded; static int do_md_run(mddev_t * mddev) { int err; int chunk_size; struct list_head *tmp; mdk_rdev_t *rdev; struct gendisk *disk; struct mdk_personality *pers; char b[BDEVNAME_SIZE]; if (list_empty(&mddev->disks)) /* cannot run an array with no devices.. */ return -EINVAL; if (mddev->pers) return -EBUSY; /* * Analyze all RAID superblock(s) */ if (!mddev->raid_disks) analyze_sbs(mddev); chunk_size = mddev->chunk_size; if (chunk_size) { if (chunk_size > MAX_CHUNK_SIZE) { printk(KERN_ERR "too big chunk_size: %d > %d\n", chunk_size, MAX_CHUNK_SIZE); return -EINVAL; } /* * chunk-size has to be a power of 2 and multiples of PAGE_SIZE */ if ( (1 << ffz(~chunk_size)) != chunk_size) { printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); return -EINVAL; } if (chunk_size < PAGE_SIZE) { printk(KERN_ERR "too small chunk_size: %d < %ld\n", chunk_size, PAGE_SIZE); return -EINVAL; } /* devices must have minimum size of one chunk */ ITERATE_RDEV(mddev,rdev,tmp) { if (test_bit(Faulty, &rdev->flags)) continue; if (rdev->size < chunk_size / 1024) { printk(KERN_WARNING "md: Dev %s smaller than chunk_size:" " %lluk < %dk\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->size, chunk_size / 1024); return -EINVAL; } } } #ifdef CONFIG_KMOD if (mddev->level != LEVEL_NONE) request_module("md-level-%d", mddev->level); else if (mddev->clevel[0]) request_module("md-%s", mddev->clevel); #endif /* * Drop all container device buffers, from now on * the only valid external interface is through the md * device. * Also find largest hardsector size */ ITERATE_RDEV(mddev,rdev,tmp) { if (test_bit(Faulty, &rdev->flags)) continue; sync_blockdev(rdev->bdev); invalidate_bdev(rdev->bdev, 0); } md_probe(mddev->unit, NULL, NULL); disk = mddev->gendisk; if (!disk) return -ENOMEM; spin_lock(&pers_lock); pers = find_pers(mddev->level, mddev->clevel); if (!pers || !try_module_get(pers->owner)) { spin_unlock(&pers_lock); if (mddev->level != LEVEL_NONE) printk(KERN_WARNING "md: personality for level %d is not loaded!\n", mddev->level); else printk(KERN_WARNING "md: personality for level %s is not loaded!\n", mddev->clevel); return -EINVAL; } mddev->pers = pers; spin_unlock(&pers_lock); mddev->level = pers->level; strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); mddev->recovery = 0; mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ mddev->barriers_work = 1; mddev->ok_start_degraded = start_dirty_degraded; if (start_readonly) mddev->ro = 2; /* read-only, but switch on first write */ err = mddev->pers->run(mddev); if (!err && mddev->pers->sync_request) { err = bitmap_create(mddev); if (err) { printk(KERN_ERR "%s: failed to create bitmap (%d)\n", mdname(mddev), err); mddev->pers->stop(mddev); } } if (err) { printk(KERN_ERR "md: pers->run() failed ...\n"); module_put(mddev->pers->owner); mddev->pers = NULL; bitmap_destroy(mddev); return err; } if (mddev->pers->sync_request) sysfs_create_group(&mddev->kobj, &md_redundancy_group); else if (mddev->ro == 2) /* auto-readonly not meaningful */ mddev->ro = 0; atomic_set(&mddev->writes_pending,0); mddev->safemode = 0; mddev->safemode_timer.function = md_safemode_timeout; mddev->safemode_timer.data = (unsigned long) mddev; mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */ mddev->in_sync = 1; ITERATE_RDEV(mddev,rdev,tmp) if (rdev->raid_disk >= 0) { char nm[20]; sprintf(nm, "rd%d", rdev->raid_disk); sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); } set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); if (mddev->sb_dirty) md_update_sb(mddev); set_capacity(disk, mddev->array_size<<1); /* If we call blk_queue_make_request here, it will * re-initialise max_sectors etc which may have been * refined inside -> run. So just set the bits we need to set. * Most initialisation happended when we called * blk_queue_make_request(..., md_fail_request) * earlier. */ mddev->queue->queuedata = mddev; mddev->queue->make_request_fn = mddev->pers->make_request; mddev->changed = 1; md_new_event(mddev); return 0; } static int restart_array(mddev_t *mddev) { struct gendisk *disk = mddev->gendisk; int err; /* * Complain if it has no devices */ err = -ENXIO; if (list_empty(&mddev->disks)) goto out; if (mddev->pers) { err = -EBUSY; if (!mddev->ro) goto out; mddev->safemode = 0; mddev->ro = 0; set_disk_ro(disk, 0); printk(KERN_INFO "md: %s switched to read-write mode.\n", mdname(mddev)); /* * Kick recovery or resync if necessary */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); err = 0; } else { printk(KERN_ERR "md: %s has no personality assigned.\n", mdname(mddev)); err = -EINVAL; } out: return err; } static int do_md_stop(mddev_t * mddev, int ro) { int err = 0; struct gendisk *disk = mddev->gendisk; if (mddev->pers) { if (atomic_read(&mddev->active)>2) { printk("md: %s still in use.\n",mdname(mddev)); return -EBUSY; } if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; } del_timer_sync(&mddev->safemode_timer); invalidate_partition(disk, 0); if (ro) { err = -ENXIO; if (mddev->ro==1) goto out; mddev->ro = 1; } else { bitmap_flush(mddev); md_super_wait(mddev); if (mddev->ro) set_disk_ro(disk, 0); blk_queue_make_request(mddev->queue, md_fail_request); mddev->pers->stop(mddev); if (mddev->pers->sync_request) sysfs_remove_group(&mddev->kobj, &md_redundancy_group); module_put(mddev->pers->owner); mddev->pers = NULL; if (mddev->ro) mddev->ro = 0; } if (!mddev->in_sync) { /* mark array as shutdown cleanly */ mddev->in_sync = 1; md_update_sb(mddev); } if (ro) set_disk_ro(disk, 1); } bitmap_destroy(mddev); if (mddev->bitmap_file) { atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1); fput(mddev->bitmap_file); mddev->bitmap_file = NULL; } mddev->bitmap_offset = 0; /* * Free resources if final stop */ if (!ro) { mdk_rdev_t *rdev; struct list_head *tmp; struct gendisk *disk; printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); ITERATE_RDEV(mddev,rdev,tmp) if (rdev->raid_disk >= 0) { char nm[20]; sprintf(nm, "rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); } export_array(mddev); mddev->array_size = 0; disk = mddev->gendisk; if (disk) set_capacity(disk, 0); mddev->changed = 1; } else printk(KERN_INFO "md: %s switched to read-only mode.\n", mdname(mddev)); err = 0; md_new_event(mddev); out: return err; } static void autorun_array(mddev_t *mddev) { mdk_rdev_t *rdev; struct list_head *tmp; int err; if (list_empty(&mddev->disks)) return; printk(KERN_INFO "md: running: "); ITERATE_RDEV(mddev,rdev,tmp) { char b[BDEVNAME_SIZE]; printk("<%s>", bdevname(rdev->bdev,b)); } printk("\n"); err = do_md_run (mddev); if (err) { printk(KERN_WARNING "md: do_md_run() returned %d\n", err); do_md_stop (mddev, 0); } } /* * lets try to run arrays based on all disks that have arrived * until now. (those are in pending_raid_disks) * * the method: pick the first pending disk, collect all disks with * the same UUID, remove all from the pending list and put them into * the 'same_array' list. Then order this list based on superblock * update time (freshest comes first), kick out 'old' disks and * compare superblocks. If everything's fine then run it. * * If "unit" is allocated, then bump its reference count */ static void autorun_devices(int part) { struct list_head candidates; struct list_head *tmp; mdk_rdev_t *rdev0, *rdev; mddev_t *mddev; char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: autorun ...\n"); while (!list_empty(&pending_raid_disks)) { dev_t dev; rdev0 = list_entry(pending_raid_disks.next, mdk_rdev_t, same_set); printk(KERN_INFO "md: considering %s ...\n", bdevname(rdev0->bdev,b)); INIT_LIST_HEAD(&candidates); ITERATE_RDEV_PENDING(rdev,tmp) if (super_90_load(rdev, rdev0, 0) >= 0) { printk(KERN_INFO "md: adding %s ...\n", bdevname(rdev->bdev,b)); list_move(&rdev->same_set, &candidates); } /* * now we have a set of devices, with all of them having * mostly sane superblocks. It's time to allocate the * mddev. */ if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) { printk(KERN_INFO "md: unit number in %s is bad: %d\n", bdevname(rdev0->bdev, b), rdev0->preferred_minor); break; } if (part) dev = MKDEV(mdp_major, rdev0->preferred_minor << MdpMinorShift); else dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); md_probe(dev, NULL, NULL); mddev = mddev_find(dev); if (!mddev) { printk(KERN_ERR "md: cannot allocate memory for md drive.\n"); break; } if (mddev_lock(mddev)) printk(KERN_WARNING "md: %s locked, cannot run\n", mdname(mddev)); else if (mddev->raid_disks || mddev->major_version || !list_empty(&mddev->disks)) { printk(KERN_WARNING "md: %s already running, cannot run %s\n", mdname(mddev), bdevname(rdev0->bdev,b)); mddev_unlock(mddev); } else { printk(KERN_INFO "md: created %s\n", mdname(mddev)); ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { list_del_init(&rdev->same_set); if (bind_rdev_to_array(rdev, mddev)) export_rdev(rdev); } autorun_array(mddev); mddev_unlock(mddev); } /* on success, candidates will be empty, on error * it won't... */ ITERATE_RDEV_GENERIC(candidates,rdev,tmp) export_rdev(rdev); mddev_put(mddev); } printk(KERN_INFO "md: ... autorun DONE.\n"); } /* * import RAID devices based on one partition * if possible, the array gets run as well. */ static int autostart_array(dev_t startdev) { char b[BDEVNAME_SIZE]; int err = -EINVAL, i; mdp_super_t *sb = NULL; mdk_rdev_t *start_rdev = NULL, *rdev; start_rdev = md_import_device(startdev, 0, 0); if (IS_ERR(start_rdev)) return err; /* NOTE: this can only work for 0.90.0 superblocks */ sb = (mdp_super_t*)page_address(start_rdev->sb_page); if (sb->major_version != 0 || sb->minor_version != 90 ) { printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n"); export_rdev(start_rdev); return err; } if (test_bit(Faulty, &start_rdev->flags)) { printk(KERN_WARNING "md: can not autostart based on faulty %s!\n", bdevname(start_rdev->bdev,b)); export_rdev(start_rdev); return err; } list_add(&start_rdev->same_set, &pending_raid_disks); for (i = 0; i < MD_SB_DISKS; i++) { mdp_disk_t *desc = sb->disks + i; dev_t dev = MKDEV(desc->major, desc->minor); if (!dev) continue; if (dev == startdev) continue; if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor) continue; rdev = md_import_device(dev, 0, 0); if (IS_ERR(rdev)) continue; list_add(&rdev->same_set, &pending_raid_disks); } /* * possibly return codes */ autorun_devices(0); return 0; } static int get_version(void __user * arg) { mdu_version_t ver; ver.major = MD_MAJOR_VERSION; ver.minor = MD_MINOR_VERSION; ver.patchlevel = MD_PATCHLEVEL_VERSION; if (copy_to_user(arg, &ver, sizeof(ver))) return -EFAULT; return 0; } static int get_array_info(mddev_t * mddev, void __user * arg) { mdu_array_info_t info; int nr,working,active,failed,spare; mdk_rdev_t *rdev; struct list_head *tmp; nr=working=active=failed=spare=0; ITERATE_RDEV(mddev,rdev,tmp) { nr++; if (test_bit(Faulty, &rdev->flags)) failed++; else { working++; if (test_bit(In_sync, &rdev->flags)) active++; else spare++; } } info.major_version = mddev->major_version; info.minor_version = mddev->minor_version; info.patch_version = MD_PATCHLEVEL_VERSION; info.ctime = mddev->ctime; info.level = mddev->level; info.size = mddev->size; info.nr_disks = nr; info.raid_disks = mddev->raid_disks; info.md_minor = mddev->md_minor; info.not_persistent= !mddev->persistent; info.utime = mddev->utime; info.state = 0; if (mddev->in_sync) info.state = (1<<MD_SB_CLEAN); if (mddev->bitmap && mddev->bitmap_offset) info.state = (1<<MD_SB_BITMAP_PRESENT); info.active_disks = active; info.working_disks = working; info.failed_disks = failed; info.spare_disks = spare; info.layout = mddev->layout; info.chunk_size = mddev->chunk_size; if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int get_bitmap_file(mddev_t * mddev, void __user * arg) { mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ char *ptr, *buf = NULL; int err = -ENOMEM; file = kmalloc(sizeof(*file), GFP_KERNEL); if (!file) goto out; /* bitmap disabled, zero the first byte and copy out */ if (!mddev->bitmap || !mddev->bitmap->file) { file->pathname[0] = '\0'; goto copy_out; } buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); if (!buf) goto out; ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); if (!ptr) goto out; strcpy(file->pathname, ptr); copy_out: err = 0; if (copy_to_user(arg, file, sizeof(*file))) err = -EFAULT; out: kfree(buf); kfree(file); return err; } static int get_disk_info(mddev_t * mddev, void __user * arg) { mdu_disk_info_t info; unsigned int nr; mdk_rdev_t *rdev; if (copy_from_user(&info, arg, sizeof(info))) return -EFAULT; nr = info.number; rdev = find_rdev_nr(mddev, nr); if (rdev) { info.major = MAJOR(rdev->bdev->bd_dev); info.minor = MINOR(rdev->bdev->bd_dev); info.raid_disk = rdev->raid_disk; info.state = 0; if (test_bit(Faulty, &rdev->flags)) info.state |= (1<<MD_DISK_FAULTY); else if (test_bit(In_sync, &rdev->flags)) { info.state |= (1<<MD_DISK_ACTIVE); info.state |= (1<<MD_DISK_SYNC); } if (test_bit(WriteMostly, &rdev->flags)) info.state |= (1<<MD_DISK_WRITEMOSTLY); } else { info.major = info.minor = 0; info.raid_disk = -1; info.state = (1<<MD_DISK_REMOVED); } if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) { char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; mdk_rdev_t *rdev; dev_t dev = MKDEV(info->major,info->minor); if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) return -EOVERFLOW; if (!mddev->raid_disks) { int err; /* expecting a device which has a superblock */ rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } if (!list_empty(&mddev->disks)) { mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, mdk_rdev_t, same_set); int err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) { printk(KERN_WARNING "md: %s has different UUID to %s\n", bdevname(rdev->bdev,b), bdevname(rdev0->bdev,b2)); export_rdev(rdev); return -EINVAL; } } err = bind_rdev_to_array(rdev, mddev); if (err) export_rdev(rdev); return err; } /* * add_new_disk can be used once the array is assembled * to add "hot spares". They must already have a superblock * written */ if (mddev->pers) { int err; if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } if (mddev->persistent) rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); else rdev = md_import_device(dev, -1, -1); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } /* set save_raid_disk if appropriate */ if (!mddev->persistent) { if (info->state & (1<<MD_DISK_SYNC) && info->raid_disk < mddev->raid_disks) rdev->raid_disk = info->raid_disk; else rdev->raid_disk = -1; } else super_types[mddev->major_version]. validate_super(mddev, rdev); rdev->saved_raid_disk = rdev->raid_disk; clear_bit(In_sync, &rdev->flags); /* just to be sure */ if (info->state & (1<<MD_DISK_WRITEMOSTLY)) set_bit(WriteMostly, &rdev->flags); rdev->raid_disk = -1; err = bind_rdev_to_array(rdev, mddev); if (err) export_rdev(rdev); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); return err; } /* otherwise, add_new_disk is only allowed * for major_version==0 superblocks */ if (mddev->major_version != 0) { printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", mdname(mddev)); return -EINVAL; } if (!(info->state & (1<<MD_DISK_FAULTY))) { int err; rdev = md_import_device (dev, -1, 0); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: error, md_import_device() returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } rdev->desc_nr = info->number; if (info->raid_disk < mddev->raid_disks) rdev->raid_disk = info->raid_disk; else rdev->raid_disk = -1; rdev->flags = 0; if (rdev->raid_disk < mddev->raid_disks) if (info->state & (1<<MD_DISK_SYNC)) set_bit(In_sync, &rdev->flags); if (info->state & (1<<MD_DISK_WRITEMOSTLY)) set_bit(WriteMostly, &rdev->flags); if (!mddev->persistent) { printk(KERN_INFO "md: nonpersistent superblock ...\n"); rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; } else rdev->sb_offset = calc_dev_sboffset(rdev->bdev); rdev->size = calc_dev_size(rdev, mddev->chunk_size); err = bind_rdev_to_array(rdev, mddev); if (err) { export_rdev(rdev); return err; } } return 0; } static int hot_remove_disk(mddev_t * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; mdk_rdev_t *rdev; if (!mddev->pers) return -ENODEV; rdev = find_rdev(mddev, dev); if (!rdev) return -ENXIO; if (rdev->raid_disk >= 0) goto busy; kick_rdev_from_array(rdev); md_update_sb(mddev); md_new_event(mddev); return 0; busy: printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", bdevname(rdev->bdev,b), mdname(mddev)); return -EBUSY; } static int hot_add_disk(mddev_t * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; int err; unsigned int size; mdk_rdev_t *rdev; if (!mddev->pers) return -ENODEV; if (mddev->major_version != 0) { printk(KERN_WARNING "%s: HOT_ADD may only be used with" " version-0 superblocks.\n", mdname(mddev)); return -EINVAL; } if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } rdev = md_import_device (dev, -1, 0); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: error, md_import_device() returned %ld\n", PTR_ERR(rdev)); return -EINVAL; } if (mddev->persistent) rdev->sb_offset = calc_dev_sboffset(rdev->bdev); else rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; size = calc_dev_size(rdev, mddev->chunk_size); rdev->size = size; if (test_bit(Faulty, &rdev->flags)) { printk(KERN_WARNING "md: can not hot-add faulty %s disk to %s!\n", bdevname(rdev->bdev,b), mdname(mddev)); err = -EINVAL; goto abort_export; } clear_bit(In_sync, &rdev->flags); rdev->desc_nr = -1; err = bind_rdev_to_array(rdev, mddev); if (err) goto abort_export; /* * The rest should better be atomic, we can have disk failures * noticed in interrupt contexts ... */ if (rdev->desc_nr == mddev->max_disks) { printk(KERN_WARNING "%s: can not hot-add to full array!\n", mdname(mddev)); err = -EBUSY; goto abort_unbind_export; } rdev->raid_disk = -1; md_update_sb(mddev); /* * Kick recovery, maybe this spare has to be added to the * array immediately. */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_new_event(mddev); return 0; abort_unbind_export: unbind_rdev_from_array(rdev); abort_export: export_rdev(rdev); return err; } /* similar to deny_write_access, but accounts for our holding a reference * to the file ourselves */ static int deny_bitmap_write_access(struct file * file) { struct inode *inode = file->f_mapping->host; spin_lock(&inode->i_lock); if (atomic_read(&inode->i_writecount) > 1) { spin_unlock(&inode->i_lock); return -ETXTBSY; } atomic_set(&inode->i_writecount, -1); spin_unlock(&inode->i_lock); return 0; } static int set_bitmap_file(mddev_t *mddev, int fd) { int err; if (mddev->pers) { if (!mddev->pers->quiesce) return -EBUSY; if (mddev->recovery || mddev->sync_thread) return -EBUSY; /* we should be able to change the bitmap.. */ } if (fd >= 0) { if (mddev->bitmap) return -EEXIST; /* cannot add when bitmap is present */ mddev->bitmap_file = fget(fd); if (mddev->bitmap_file == NULL) { printk(KERN_ERR "%s: error: failed to get bitmap file\n", mdname(mddev)); return -EBADF; } err = deny_bitmap_write_access(mddev->bitmap_file); if (err) { printk(KERN_ERR "%s: error: bitmap file is already in use\n", mdname(mddev)); fput(mddev->bitmap_file); mddev->bitmap_file = NULL; return err; } mddev->bitmap_offset = 0; /* file overrides offset */ } else if (mddev->bitmap == NULL) return -ENOENT; /* cannot remove what isn't there */ err = 0; if (mddev->pers) { mddev->pers->quiesce(mddev, 1); if (fd >= 0) err = bitmap_create(mddev); if (fd < 0 || err) bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); } else if (fd < 0) { if (mddev->bitmap_file) fput(mddev->bitmap_file); mddev->bitmap_file = NULL; } return err; } /* * set_array_info is used two different ways * The original usage is when creating a new array. * In this usage, raid_disks is > 0 and it together with * level, size, not_persistent,layout,chunksize determine the * shape of the array. * This will always create an array with a type-0.90.0 superblock. * The newer usage is when assembling an array. * In this case raid_disks will be 0, and the major_version field is * use to determine which style super-blocks are to be found on the devices. * The minor and patch _version numbers are also kept incase the * super_block handler wishes to interpret them. */ static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) { if (info->raid_disks == 0) { /* just setting version number for superblock loading */ if (info->major_version < 0 || info->major_version >= sizeof(super_types)/sizeof(super_types[0]) || super_types[info->major_version].name == NULL) { /* maybe try to auto-load a module? */ printk(KERN_INFO "md: superblock version %d not known\n", info->major_version); return -EINVAL; } mddev->major_version = info->major_version; mddev->minor_version = info->minor_version; mddev->patch_version = info->patch_version; return 0; } mddev->major_version = MD_MAJOR_VERSION; mddev->minor_version = MD_MINOR_VERSION; mddev->patch_version = MD_PATCHLEVEL_VERSION; mddev->ctime = get_seconds(); mddev->level = info->level; mddev->size = info->size; mddev->raid_disks = info->raid_disks; /* don't set md_minor, it is determined by which /dev/md* was * openned */ if (info->state & (1<<MD_SB_CLEAN)) mddev->recovery_cp = MaxSector; else mddev->recovery_cp = 0; mddev->persistent = ! info->not_persistent; mddev->layout = info->layout; mddev->chunk_size = info->chunk_size; mddev->max_disks = MD_SB_DISKS; mddev->sb_dirty = 1; mddev->default_bitmap_offset = MD_SB_BYTES >> 9; mddev->bitmap_offset = 0; /* * Generate a 128 bit UUID */ get_random_bytes(mddev->uuid, 16); return 0; } static int update_size(mddev_t *mddev, unsigned long size) { mdk_rdev_t * rdev; int rv; struct list_head *tmp; if (mddev->pers->resize == NULL) return -EINVAL; /* The "size" is the amount of each device that is used. * This can only make sense for arrays with redundancy. * linear and raid0 always use whatever space is available * We can only consider changing the size if no resync * or reconstruction is happening, and if the new size * is acceptable. It must fit before the sb_offset or, * if that is <data_offset, it must fit before the * size of each device. * If size is zero, we find the largest size that fits. */ if (mddev->sync_thread) return -EBUSY; ITERATE_RDEV(mddev,rdev,tmp) { sector_t avail; int fit = (size == 0); if (rdev->sb_offset > rdev->data_offset) avail = (rdev->sb_offset*2) - rdev->data_offset; else avail = get_capacity(rdev->bdev->bd_disk) - rdev->data_offset; if (fit && (size == 0 || size > avail/2)) size = avail/2; if (avail < ((sector_t)size << 1)) return -ENOSPC; } rv = mddev->pers->resize(mddev, (sector_t)size *2); if (!rv) { struct block_device *bdev; bdev = bdget_disk(mddev->gendisk, 0); if (bdev) { mutex_lock(&bdev->bd_inode->i_mutex); i_size_write(bdev->bd_inode, mddev->array_size << 10); mutex_unlock(&bdev->bd_inode->i_mutex); bdput(bdev); } } return rv; } static int update_raid_disks(mddev_t *mddev, int raid_disks) { int rv; /* change the number of raid disks */ if (mddev->pers->reshape == NULL) return -EINVAL; if (raid_disks <= 0 || raid_disks >= mddev->max_disks) return -EINVAL; if (mddev->sync_thread) return -EBUSY; rv = mddev->pers->reshape(mddev, raid_disks); if (!rv) { struct block_device *bdev; bdev = bdget_disk(mddev->gendisk, 0); if (bdev) { mutex_lock(&bdev->bd_inode->i_mutex); i_size_write(bdev->bd_inode, mddev->array_size << 10); mutex_unlock(&bdev->bd_inode->i_mutex); bdput(bdev); } } return rv; } /* * update_array_info is used to change the configuration of an * on-line array. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size * fields in the info are checked against the array. * Any differences that cannot be handled will cause an error. * Normally, only one change can be managed at a time. */ static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) { int rv = 0; int cnt = 0; int state = 0; /* calculate expected state,ignoring low bits */ if (mddev->bitmap && mddev->bitmap_offset) state |= (1 << MD_SB_BITMAP_PRESENT); if (mddev->major_version != info->major_version || mddev->minor_version != info->minor_version || /* mddev->patch_version != info->patch_version || */ mddev->ctime != info->ctime || mddev->level != info->level || /* mddev->layout != info->layout || */ !mddev->persistent != info->not_persistent|| mddev->chunk_size != info->chunk_size || /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ ((state^info->state) & 0xfffffe00) ) return -EINVAL; /* Check there is only one change */ if (mddev->size != info->size) cnt++; if (mddev->raid_disks != info->raid_disks) cnt++; if (mddev->layout != info->layout) cnt++; if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; if (cnt == 0) return 0; if (cnt > 1) return -EINVAL; if (mddev->layout != info->layout) { /* Change layout * we don't need to do anything at the md level, the * personality will take care of it all. */ if (mddev->pers->reconfig == NULL) return -EINVAL; else return mddev->pers->reconfig(mddev, info->layout, -1); } if (mddev->size != info->size) rv = update_size(mddev, info->size); if (mddev->raid_disks != info->raid_disks) rv = update_raid_disks(mddev, info->raid_disks); if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { if (mddev->pers->quiesce == NULL) return -EINVAL; if (mddev->recovery || mddev->sync_thread) return -EBUSY; if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { /* add the bitmap */ if (mddev->bitmap) return -EEXIST; if (mddev->default_bitmap_offset == 0) return -EINVAL; mddev->bitmap_offset = mddev->default_bitmap_offset; mddev->pers->quiesce(mddev, 1); rv = bitmap_create(mddev); if (rv) bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); } else { /* remove the bitmap */ if (!mddev->bitmap) return -ENOENT; if (mddev->bitmap->file) return -EINVAL; mddev->pers->quiesce(mddev, 1); bitmap_destroy(mddev); mddev->pers->quiesce(mddev, 0); mddev->bitmap_offset = 0; } } md_update_sb(mddev); return rv; } static int set_disk_faulty(mddev_t *mddev, dev_t dev) { mdk_rdev_t *rdev; if (mddev->pers == NULL) return -ENODEV; rdev = find_rdev(mddev, dev); if (!rdev) return -ENODEV; md_error(mddev, rdev); return 0; } static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) { mddev_t *mddev = bdev->bd_disk->private_data; geo->heads = 2; geo->sectors = 4; geo->cylinders = get_capacity(mddev->gendisk) / 8; return 0; } static int md_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int err = 0; void __user *argp = (void __user *)arg; mddev_t *mddev = NULL; if (!capable(CAP_SYS_ADMIN)) return -EACCES; /* * Commands dealing with the RAID driver but not any * particular array: */ switch (cmd) { case RAID_VERSION: err = get_version(argp); goto done; case PRINT_RAID_DEBUG: err = 0; md_print_devices(); goto done; #ifndef MODULE case RAID_AUTORUN: err = 0; autostart_arrays(arg); goto done; #endif default:; } /* * Commands creating/starting a new array: */ mddev = inode->i_bdev->bd_disk->private_data; if (!mddev) { BUG(); goto abort; } if (cmd == START_ARRAY) { /* START_ARRAY doesn't need to lock the array as autostart_array * does the locking, and it could even be a different array */ static int cnt = 3; if (cnt > 0 ) { printk(KERN_WARNING "md: %s(pid %d) used deprecated START_ARRAY ioctl. " "This will not be supported beyond July 2006\n", current->comm, current->pid); cnt--; } err = autostart_array(new_decode_dev(arg)); if (err) { printk(KERN_WARNING "md: autostart failed!\n"); goto abort; } goto done; } err = mddev_lock(mddev); if (err) { printk(KERN_INFO "md: ioctl lock interrupted, reason %d, cmd %d\n", err, cmd); goto abort; } switch (cmd) { case SET_ARRAY_INFO: { mdu_array_info_t info; if (!arg) memset(&info, 0, sizeof(info)); else if (copy_from_user(&info, argp, sizeof(info))) { err = -EFAULT; goto abort_unlock; } if (mddev->pers) { err = update_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't update" " array info. %d\n", err); goto abort_unlock; } goto done_unlock; } if (!list_empty(&mddev->disks)) { printk(KERN_WARNING "md: array %s already has disks!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } if (mddev->raid_disks) { printk(KERN_WARNING "md: array %s already initialised!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } err = set_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't set" " array info. %d\n", err); goto abort_unlock; } } goto done_unlock; default:; } /* * Commands querying/configuring an existing array: */ /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, * RUN_ARRAY, and SET_BITMAP_FILE are allowed */ if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) { err = -ENODEV; goto abort_unlock; } /* * Commands even a read-only array can execute: */ switch (cmd) { case GET_ARRAY_INFO: err = get_array_info(mddev, argp); goto done_unlock; case GET_BITMAP_FILE: err = get_bitmap_file(mddev, argp); goto done_unlock; case GET_DISK_INFO: err = get_disk_info(mddev, argp); goto done_unlock; case RESTART_ARRAY_RW: err = restart_array(mddev); goto done_unlock; case STOP_ARRAY: err = do_md_stop (mddev, 0); goto done_unlock; case STOP_ARRAY_RO: err = do_md_stop (mddev, 1); goto done_unlock; /* * We have a problem here : there is no easy way to give a CHS * virtual geometry. We currently pretend that we have a 2 heads * 4 sectors (with a BIG number of cylinders...). This drives * dosfs just mad... ;-) */ } /* * The remaining ioctls are changing the state of the * superblock, so we do not allow them on read-only arrays. * However non-MD ioctls (e.g. get-size) will still come through * here and hit the 'default' below, so only disallow * 'md' ioctls, and switch to rw mode if started auto-readonly. */ if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { if (mddev->ro == 2) { mddev->ro = 0; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } else { err = -EROFS; goto abort_unlock; } } switch (cmd) { case ADD_NEW_DISK: { mdu_disk_info_t info; if (copy_from_user(&info, argp, sizeof(info))) err = -EFAULT; else err = add_new_disk(mddev, &info); goto done_unlock; } case HOT_REMOVE_DISK: err = hot_remove_disk(mddev, new_decode_dev(arg)); goto done_unlock; case HOT_ADD_DISK: err = hot_add_disk(mddev, new_decode_dev(arg)); goto done_unlock; case SET_DISK_FAULTY: err = set_disk_faulty(mddev, new_decode_dev(arg)); goto done_unlock; case RUN_ARRAY: err = do_md_run (mddev); goto done_unlock; case SET_BITMAP_FILE: err = set_bitmap_file(mddev, (int)arg); goto done_unlock; default: if (_IOC_TYPE(cmd) == MD_MAJOR) printk(KERN_WARNING "md: %s(pid %d) used" " obsolete MD ioctl, upgrade your" " software to use new ictls.\n", current->comm, current->pid); err = -EINVAL; goto abort_unlock; } done_unlock: abort_unlock: mddev_unlock(mddev); return err; done: if (err) MD_BUG(); abort: return err; } static int md_open(struct inode *inode, struct file *file) { /* * Succeed if we can lock the mddev, which confirms that * it isn't being stopped right now. */ mddev_t *mddev = inode->i_bdev->bd_disk->private_data; int err; if ((err = mddev_lock(mddev))) goto out; err = 0; mddev_get(mddev); mddev_unlock(mddev); check_disk_change(inode->i_bdev); out: return err; } static int md_release(struct inode *inode, struct file * file) { mddev_t *mddev = inode->i_bdev->bd_disk->private_data; if (!mddev) BUG(); mddev_put(mddev); return 0; } static int md_media_changed(struct gendisk *disk) { mddev_t *mddev = disk->private_data; return mddev->changed; } static int md_revalidate(struct gendisk *disk) { mddev_t *mddev = disk->private_data; mddev->changed = 0; return 0; } static struct block_device_operations md_fops = { .owner = THIS_MODULE, .open = md_open, .release = md_release, .ioctl = md_ioctl, .getgeo = md_getgeo, .media_changed = md_media_changed, .revalidate_disk= md_revalidate, }; static int md_thread(void * arg) { mdk_thread_t *thread = arg; /* * md_thread is a 'system-thread', it's priority should be very * high. We avoid resource deadlocks individually in each * raid personality. (RAID5 does preallocation) We also use RR and * the very same RT priority as kswapd, thus we will never get * into a priority inversion deadlock. * * we definitely have to have equal or higher priority than * bdflush, otherwise bdflush will deadlock if there are too * many dirty RAID5 blocks. */ allow_signal(SIGKILL); while (!kthread_should_stop()) { /* We need to wait INTERRUPTIBLE so that * we don't add to the load-average. * That means we need to be sure no signals are * pending */ if (signal_pending(current)) flush_signals(current); wait_event_interruptible_timeout (thread->wqueue, test_bit(THREAD_WAKEUP, &thread->flags) || kthread_should_stop(), thread->timeout); try_to_freeze(); clear_bit(THREAD_WAKEUP, &thread->flags); thread->run(thread->mddev); } return 0; } void md_wakeup_thread(mdk_thread_t *thread) { if (thread) { dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); set_bit(THREAD_WAKEUP, &thread->flags); wake_up(&thread->wqueue); } } mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, const char *name) { mdk_thread_t *thread; thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); if (!thread) return NULL; init_waitqueue_head(&thread->wqueue); thread->run = run; thread->mddev = mddev; thread->timeout = MAX_SCHEDULE_TIMEOUT; thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); if (IS_ERR(thread->tsk)) { kfree(thread); return NULL; } return thread; } void md_unregister_thread(mdk_thread_t *thread) { dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); kthread_stop(thread->tsk); kfree(thread); } void md_error(mddev_t *mddev, mdk_rdev_t *rdev) { if (!mddev) { MD_BUG(); return; } if (!rdev || test_bit(Faulty, &rdev->flags)) return; /* dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", mdname(mddev), MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), __builtin_return_address(0),__builtin_return_address(1), __builtin_return_address(2),__builtin_return_address(3)); */ if (!mddev->pers->error_handler) return; mddev->pers->error_handler(mddev,rdev); set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); md_new_event(mddev); } /* seq_file implementation /proc/mdstat */ static void status_unused(struct seq_file *seq) { int i = 0; mdk_rdev_t *rdev; struct list_head *tmp; seq_printf(seq, "unused devices: "); ITERATE_RDEV_PENDING(rdev,tmp) { char b[BDEVNAME_SIZE]; i++; seq_printf(seq, "%s ", bdevname(rdev->bdev,b)); } if (!i) seq_printf(seq, "<none>"); seq_printf(seq, "\n"); } static void status_resync(struct seq_file *seq, mddev_t * mddev) { unsigned long max_blocks, resync, res, dt, db, rt; resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_blocks = mddev->resync_max_sectors >> 1; else max_blocks = mddev->size; /* * Should not happen. */ if (!max_blocks) { MD_BUG(); return; } res = (resync/1024)*1000/(max_blocks/1024 + 1); { int i, x = res/50, y = 20-x; seq_printf(seq, "["); for (i = 0; i < x; i++) seq_printf(seq, "="); seq_printf(seq, ">"); for (i = 0; i < y; i++) seq_printf(seq, "."); seq_printf(seq, "] "); } seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)", (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"), res/10, res % 10, resync, max_blocks); /* * We do not want to overflow, so the order of operands and * the * 100 / 100 trick are important. We do a +1 to be * safe against division by zero. We only estimate anyway. * * dt: time from mark until now * db: blocks written from mark until now * rt: remaining time */ dt = ((jiffies - mddev->resync_mark) / HZ); if (!dt) dt++; db = resync - (mddev->resync_mark_cnt/2); rt = (dt * ((max_blocks-resync) / (db/100+1)))/100; seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); seq_printf(seq, " speed=%ldK/sec", db/dt); } static void *md_seq_start(struct seq_file *seq, loff_t *pos) { struct list_head *tmp; loff_t l = *pos; mddev_t *mddev; if (l >= 0x10000) return NULL; if (!l--) /* header */ return (void*)1; spin_lock(&all_mddevs_lock); list_for_each(tmp,&all_mddevs) if (!l--) { mddev = list_entry(tmp, mddev_t, all_mddevs); mddev_get(mddev); spin_unlock(&all_mddevs_lock); return mddev; } spin_unlock(&all_mddevs_lock); if (!l--) return (void*)2;/* tail */ return NULL; } static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct list_head *tmp; mddev_t *next_mddev, *mddev = v; ++*pos; if (v == (void*)2) return NULL; spin_lock(&all_mddevs_lock); if (v == (void*)1) tmp = all_mddevs.next; else tmp = mddev->all_mddevs.next; if (tmp != &all_mddevs) next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); else { next_mddev = (void*)2; *pos = 0x10000; } spin_unlock(&all_mddevs_lock); if (v != (void*)1) mddev_put(mddev); return next_mddev; } static void md_seq_stop(struct seq_file *seq, void *v) { mddev_t *mddev = v; if (mddev && v != (void*)1 && v != (void*)2) mddev_put(mddev); } struct mdstat_info { int event; }; static int md_seq_show(struct seq_file *seq, void *v) { mddev_t *mddev = v; sector_t size; struct list_head *tmp2; mdk_rdev_t *rdev; struct mdstat_info *mi = seq->private; struct bitmap *bitmap; if (v == (void*)1) { struct mdk_personality *pers; seq_printf(seq, "Personalities : "); spin_lock(&pers_lock); list_for_each_entry(pers, &pers_list, list) seq_printf(seq, "[%s] ", pers->name); spin_unlock(&pers_lock); seq_printf(seq, "\n"); mi->event = atomic_read(&md_event_count); return 0; } if (v == (void*)2) { status_unused(seq); return 0; } if (mddev_lock(mddev)!=0) return -EINTR; if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { seq_printf(seq, "%s : %sactive", mdname(mddev), mddev->pers ? "" : "in"); if (mddev->pers) { if (mddev->ro==1) seq_printf(seq, " (read-only)"); if (mddev->ro==2) seq_printf(seq, "(auto-read-only)"); seq_printf(seq, " %s", mddev->pers->name); } size = 0; ITERATE_RDEV(mddev,rdev,tmp2) { char b[BDEVNAME_SIZE]; seq_printf(seq, " %s[%d]", bdevname(rdev->bdev,b), rdev->desc_nr); if (test_bit(WriteMostly, &rdev->flags)) seq_printf(seq, "(W)"); if (test_bit(Faulty, &rdev->flags)) { seq_printf(seq, "(F)"); continue; } else if (rdev->raid_disk < 0) seq_printf(seq, "(S)"); /* spare */ size += rdev->size; } if (!list_empty(&mddev->disks)) { if (mddev->pers) seq_printf(seq, "\n %llu blocks", (unsigned long long)mddev->array_size); else seq_printf(seq, "\n %llu blocks", (unsigned long long)size); } if (mddev->persistent) { if (mddev->major_version != 0 || mddev->minor_version != 90) { seq_printf(seq," super %d.%d", mddev->major_version, mddev->minor_version); } } else seq_printf(seq, " super non-persistent"); if (mddev->pers) { mddev->pers->status (seq, mddev); seq_printf(seq, "\n "); if (mddev->pers->sync_request) { if (mddev->curr_resync > 2) { status_resync (seq, mddev); seq_printf(seq, "\n "); } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) seq_printf(seq, "\tresync=DELAYED\n "); else if (mddev->recovery_cp < MaxSector) seq_printf(seq, "\tresync=PENDING\n "); } } else seq_printf(seq, "\n "); if ((bitmap = mddev->bitmap)) { unsigned long chunk_kb; unsigned long flags; spin_lock_irqsave(&bitmap->lock, flags); chunk_kb = bitmap->chunksize >> 10; seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " "%lu%s chunk", bitmap->pages - bitmap->missing_pages, bitmap->pages, (bitmap->pages - bitmap->missing_pages) << (PAGE_SHIFT - 10), chunk_kb ? chunk_kb : bitmap->chunksize, chunk_kb ? "KB" : "B"); if (bitmap->file) { seq_printf(seq, ", file: "); seq_path(seq, bitmap->file->f_vfsmnt, bitmap->file->f_dentry," \t\n"); } seq_printf(seq, "\n"); spin_unlock_irqrestore(&bitmap->lock, flags); } seq_printf(seq, "\n"); } mddev_unlock(mddev); return 0; } static struct seq_operations md_seq_ops = { .start = md_seq_start, .next = md_seq_next, .stop = md_seq_stop, .show = md_seq_show, }; static int md_seq_open(struct inode *inode, struct file *file) { int error; struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); if (mi == NULL) return -ENOMEM; error = seq_open(file, &md_seq_ops); if (error) kfree(mi); else { struct seq_file *p = file->private_data; p->private = mi; mi->event = atomic_read(&md_event_count); } return error; } static int md_seq_release(struct inode *inode, struct file *file) { struct seq_file *m = file->private_data; struct mdstat_info *mi = m->private; m->private = NULL; kfree(mi); return seq_release(inode, file); } static unsigned int mdstat_poll(struct file *filp, poll_table *wait) { struct seq_file *m = filp->private_data; struct mdstat_info *mi = m->private; int mask; poll_wait(filp, &md_event_waiters, wait); /* always allow read */ mask = POLLIN | POLLRDNORM; if (mi->event != atomic_read(&md_event_count)) mask |= POLLERR | POLLPRI; return mask; } static struct file_operations md_seq_fops = { .open = md_seq_open, .read = seq_read, .llseek = seq_lseek, .release = md_seq_release, .poll = mdstat_poll, }; int register_md_personality(struct mdk_personality *p) { spin_lock(&pers_lock); list_add_tail(&p->list, &pers_list); printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); spin_unlock(&pers_lock); return 0; } int unregister_md_personality(struct mdk_personality *p) { printk(KERN_INFO "md: %s personality unregistered\n", p->name); spin_lock(&pers_lock); list_del_init(&p->list); spin_unlock(&pers_lock); return 0; } static int is_mddev_idle(mddev_t *mddev) { mdk_rdev_t * rdev; struct list_head *tmp; int idle; unsigned long curr_events; idle = 1; ITERATE_RDEV(mddev,rdev,tmp) { struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; curr_events = disk_stat_read(disk, sectors[0]) + disk_stat_read(disk, sectors[1]) - atomic_read(&disk->sync_io); /* The difference between curr_events and last_events * will be affected by any new non-sync IO (making * curr_events bigger) and any difference in the amount of * in-flight syncio (making current_events bigger or smaller) * The amount in-flight is currently limited to * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6 * which is at most 4096 sectors. * These numbers are fairly fragile and should be made * more robust, probably by enforcing the * 'window size' that md_do_sync sort-of uses. * * Note: the following is an unsigned comparison. */ if ((curr_events - rdev->last_events + 4096) > 8192) { rdev->last_events = curr_events; idle = 0; } } return idle; } void md_done_sync(mddev_t *mddev, int blocks, int ok) { /* another "blocks" (512byte) blocks have been synced */ atomic_sub(blocks, &mddev->recovery_active); wake_up(&mddev->recovery_wait); if (!ok) { set_bit(MD_RECOVERY_ERR, &mddev->recovery); md_wakeup_thread(mddev->thread); // stop recovery, signal do_sync .... } } /* md_write_start(mddev, bi) * If we need to update some array metadata (e.g. 'active' flag * in superblock) before writing, schedule a superblock update * and wait for it to complete. */ void md_write_start(mddev_t *mddev, struct bio *bi) { if (bio_data_dir(bi) != WRITE) return; BUG_ON(mddev->ro == 1); if (mddev->ro == 2) { /* need to switch to read/write */ mddev->ro = 0; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } atomic_inc(&mddev->writes_pending); if (mddev->in_sync) { spin_lock_irq(&mddev->write_lock); if (mddev->in_sync) { mddev->in_sync = 0; mddev->sb_dirty = 1; md_wakeup_thread(mddev->thread); } spin_unlock_irq(&mddev->write_lock); } wait_event(mddev->sb_wait, mddev->sb_dirty==0); } void md_write_end(mddev_t *mddev) { if (atomic_dec_and_test(&mddev->writes_pending)) { if (mddev->safemode == 2) md_wakeup_thread(mddev->thread); else mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); } } static DECLARE_WAIT_QUEUE_HEAD(resync_wait); #define SYNC_MARKS 10 #define SYNC_MARK_STEP (3*HZ) static void md_do_sync(mddev_t *mddev) { mddev_t *mddev2; unsigned int currspeed = 0, window; sector_t max_sectors,j, io_sectors; unsigned long mark[SYNC_MARKS]; sector_t mark_cnt[SYNC_MARKS]; int last_mark,m; struct list_head *tmp; sector_t last_check; int skipped = 0; /* just incase thread restarts... */ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) return; /* we overload curr_resync somewhat here. * 0 == not engaged in resync at all * 2 == checking that there is no conflict with another sync * 1 == like 2, but have yielded to allow conflicting resync to * commense * other == active in resync - this many blocks * * Before starting a resync we must have set curr_resync to * 2, and then checked that every "conflicting" array has curr_resync * less than ours. When we find one that is the same or higher * we wait on resync_wait. To avoid deadlock, we reduce curr_resync * to 1 if we choose to yield (based arbitrarily on address of mddev structure). * This will mean we have to start checking from the beginning again. * */ do { mddev->curr_resync = 2; try_again: if (kthread_should_stop()) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto skip; } ITERATE_MDDEV(mddev2,tmp) { if (mddev2 == mddev) continue; if (mddev2->curr_resync && match_mddev_units(mddev,mddev2)) { DEFINE_WAIT(wq); if (mddev < mddev2 && mddev->curr_resync == 2) { /* arbitrarily yield */ mddev->curr_resync = 1; wake_up(&resync_wait); } if (mddev > mddev2 && mddev->curr_resync == 1) /* no need to wait here, we can wait the next * time 'round when curr_resync == 2 */ continue; prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); if (!kthread_should_stop() && mddev2->curr_resync >= mddev->curr_resync) { printk(KERN_INFO "md: delaying resync of %s" " until %s has finished resync (they" " share one or more physical units)\n", mdname(mddev), mdname(mddev2)); mddev_put(mddev2); schedule(); finish_wait(&resync_wait, &wq); goto try_again; } finish_wait(&resync_wait, &wq); } } } while (mddev->curr_resync < 2); if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { /* resync follows the size requested by the personality, * which defaults to physical size, but can be virtual size */ max_sectors = mddev->resync_max_sectors; mddev->resync_mismatches = 0; } else /* recovery follows the physical size of devices */ max_sectors = mddev->size << 1; printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev)); printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:" " %d KB/sec/disc.\n", speed_min(mddev)); printk(KERN_INFO "md: using maximum available idle IO bandwidth " "(but not more than %d KB/sec) for reconstruction.\n", speed_max(mddev)); is_mddev_idle(mddev); /* this also initializes IO event counters */ /* we don't use the checkpoint if there's a bitmap */ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) j = mddev->recovery_cp; else j = 0; io_sectors = 0; for (m = 0; m < SYNC_MARKS; m++) { mark[m] = jiffies; mark_cnt[m] = io_sectors; } last_mark = 0; mddev->resync_mark = mark[last_mark]; mddev->resync_mark_cnt = mark_cnt[last_mark]; /* * Tune reconstruction: */ window = 32*(PAGE_SIZE/512); printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", window/2,(unsigned long long) max_sectors/2); atomic_set(&mddev->recovery_active, 0); init_waitqueue_head(&mddev->recovery_wait); last_check = 0; if (j>2) { printk(KERN_INFO "md: resuming recovery of %s from checkpoint.\n", mdname(mddev)); mddev->curr_resync = j; } while (j < max_sectors) { sector_t sectors; skipped = 0; sectors = mddev->pers->sync_request(mddev, j, &skipped, currspeed < speed_min(mddev)); if (sectors == 0) { set_bit(MD_RECOVERY_ERR, &mddev->recovery); goto out; } if (!skipped) { /* actual IO requested */ io_sectors += sectors; atomic_add(sectors, &mddev->recovery_active); } j += sectors; if (j>1) mddev->curr_resync = j; if (last_check == 0) /* this is the earliers that rebuilt will be * visible in /proc/mdstat */ md_new_event(mddev); if (last_check + window > io_sectors || j == max_sectors) continue; last_check = io_sectors; if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || test_bit(MD_RECOVERY_ERR, &mddev->recovery)) break; repeat: if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { /* step marks */ int next = (last_mark+1) % SYNC_MARKS; mddev->resync_mark = mark[next]; mddev->resync_mark_cnt = mark_cnt[next]; mark[next] = jiffies; mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); last_mark = next; } if (kthread_should_stop()) { /* * got a signal, exit. */ printk(KERN_INFO "md: md_do_sync() got signal ... exiting\n"); set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto out; } /* * this loop exits only if either when we are slower than * the 'hard' speed limit, or the system was IO-idle for * a jiffy. * the system might be non-idle CPU-wise, but we only care * about not overloading the IO subsystem. (things like an * e2fsck being done on the RAID array should execute fast) */ mddev->queue->unplug_fn(mddev->queue); cond_resched(); currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 /((jiffies-mddev->resync_mark)/HZ +1) +1; if (currspeed > speed_min(mddev)) { if ((currspeed > speed_max(mddev)) || !is_mddev_idle(mddev)) { msleep(500); goto repeat; } } } printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev)); /* * this also signals 'finished resyncing' to md_stop */ out: mddev->queue->unplug_fn(mddev->queue); wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); /* tell personality that we are finished */ mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && mddev->curr_resync > 2 && mddev->curr_resync >= mddev->recovery_cp) { if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { printk(KERN_INFO "md: checkpointing recovery of %s.\n", mdname(mddev)); mddev->recovery_cp = mddev->curr_resync; } else mddev->recovery_cp = MaxSector; } skip: mddev->curr_resync = 0; wake_up(&resync_wait); set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); } /* * This routine is regularly called by all per-raid-array threads to * deal with generic issues like resync and super-block update. * Raid personalities that don't have a thread (linear/raid0) do not * need this as they never do any recovery or update the superblock. * * It does not do any resync itself, but rather "forks" off other threads * to do that as needed. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in * "->recovery" and create a thread at ->sync_thread. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) * and wakeups up this thread which will reap the thread and finish up. * This thread also removes any faulty devices (with nr_pending == 0). * * The overall approach is: * 1/ if the superblock needs updating, update it. * 2/ If a recovery thread is running, don't do anything else. * 3/ If recovery has finished, clean up, possibly marking spares active. * 4/ If there are any faulty devices, remove them. * 5/ If array is degraded, try to add spares devices * 6/ If array has spares or is not in-sync, start a resync thread. */ void md_check_recovery(mddev_t *mddev) { mdk_rdev_t *rdev; struct list_head *rtmp; if (mddev->bitmap) bitmap_daemon_work(mddev->bitmap); if (mddev->ro) return; if (signal_pending(current)) { if (mddev->pers->sync_request) { printk(KERN_INFO "md: %s in immediate safe mode\n", mdname(mddev)); mddev->safemode = 2; } flush_signals(current); } if ( ! ( mddev->sb_dirty || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || test_bit(MD_RECOVERY_DONE, &mddev->recovery) || (mddev->safemode == 1) || (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) )) return; if (mddev_trylock(mddev)==0) { int spares =0; spin_lock_irq(&mddev->write_lock); if (mddev->safemode && !atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) { mddev->in_sync = 1; mddev->sb_dirty = 1; } if (mddev->safemode == 1) mddev->safemode = 0; spin_unlock_irq(&mddev->write_lock); if (mddev->sb_dirty) md_update_sb(mddev); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { /* resync/recovery still happening */ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (mddev->sync_thread) { /* resync has finished, collect result */ md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { /* success...*/ /* activate any spares */ mddev->pers->spare_active(mddev); } md_update_sb(mddev); /* if array is no-longer degraded, then any saved_raid_disk * information must be scrapped */ if (!mddev->degraded) ITERATE_RDEV(mddev,rdev,rtmp) rdev->saved_raid_disk = -1; mddev->recovery = 0; /* flag recovery needed just to double check */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_new_event(mddev); goto unlock; } /* Clear some bits that don't mean anything, but * might be left set */ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); clear_bit(MD_RECOVERY_ERR, &mddev->recovery); clear_bit(MD_RECOVERY_INTR, &mddev->recovery); clear_bit(MD_RECOVERY_DONE, &mddev->recovery); /* no recovery is running. * remove any failed drives, then * add spares if possible. * Spare are also removed and re-added, to allow * the personality to fail the re-add. */ ITERATE_RDEV(mddev,rdev,rtmp) if (rdev->raid_disk >= 0 && (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) && atomic_read(&rdev->nr_pending)==0) { if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) { char nm[20]; sprintf(nm,"rd%d", rdev->raid_disk); sysfs_remove_link(&mddev->kobj, nm); rdev->raid_disk = -1; } } if (mddev->degraded) { ITERATE_RDEV(mddev,rdev,rtmp) if (rdev->raid_disk < 0 && !test_bit(Faulty, &rdev->flags)) { if (mddev->pers->hot_add_disk(mddev,rdev)) { char nm[20]; sprintf(nm, "rd%d", rdev->raid_disk); sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); spares++; md_new_event(mddev); } else break; } } if (spares) { clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); } else if (mddev->recovery_cp < MaxSector) { set_bit(MD_RECOVERY_SYNC, &mddev->recovery); } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) /* nothing to be done ... */ goto unlock; if (mddev->pers->sync_request) { set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); if (spares && mddev->bitmap && ! mddev->bitmap->file) { /* We are adding a device or devices to an array * which has the bitmap stored on all devices. * So make sure all bitmap pages get written */ bitmap_write_all(mddev->bitmap); } mddev->sync_thread = md_register_thread(md_do_sync, mddev, "%s_resync"); if (!mddev->sync_thread) { printk(KERN_ERR "%s: could not start resync" " thread...\n", mdname(mddev)); /* leave the spares where they are, it shouldn't hurt */ mddev->recovery = 0; } else md_wakeup_thread(mddev->sync_thread); md_new_event(mddev); } unlock: mddev_unlock(mddev); } } static int md_notify_reboot(struct notifier_block *this, unsigned long code, void *x) { struct list_head *tmp; mddev_t *mddev; if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { printk(KERN_INFO "md: stopping all md devices.\n"); ITERATE_MDDEV(mddev,tmp) if (mddev_trylock(mddev)==0) do_md_stop (mddev, 1); /* * certain more exotic SCSI devices are known to be * volatile wrt too early system reboots. While the * right place to handle this issue is the given * driver, we do want to have a safe RAID driver ... */ mdelay(1000*1); } return NOTIFY_DONE; } static struct notifier_block md_notifier = { .notifier_call = md_notify_reboot, .next = NULL, .priority = INT_MAX, /* before any real devices */ }; static void md_geninit(void) { struct proc_dir_entry *p; dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); p = create_proc_entry("mdstat", S_IRUGO, NULL); if (p) p->proc_fops = &md_seq_fops; } static int __init md_init(void) { int minor; printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d," " MD_SB_DISKS=%d\n", MD_MAJOR_VERSION, MD_MINOR_VERSION, MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS); printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI, BITMAP_MINOR); if (register_blkdev(MAJOR_NR, "md")) return -1; if ((mdp_major=register_blkdev(0, "mdp"))<=0) { unregister_blkdev(MAJOR_NR, "md"); return -1; } devfs_mk_dir("md"); blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE, md_probe, NULL, NULL); blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE, md_probe, NULL, NULL); for (minor=0; minor < MAX_MD_DEVS; ++minor) devfs_mk_bdev(MKDEV(MAJOR_NR, minor), S_IFBLK|S_IRUSR|S_IWUSR, "md/%d", minor); for (minor=0; minor < MAX_MD_DEVS; ++minor) devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift), S_IFBLK|S_IRUSR|S_IWUSR, "md/mdp%d", minor); register_reboot_notifier(&md_notifier); raid_table_header = register_sysctl_table(raid_root_table, 1); md_geninit(); return (0); } #ifndef MODULE /* * Searches all registered partitions for autorun RAID arrays * at boot time. */ static dev_t detected_devices[128]; static int dev_cnt; void md_autodetect_dev(dev_t dev) { if (dev_cnt >= 0 && dev_cnt < 127) detected_devices[dev_cnt++] = dev; } static void autostart_arrays(int part) { mdk_rdev_t *rdev; int i; printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); for (i = 0; i < dev_cnt; i++) { dev_t dev = detected_devices[i]; rdev = md_import_device(dev,0, 0); if (IS_ERR(rdev)) continue; if (test_bit(Faulty, &rdev->flags)) { MD_BUG(); continue; } list_add(&rdev->same_set, &pending_raid_disks); } dev_cnt = 0; autorun_devices(part); } #endif static __exit void md_exit(void) { mddev_t *mddev; struct list_head *tmp; int i; blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS); blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift); for (i=0; i < MAX_MD_DEVS; i++) devfs_remove("md/%d", i); for (i=0; i < MAX_MD_DEVS; i++) devfs_remove("md/d%d", i); devfs_remove("md"); unregister_blkdev(MAJOR_NR,"md"); unregister_blkdev(mdp_major, "mdp"); unregister_reboot_notifier(&md_notifier); unregister_sysctl_table(raid_table_header); remove_proc_entry("mdstat", NULL); ITERATE_MDDEV(mddev,tmp) { struct gendisk *disk = mddev->gendisk; if (!disk) continue; export_array(mddev); del_gendisk(disk); put_disk(disk); mddev->gendisk = NULL; mddev_put(mddev); } } module_init(md_init) module_exit(md_exit) static int get_ro(char *buffer, struct kernel_param *kp) { return sprintf(buffer, "%d", start_readonly); } static int set_ro(const char *val, struct kernel_param *kp) { char *e; int num = simple_strtoul(val, &e, 10); if (*val && (*e == '\0' || *e == '\n')) { start_readonly = num; return 0; } return -EINVAL; } module_param_call(start_ro, set_ro, get_ro, NULL, 0600); module_param(start_dirty_degraded, int, 0644); EXPORT_SYMBOL(register_md_personality); EXPORT_SYMBOL(unregister_md_personality); EXPORT_SYMBOL(md_error); EXPORT_SYMBOL(md_done_sync); EXPORT_SYMBOL(md_write_start); EXPORT_SYMBOL(md_write_end); EXPORT_SYMBOL(md_register_thread); EXPORT_SYMBOL(md_unregister_thread); EXPORT_SYMBOL(md_wakeup_thread); EXPORT_SYMBOL(md_print_devices); EXPORT_SYMBOL(md_check_recovery); MODULE_LICENSE("GPL"); MODULE_ALIAS("md"); MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);